Universal Property Group Pty Ltd

Preliminary Salinity and Geotechnical Assessment: 326-330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW

WASTEWATER

CIVIL

PROJECT MANAGEMENT

P1605186JR02V01 August 2016

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to complete a Preliminary Salinity and Geotechnical Assessment in accordance with the scope of services set out by Universal Property Group Pty Ltd (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources including site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© August 2016 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 Phone: +61-2-9476-9999 Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

Document and Distribution Status								
Author(s) Reviewer(s)			Project Manager			Sign	ature	
Grant Taylor		Ralph Emi		Gray Taylor				
				Document Location				
Revision No.	Description	Status	Release Date	File Copy	Universal Property Group Pty Ltd			
1	Preliminary Salinity and Geotechnical Assessment	Draft	27.07.2016	1E, 1H, 1P	1P			
1	Preliminary Salinity and Geotechnical Assessment	Final	25.08.2016	1E, 1H, 1P	IP			

Distribution Types: F = Fax, H = Hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 INTRODUCTION	5
1.1 Overview	5
1.2 Proposed Development	5
1.3 Background	5
1.4 Assessment Objectives	5
1.5 Field Investigation	6
2 SITE CONDITIONS	8
2.1 General Site Details	8
2.2 Subsurface Conditions	8
3 SALINITY ASSESSMENT	10
3.1 Documented Salinity Risk Potential	10
3.2 Broad Scale Salinity Processes	10
3.3 Signs of Potential Saline Soils at the site	10
3.4 Assessed Salinity Risk Potential	10
3.5 Laboratory Testing	11
3.6 Recommendations	14
4 GEOTECHNICAL ASSESSMENT	16
4.1 Preliminary Soil and Rock Strength Properties	16
4.2 Risks of Slope Instability	16
4.3 Initial Design and Construction Advice and Recommendations	16
4.4 Site Classification	19
5 PRELIMINARY PAVEMENT THICKNESS DESIGN	20
5.1 Overview	20
5.2 Design Parameters	20
5.3 Pavement Thickness	21
5.4 Earthworks	22
6 PROPOSED ADDITIONAL ASSESSMENTS	
6.1 Proposed Additional Assessment	24
6.2 Proposed Monitoring and Inspection Program	24
6.3 Contingency Plan	25
7 LIMITATIONS	
8 REFERENCES	
9 ATTACHMENT A - FIGURES	
10 ATTACHMENT B - BOREHOLE LOGS	
12 ATTACHMENT D - ENVIROLAB LABORATORY TEST RESULTS	
13 ATTACHMENT E - CBR TEST RESULTS	
14 ATTACHMENT F - CSIRO SHEET BTF 18	
15 ATTACHMENT G - NOTES ABOUT THIS REPORT	60

1 Introduction

1.1 Overview

This report documents the findings of a preliminary salinity and geotechnical assessment (including preliminary pavement thickness design), completed to support a development application (DA) to Penrith City Council (PCC) for the proposed residential subdivision at 326-330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW ('the site'). The site location is shown in Figure 1, Attachment A.

1.2 Proposed Development

The proposed development will consist of site subdivision for 65 low density residential lots, which will include:

- Earthworks for preparation of development platforms, including redirecting and filling of existing water courses / dam.
- Construction of above-ground buildings requiring limited bulk excavation, assumed < 1m below ground level (BGL).
- Installation of stormwater and other infrastructure.
- Construction of new local access roads.
- Landscaping.

1.3 Background

Review of historic aerial photography indicates that the site was previously used as rural residential / market gardens. Figure 1, Attachment A, shows the presence of one man-made dam located in the western corner of 27 Kent Road, Claremont Meadows.

1.4 Assessment Objectives

1.4.1 Salinity Assessment

The objective of the salinity assessment is to assess the risk of soil salinity so that consideration can be given to local prevailing salinity conditions and the impacts of, and on, the proposed development. This assessment has been carried out in general accordance with the following guidelines:

• Department of Land and Water Conservation (DLWC, 2002), Site Investigations for Urban Salinity.

- Australian Standard (AS) 3600 (2009), Concrete structures.
- 1.4.2 Geotechnical Assessment and Pavement Thickness Design

The objectives of the geotechnical assessment and pavement thickness design include:

- Assessing geotechnical conditions for management of geotechnical risks that may affect the proposed development, the site and surrounding land and infrastructure.
- Provision of preliminary recommendations and advice for initial design and construction of the proposed development.
- Provision of preliminary pavement thickness design.

The assessment was undertaken in general accordance with the principles of the following guidelines / standards:

- AS 1289.6.3.2 (1997), Determination of the penetration resistance of a soil 9kg dynamic cone penetrometer test.
- AS 1726 (1993), Geotechnical site investigations.
- AS 2870 (2011), Residential slabs and footings.
- AS 3798 (2007), Guidelines on earthworks for commercial and residential developments.
- Austroads (2012) Guide to Pavement Technology, Part 2 Pavement Structural Design.
- Penrith City Council (2013), Engineering Guide for Development.

1.5 Field Investigation

Site investigation undertaken on 30 May 2016 included:

- A site walkover survey to confirm expected topography and geology, to assess existing site conditions such as geomorphological features, soil / rock exposures, surface drainage and vegetation and to identify evidence of possible saline soil or groundwater conditions.
- Reviewing DBYD survey plans.
- Nine boreholes, BH101 to BH109, to characterise subsurface materials and infer depth to top of rock. Boreholes were drilled with a 4WD truck-mounted hydraulic rig using solid flight augers

fitted with a V-shaped bit (V-bit) or tungsten-carbide bit (TC-bit), up to 5.5 metres below ground level (mBGL).

- Nine Dynamic Cone Penetrometer (DCP) tests, DCP101 to DCP109, up to 3.3 mBGL, to assist soil characterisation and estimation of soil strength in accordance with AS 1289.6.3.2 (1997) and assess depth to top of rock.
- Collection of soil samples for chemical testing (electrical conductivity (EC), pH and soluble sulphate).
- Collection of two bulk soil samples for laboratory Californian Bearing Ratio (CBR) testing.

Approximate investigation locations are shown in Figure 2, Attachment A.

2 Site Conditions

2.1 General Site Details

Table 1 presents a summary of general site details. Existing site features are shown in Figure 1, Attachment A.

ltem	Description/Detail
Site address (Lot/DP)	326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW (Lot 14 DP27107 and Lot 1001 DP1131997)
Local Government Area (LGA)	Penrith City Council
Site area	Approximately 11.67 ha (from SIX Maps)
Topography	Within slightly undulating land
Typical slopes, aspect	North west aspect with grades generally < 5 $\%$
Elevation (from Google Earth)	Ranging from approximately 50 mAHD at the southern site boundary to approximately 47 mAHD at the northern site boundary
Expected geology	Wianamatta Group Bringelly Shale comprising shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone and rare coal and tuff (DME (1983) Penrith 1:100,000 Geological Series Sheet 9030).
Expected soil landscape	The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Blacktown soil landscape consisting of shallow to moderately deep (>100 cm) hardsetting mottled texture contrast soils, red and brown podzolic soils on crests grading to yellow podzolic soils on lower slopes and in drainage lines.
Current land use	Rural residential
Proposed land use	Residential (Low density)
Existing site development	 <u>326 – 330 Caddens Road:</u> A dwelling and several sheds are located in the north east corner. <u>27 Kent Road:</u> A dwelling and several sheds are located in the south east corner, and a farm dam is located in the west of site. The majority of site comprises managed grass paddocks.
Existing vegetation	Managed grass
Drainage	Site drainage is via overland flow towards the west.

2.2 Subsurface Conditions

2.2.1 Encountered Subsurface Materials

Table 2 summarises encountered subsurface materials and conditions, inferred from borehole and DCP test results, to investigation termination depth. Encountered conditions are described in more detail on borehole logs, Attachment B, and associated explanatory notes,

Attachment G. For DCP test results refer to DCP 'N' counts in Attachment C.

	Depth (mBGL) ²								
Layer 1	BH101	BH102	BH103	BH104	BH105	BH106	BH107	BH108	BH109
TOPSOIL: Sandy SILT / Silty SAND (very stiff, dry)	0.0 – 0.25	0.0 – 0.3	0.0 – 0.3	0.0 – 0.35	0.0 – 0.3	0.0 – 0.3	0.0 – 0.15	0.0 – 0.1	0.0 - 0.1
RESIDUAL SOIL: CLAY / Sandy CLAY (very stiff to hard, dry / moist)	0.25 – 1.8 ³	0.3 – 1.8 ³	0.3 – 3.8 ³	0.35 – 1.7 ³	0.3 – 0.8 ³	0.3 – 1.0 ³	0.15 – 3.0	0.1 – 2.5	0.1 – 1.0 ³
WEATHERED ROCK: SHALE (inferred very low to low strength)	1.8 – 2.6 4	>1.8 5	>3.8 5	1.7 – 2.5 4	0.8 – 5.5 4	>1.0 5	>3.0 5	>2.5 5	1.0 - 4.5 4

<u>Notes:</u>

¹ Refer to borehole logs for more detailed material descriptions at test locations.

² Indicative depth range below ground level, to investigation termination depth, which may vary across site depending on site and local geological conditions.

³ V-bit refusal.

⁴ Terminated due to TC-bit refusal on inferred medium strength shale. Further assessments should be carried out to confirm / revise assumed material conditions below investigation termination depths, if necessary.

⁵ Investigation termination upon reaching target depth.

2.2.2 Groundwater

Groundwater inflow was not observed in the boreholes up to a depth of 5.5 mBGL. Should further information on permanent site groundwater levels be required, additional investigation would need to be carried out (i.e. rock coring and installation of groundwater monitoring bores).

3 Salinity Assessment

3.1 Documented Salinity Risk Potential

The 1:100,000 Salinity Potential in Western Sydney Map (DIPNR, 2002) indicates the site to be located in an area of moderate salinity potential (Figure 4, Attachment A). Surrounding creek basins have been mapped as having high salinity potential and known salinity.

3.2 Broad Scale Salinity Processes

In producing the Salinity Potential Map, the Western Sydney Regional Organisation of Councils (WSROC) developed a number of alternative models of processes by which salinity may occur in Western Sydney (WSROC, 2003, pgs. 16 to 20).

A list of key broad scale salinity processes likely to impact the site, including summarised descriptions of each process, is presented in Table 3.

3.3 Signs of Potential Saline Soils at the site

No obvious signs of saline conditions were observed at the site:

- Vegetation growth appeared healthy and uninhibited.
- No water marks or salt crystals were observed on the ground surface.
- Site surface drainage appeared generally good.
- No evidence of concentrated surface erosion was observed.

3.4 Assessed Salinity Risk Potential

In Table 3, the broad scale salinity processes have been assessed in terms of likelihood of occurring at the site, considering the proposed development, site observations and investigation findings.

Key salinity	ii for broad scale salinity processes at the sit	
process	Description	Potential at subject site
Localised concentration of salinity	Localised concentration of salts due to relatively high evaporation rates. Usually associated with waterlogged soil and poor drainage. Exacerbated by increased water use and / or blocking of surface and subsurface water flow associated with urban development.	Moderate to High – No evidence of localised salt concentration or poor drainage observed. Possible waterlogged soils in area of dam and as a result of irrigation of former market gardens may have influenced site salinity.
Shale soil landscapes	In poorly drained duplex (texture contrast) soils, shallow subsurface water flows laterally across a clayey upper B-Horizon with salt usually accumulating in the clayey subsoil. Salt concentrations may increase where subsurface water accumulates and evaporates, e.g. on lower slopes or natural and constructed flats in mid-slope. Exacerbated by subsoils exposure through deep cutting, by installing buildings into the B-horizon and by impeding subsurface water flows. Highly dispersive, erodible and poorly draining sodic soils due to salinity.	Moderate to high – The site is underlain by low permeable clays, overlying shale. No evidence of impeded surface vegetation growth and surface soil erosion observed. Water accumulation and evaporation of perched water in dam. Evaporation of irrigation water associated with former market gardens.
Deep groundwater salinity	Brackish or saline groundwater rises to a level where, through capillary action in the soil, the water with dissolved salts reaches the ground surface and evaporates, resulting in localised salt concentration. Groundwater rises are typically caused by increased water infiltration, e.g. above average rainfall, vegetation loss, irrigation, increased water use in urban areas, construction of surface pits. Exacerbated by buildings or infrastructure intercepting the zone of groundwater level fluctuation.	Moderate – Groundwater was not encountered in boreholes to 5.5 mBGL. However, long-term surface water inflow into dams could lead to a rise in perched groundwater level. Proposed structures are to be constructed with appropriate drainage measures installed.
Deeply weathered soil landscape	High salt loads with high sulphate levels related to un-mapped deeply weathered soil landscapes beneath fluvial gravel, sand and clay. Usually in mid-slope or on hilltops affected by perched saline groundwater.	Low to Moderate – No evidence of deeply weathered soils observed. Deep weathering may be present within previous natural drainage channels.

Table 3: Potential for broad scale salinity processes at the site.

3.5 Laboratory Testing

3.5.1 Overview

24 soil samples from nine boreholes were submitted to Envirolab Services, a National Association of Testing Authorities (NATA) accredited laboratory, for salinity and aggressivity testing (Electrical Conductivity (EC), pH and soluble SO₄). The testing was carried out for salinity classification and to assess an exposure classification for design

of buried concrete structures. Sampling was targeted to achieve a representative coverage of site conditions in line with assessed subsurface profiles, proposed earthworks and the limited investigation scope.

Groundwater was not observed down to investigation depth limits, being 5.5 mBGL. However, perched groundwater from surface water infiltration may occur as a result of rainfall events and should be tested, if encountered, during construction.

3.5.2 Results – Salinity Classification

Laboratory test results for salinity classification are summarised in Table 4. Laboratory test certificates are provided in Attachment D.

Sample ID 1	Material	EC _(1:5) (dS/m)	ECe (dS/m) ²	Salinity Classification ³
5186/101/0.2	Clay	0.220	1.87	Non – saline
5186/101/0.5	Clay	0.150	1.05	Non – saline
5186/101/1.0	Clay	0.780	5.46	Moderately saline
5186/101/1.5	Clay	0.490	3.43	Slightly saline
5186/102/1.0	Clay	0.650	4.55	Moderately saline
5186/102/1.5	Clay	0.660	4.62	Moderately saline
5186/103/0.2	Clay	0.150	1.28	Non – saline
5186/103/0.5	Clay	0.650	4.55	Moderately saline
5186/103/1.5	Clay	0.620	4.34	Moderately saline
5186/103/2.0	Clay	0.480	3.36	Slightly saline
5186/104/0.2	Clay	0.130	1.11	Non – saline
5186/104/1.0	Clay	0.720	5.04	Moderately saline
5186/105/0.2	Clay	0.170	1.45	Non – saline
5186/105/0.5	Clay	0.150	1.05	Non – saline
5186/106/0.2	Clay	0.110	0.94	Non – saline
5186/106/1.0	Clay	0.150	1.05	Non – saline
5186/107/0.5	Clay	0.410	2.87	Slightly saline
5186/107/1.5	Clay	0.430	3.01	Slightly saline

 Table 4: Salinity test results.

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 12

Sample ID 1	Material	EC _(1:5) (dS/m)	EC _e (dS/m) ²	Salinity Classification ³
5186/107/2.0	Clay	0.370	2.59	Slightly saline
5186/108/0.2	Clay	0.120	1.02	Non – saline
5186/108/1.0	Clay	0.380	2.66	Slightly saline
5186/108/2.5	Clay	0.330	2.31	Slightly saline
5186/109/0.2	Clay	0.140	0.98	Non – saline
5186/109/0.5	Clay	0.240	1.68	Non – saline

Notes:

Project#/Borehole#/Depth (mBGL)

- ² Based on EC to EC_e multiplication factors from Table 6.1 in DLWC (2002).
- ³ Based on Table 6.2 of DLWC (2002) where $EC_e < 2 \text{ dS/m} = \text{non-saline}$, $EC_e \text{ of } 2-4 \text{ dS/m} = \text{slightly saline}$, $EC_e \text{ of } 4-8 \text{ dS/m} = \text{moderately saline}$, $EC_e \text{ of } 8-16 \text{ dS/m} = \text{very saline}$ and $EC_e \text{ of } >16 \text{ dS/m} = \text{highly saline}$.

Results indicate:

- Subsurface materials at 326 330 Caddens Road are generally classified as non-saline to moderately saline.
- Subsurface materials at 27 Kent Road are generally classified as non-saline to slightly saline.
- 3.5.3 Results Exposure Classification

Sulphate and pH test results for exposure classification are summarised in Table 5. Laboratory test certificates are presented in Attachment D.

Sample ID ¹	EC _e (dS/m) ²	pН	Sulphate (SO₄) (mg/kg)	Exposure Classification ³
5186/101/0.2	1.87	6.8	28	Al
5186/101/0.5	1.05	5.5	150	Al
5186/101/1.0	5.46	4.7	540	A2
5186/101/1.5	3.43	5.2	360	A2
5186/102/1.0	4.55	5.0	260	A2
5186/102/1.5	4.62	5.1	310	A2
5186/103/0.2	1.28	7.3	20	A1
5186/103/0.5	4.55	6.7	420	A2
5186/103/1.5	4.34	4.9	580	A2
5186/103/2.0	3.36	5.2	220	A2

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 13

Sample ID ¹	EC _e (dS/m) ²	рН	Sulphate (SO₄) (mg/kg)	Exposure Classification ³
5186/104/0.2	1.11	6.6	34	Al
5186/104/1.0	5.04	5.8	300	A2
5186/105/0.2	1.45	7.2	31	A1
5186/105/0.5	1.05	5.7	170	A1
5186/106/0.2	0.94	7.2	10	Al
5186/106/1.0	1.05	5.0	190	A2
5186/107/0.5	2.87	5.0	490	A2
5186/107/1.5	3.01	5.1	390	A2
5186/107/2.0	2.59	5.2	230	A2
5186/108/0.2	1.02	5.7	160	A1
5186/108/1.0	2.66	5.2	330	A2
5186/108/2.5	2.31	5.2	200	A2
5186/109/0.2	0.98	6.4	83	A1
5186/109/0.5	1.68	5.7	290	Al

<u>Notes:</u>

¹ Project#/Borehole#/Depth (mBGL)

² From Table 4.

³ Exposure classification for buried reinforced concrete based on Tables 4.8.1 and 4.8.2 of AS 3600 (2009).

In accordance with AS3600 (2009), an exposure classification for concrete of 'A2' should be adopted for preliminary design of buried concrete structures.

3.6 Recommendations

We recommend that saline soil management strategies are included in the design and construction of the proposed development.

Management strategies for earthworks and landscaping should include, but not be limited to:

- Maintaining natural water balance.
- Limiting irrigation.
- Limiting soil disturbance, such as cut and fill, so saline or sodic subsoils are not exposed or groundwater is not intercepted.
- o Planting of suitable salt-tolerant plant species.
- Retention of existing deep-rooted vegetation.

- Offset landscaping and gardens from building and retaining walls.
- Treating soils with gypsum before landscaping to suit selective species.
- Where consistent with future land use and landscaping plan, planting of deep-rooted, preferably native, trees to increase water absorption.
- Sealing, e.g. by lining, of stormwater detention ponds and water features to reduce infiltration.
- Preparing sediment and erosion control plans that take into account saline soils.
- Replacing excavated soils in their original order.
- Any long term irrigation or watering on-site is to be at a level that does not cause groundwater to become perched.

Management strategies for new buildings and services should include, but not be limited to:

- Limiting soil disturbance, such as compaction of soils, cutting and filling.
- Designing and building structures to limit interference with natural water flow on site.
- Using appropriate construction materials and techniques to salt proof buildings and infrastructure.
- Utilising damp proof courses and water proofing of slabs.
- Using exposure grade bricks / masonry below damp course or in retaining walls.
- Providing concrete strength and cover to steel reinforcing in accordance with AS 3600 (2009) and the exposure classifications outlined in Table 5.
- Limiting excess surface water infiltration into the soil by designing, installing and maintaining appropriate stormwater drainage (gutters, downpipes, pits and pipes).
- Further assessment including laboratory testing, to improve characterisation of site salinity conditions, particularly in proposed development areas, and assess potential ensuing implications on the proposed development and mitigation requirements.

4 Geotechnical Assessment

4.1 Preliminary Soil and Rock Strength Properties

Soil and rock strengths were estimated from DCP test results in conjunction with borehole derived soil profile data. Preliminary soil and rock strength properties are summarised in Table 6.

Table 6: Preliminary estimated soil and inferred rock strength prop	erties.
---	---------

Layer 1	Y _{in-situ} ² (kN/m ³)	Cu ³ (kPa)	Ф' 4 (°)	E' ⁵ (MPa)
TOPSOIL: Sandy SILT (very stiff)	17	25	NA ⁶	5
RESIDUAL SOIL: CLAY/ Sandy CLAY (very stiff to hard)	18	100	NA ⁶	20
WEATHERED ROCK: SHALE (low to medium strength)	22	NA ⁶	28	100

Notes:

¹ Refer to borehole logs in Attachment B for material description details.

² Inferred average In-situ unit weight for layer, based on visual assessment only (±2 kN/m³)

³ Undrained shear strength (± 5 kPa) assuming normally consolidated clay.

- ⁴ Effective internal friction angle (± 2 °) assuming drained conditions; may be dependent on rock defect conditions.
- ⁵ Effective Elastic Modulus (±10 %).
- ⁶ Not applicable.

4.2 Risks of Slope Instability

No evidence of former land instability was observed during the site walkover survey.

We consider the risk of potential slope instability, such as landslide or soil creep, to be very low subject to the recommendations in this report being followed, adoption of relevant engineering standards and CSIRO BTF 18 (Attachment F). A detailed slope risk assessment in accordance with Australian Geomechanics Society's Landslide Risk Management Guidelines (2007) was not undertaken.

4.3 Initial Design and Construction Advice and Recommendations

From a geotechnical viewpoint, we consider the site to be suitable for the proposed development, subject to the recommendations presented in this report. No information regarding proposed structures, including footing requirements, was made available at the time of reporting. For the purpose of this report, we have considered typical structures associated with low density residential development. Site specific testing will be required at detailed design stage to provide further recommendations.

Table 7 presents a summary of preliminary geotechnical recommendations for initial design and developing construction methodologies for the proposed development.

 Table 7: Preliminary geotechnical recommendations for initial design and construction.

Item	Recommendation		
Excavations	Shallow excavations will likely encounter residual clay soils ove weathered shale. In light of this, shallow excavations should be readily carried out as follows:		
	 Soils and Conventional hydraulic earthmoving equipment. strength rock 		
	 Medium strength, or stronger rock, if encountered Hydraulic earthmoving equipment with rock hammer attachment or ripping tyne for medium and higher rock. 		
	Earthwork and site preparation is to be reviewed by a Geotechnico Engineer and undertaken in accordance with AS 3798 (2007), Code of Practice 'Excavation Work' (Safe Work Australia, 2015) and Penrith Cit Council's engineering guidelines (2013).		
Footings	Shallow footings, such as pad and strip footings, slab-on-ground or deepened pier or piled footings may be adopted as support for new structures. Footings should be founded on natural material.		
	Shallow footings may be designed adopting preliminary geotechnical design parameters of 100 kPa and 300 kPa, for foundations on very stiff and hard residual clay, respectively, subject to an embedment depth of at least 0.3 m into the design material unit.		
	Alternatively, should higher bearing capacities be required, the use of deepened footings such as piles founding in rock may be considered. Subject to embedment of at least 0.5 m or 1 pile diameter, whichever is greater, an allowable end bearing capacity of 700 kPa may be adopted for preliminary design.		
	Bearing capacity values should be confirmed by further assessment as detailed in Section 6.2 and during construction by a geotechnical engineer on site.		
	All footings should found on material with similar end bearing capacit to limit differential movement across the building footprint. Individuo pad footings should not span the interface between differen foundation materials.		
	All footings should be constructed with minimal delay following excavation. Geotechnical Engineer is to confirm encountered conditions satisfy design assumptions and that the base of a excavations is free from loose or softened material and water prior to footing construction. Water that has ponded in the base of excavations and any resultant softened material is to be removed prior to footing construction. If a delay in construction is anticipated a concrete blinding layer of at least 50 mm thickness should be placed to protect the foundation material of shallow footings.		
Retaining structures/ batters	Any excavations exceeding 0.75 m in height should be supported b suitably designed and installed retaining or shoring structures Alternatively, soil overburden may be excavated without structure support but with a maximum temporary (less than 1 month) battle slope of 1 V (vertical): 2 H (horizontal) and permanent batter slope of 1 V: 3 H. Retaining structures to be constructed as part of site work are to be engineer designed and backfilled with suitable granulo material and free-draining drainage materials. Preliminary design may adopt preliminary active and passive earth pressure coefficient		

ltem	Recommendation
	of 0.4 and 2.5 respectively. Retaining wall design should consider additional surcharge loading from proposed structures, construction equipment, backfill compaction and static water pressures unless subsoil drainage is provided behind retaining walls. Suitable drainage measures, such as geotextile enclosed 100 mm agricultural pipes embedded in free-draining gravel, should be included to redirect water that may collect behind the retaining walls to a suitable discharge path.
Earthworks	The existing dam may require earthworks for site preparation. All earthworks should be carried out following removal of topsoil, silt deposits and other unsuitable materials in accordance with AS3798 (2007) Guidelines on Earthworks for Commercial and Residential Development. A qualified geotechnical engineer should inspect the condition of the exposed material to assess suitably of the exposed / prepared surface as foundation for fill placement. Fill material comprising approved imported granular fill material should
	Fill material comprising approved imported granular fill material should be placed in horizontal layers of not more than 300 mm loose thickness. However, the layer thickness should be appropriate for the compaction plant adopted. Further assessment is to be carried out should excavated site material is to be used for filling at the site. Earthworks compliance testing should be carried out in accordance with Table 8.1 of AS3798 (2007), with testing to be provided by a National Association of Testing Authorities (NATA) accredited testing authority. For areas likely to be subjected to a loading of up to 20 kPa, fill material should be moisture conditioned and compacted to a minimum density index (DI) of 75% or density ratio (DR) of 98% SMDD, within 2% of Optimum Moisture Content (OMC). For areas loaded to greater than 20 kPa, the material should be moisture conditioned and compacted to a DI of 80% or DR of 100% SMDD, within 2% of OMC. For general fill areas, fill should be compacted to a DI of 70% or DR of 95% SMDD and moisture conditioned to be within 2% of OMC.
Overland flows	All surface runoff should be diverted away from excavation areas during construction works and from any retaining structures, footings or the crest and base of embankments to prevent water accumulation, foundation / embankment material strength reduction and pore water pressure increases.
Soil erosion	 Soil overburden should be removed in a manner that reduces the risk of sedimentation of natural drainage channels and existing stormwater drainage systems in the vicinity of the site. All spoil on site should be properly controlled by erosion control measures to prevent transportation of sediments off-site. The following erosion control measures should be considered, in conjunction with recommendation by Landcom (2004), to limit surface run-off and associated risk of surface scour, soil erosion and sedimentation: Maintain vegetation where possible. Disturb minimal area during excavation. Landscape disturbed areas following completion of constructions. Use gabion mattress, or other suitable energy reduction solutions, where required.
	 Direct water away from structures.

ltem	Recommendation
Off-site removal of excavation spoil and groundwater	Soil to be disposed off-site should be classified in accordance with the NSW EPA/DECCW guidelines. Groundwater should also be tested prior to discharge to ensure contaminant levels (if applicable) are appropriate for discharge locations. MA can complete the necessary classification and testing if required. Time allowance should be made for such testing in the construction program.

4.4 Site Classification

Clay of generally medium to high plasticity was encountered up to 3.8 mBGL. The clay is likely to have a high potential to shrink and swell as a result of changes in soil moisture content.

A preliminary site classification of 'H1' should be adopted for design of lightly loaded shallow footings, in accordance with AS 2870 (2011), subject to the recommendations presented in this report and CSIRO guidelines (CSIRO BTF 18, 2003; Attachment F). A reclassification to 'M' may be possible subject to results of further laboratory testings and earthworks adopted for site development.

A preliminary site classification of 'P' should be adopted where footings are likely to be impacted by the presence of uncontrolled fill or soft or loose foundation material or by environments that could lead to exceptional moisture condition variations within foundation material, such as areas impacted by dams and filling.

5 Preliminary Pavement Thickness Design

5.1 Overview

Preliminary pavement thickness design was undertaken for potential new cul-de-sac and local access roads. The design adopted a traffic loading of Equivalent Standard Axles (ESA) in accordance with Penrith City Council's Engineering Guide for Development (2013) and Austroads (2012) Guide to Pavement Technology Part 2 Pavement Structural Design. A CBR value obtained from limited lab testing was adopted for the preliminary design.

5.2 Design Parameters

Table 8 presents Equivalent Standard Axles (ESA) values adopted for design of cul-de-sac and local access roads.

Table 8: ESA values for proposed cul-de sac and local access roads.

Road Type	N (ESA)
Cul-de-sac	5x104
Local street	5×10 ⁵

Two bulk soil samples were collected from adjacent to BH103 and BH108 (Figure 2, Attachment A) and submitted to Resource Laboratories, a NATA accredited laboratory for CBR testing. A four day soaked CBR testing was conducted in accordance with AS 1289.1.1, 2.1.1, 5.1.1 and 6.1.1. Test results are summarised in Table 9. A laboratory test certificate is provided in Attachment E.

Table 9: Laboratory CBR.

Sample Number	Material	Sample Depth (mBGL)	CBR ¹ Value (%)
5186/103/0.3-0.8/S/1	Silty CLAY	0.3 – 0.8	3.0
5186/108/0.1-0.6/S/1	Silty CLAY	0.1 – 0.6	4.0

Notes:

¹ Four day soak, compacted to 98 % SMDD (± 2 % of OMC), applying a 4.5 kg surcharge.

Based on correlation between Austroads (2012) and the DCP test results, a CBR value of between 6 and 25 applies to the residual clay subgrade. We note, however that the soils were encountered in a dry condition. These CBR values should therefore be reduced to consider long-term ground conditions.

For the purpose of this assessment, a CBR value of 3 % was adopted.

Additional CBR testing is recommended to provide a better indication of subgrade conditions across pavement areas considering final design levels and / or provide statistical means to support a higher CBR design value. The additional testing may be undertaken at Construction Certification stage.

5.3 Pavement Thickness

Based on laboratory test result and DCP-CBR correlations, a CBR value of 3.0 has been adopted for preliminary design purposes. If medium to high plasticity clay is encountered at subgrade level during excavation, lower CBR values may be applicable and the pavement material thickness may need to be revised.

Table 10 presents preliminary recommended pavement material thicknesses for proposed cul-de-sac and local access roads.

Road Type ¹	Layer	Thickness (mm)
Cul-de-sac	1 layer of AC10 and final layer of 25 mm "Residential" mix (Pavement Surfacing)	50 ²
	Base (DGB)	150 ³
	Sub-base (DGS)	175 ³
	Total pavement thickness	375
Local Street	1 layer of AC10 and final layer of 25 mm "Residential" mix (Pavement Surfacing)	50 ²
	Base (DGB)	150
	Sub-base (DGS)	270
	Total pavement thickness	470

 Table 10: Preliminary pavement material thickness design for CBR of 3.

<u>Notes:</u>

- ¹ Based on Penrith Council's Engineering Guide for Development (2013).
- ² Impact of turning or stopping vehicles at end of road or intersections not included in assessment.
- ³ Minimum layer thickness (PCC, 2016)

5.4 Earthworks

5.4.1 Subgrade Preparation

The subgrade is to be trimmed and compacted with density testing of the upper 300 mm layer at a rate of 1 test per 50 m of road length. Minimum density shall be 100 % Maximum Dry Density (MDD) at a standard compactive effort within 0 % and -3 % of optimum moisture content (OMC). Prior to placement of pavement material, the subgrade shall be proof rolled and approved by a Geotechnical Engineer.

Soft spots can be treated by one of the following methods subject to final design by Martens:

- 1. Removal and replacement with approved fill under Geotechnical Engineer's direction.
- 2. *In-situ* stabilisation with cement, lime or similar binding agent to a depth of at least 300 mm below finished level. Use of this method and extent will depend on the condition of material to be stabilised.
- 5.4.2 Subsoil Drainage

Surface and subsoil drainage should be provided in accordance with Council requirements. Typically subsurface drains are installed on the upslope side of all internal roads and generally extend 500 mm below pavement level.

5.4.3 Placement and Testing of Pavement Material

Pavement materials shall be placed in layers (when compacted) not thicker than 250 mm or less than 75 mm. Pavement materials shall be compacted to the following condition:

- $\circ~$ Sub-base Minimum 98 % MDD at modified compactive effort (±2 % OMC).
- $\circ~$ Base Minimum 98 % MDD at modified compactive effort (±2 % OMC).

Compaction testing shall be undertaken by a NATA accredited laboratory in accordance with procedures as outlined in AS1289. Tests should be carried out at a rate of 1 per 250 m² per layer or 3 per layer placed, whichever is the greater. Each pavement layer shall be proof rolled under geotechnical engineer's supervision. Subsequent layers of pavement shall not be placed prior to approval of underlying layer.

5.4.4 Earthworks

Should filling be required to raise subgrade levels, the use of site-won excavated materials may be considered, subject to approval by a geotechnical engineer and implementing stringent moisture conditioning controls, or mixing with lime, to assist material placement and testing. Alternatively, suitable granular fill, approved for use by a Geotechnical Engineer, may be adopted.

All earthwork and fill material testing and preparation is to be approved by a Geotechnical Engineer and undertaken in accordance with AS 3798 (2007) and Penrith City Council's engineering guidelines (2013).

6 Proposed Additional Assessments

6.1 Proposed Additional Assessment

We recommend the following additional assessments are carried out during development of final design and prior to issuing of a construction certificate to better manage geotechnical risks, where applicable:

- Assessment of foundation condition up to at least 2 m below final bulk excavation and foundation levels, as applicable.
- Laboratory testing of soil and rock, as necessary, for more accurate assessment of subsurface conditions at future dwelling and infrastructure locations and of associated design parameters to confirm or alter preliminary site classifications and design assumptions. This should include shrink / swell and Atterberg Limits laboratory testings.
- Assessment of subsurface conditions, including CBR testing, along proposed road alignments.
- Assessment of site specific foundation material capacity to support adopted footing types.
- Assessment of subsurface conditions in the vicinity of the existing dam for earthworks requirements.
- Review of construction staging plans by a Geotechnical Engineer.
- Further salinity testing to delineate salinity conditions across soil profiles and development areas, considering final development details.

6.2 Proposed Monitoring and Inspection Program

To maintain site stability during site works and limit adverse geotechnical impacts on the site and surrounding areas as a result of the proposed development, we recommend the following is inspected and monitored (Table 11) during site works. This program may be updated following further detailed investigations.

	,		
Table 11: Recommended	inspections/monitoring	requirements du	Jring site works.

Scope of Works	Frequency/Duration	Who to Complete
Inspect excavation retention (shoring, retaining wall) installations and batters and monitor associated performance.	Daily / As required	Builder / MA
Monitor groundwater seepage from excavation faces to assess adequacy of drainage provision.	When encountered	Builder / MA
Monitor sedimentation downslope of excavated areas.	During and after rainfall events	Builder
Monitor sediment and erosion control structures to assess adequacy and for removal of built up spoil.	After rainfall events	Builder
Inspect exposed material to verify suitability as foundation/ lateral support/ subgrade.	Prior to reinforcement set-up and concrete placement for footing construction and fill or pavement material placement.	МА
Inspect fill material to verify suitability for placement at the site and for provision of advice associated with fill placement.	Prior to fill placement.	МА
Natasi		

<u>Notes:</u>

MA = Martens and Associates Geotechnical Engineer.

6.3 Contingency Plan

In the event that the proposed development works cause an adverse impact on overall site stability or on neighbouring properties, works shall cease immediately. The nature of the impact shall be documented and the reason(s) for the adverse impact investigated. This might require site inspection by a qualified Geotechnical or Structural Engineer.

7 Limitations

The recommendations presented in this report are based on limited preliminary investigations and include specific issues to be addressed during the design and construction phases of the project. In the event that any of the recommendations presented in this report are not implemented, the general recommendations may become inapplicable and Martens & Associates accept no responsibility whatsoever for the performance of the works undertaken where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, subsurface conditions between and below the completed boreholes or other tests may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact Martens & Associates.

Relative ground surface levels at borehole locations are based on spot levels from Google Earth.

8 References

Australia Standard 1289.6.3.2 (AS, 1997) Determination of the penetration resistance of a soil - 9kg dynamic cone penetrometer test.

Australia Standard 1726 (AS, 1993) Geotechnical site investigations.

Australia Standard 2870 (AS, 2011) Australia Standard, Residential slabs and footings.

Australia Standard 3600 (AS, 2009) Concrete structures.

Australia Standard 3798 (AS, 2007) Guidelines on earthworks for commercial and residential developments.

Austroads (2012) Guide to Pavement Technology, Part 2 Pavement Structural Design.

CSIRO BTF 18 (2003) Foundation Maintenance and Footing Performance: A homeowner's Guide.

Department of Infrastructure Planning and Natural Resources (DIPNR, 2002) Salinity Potential in Western Sydney Map.

Department of Land and Water Conservation (DLWC, 2002) Site investigations for urban salinity.

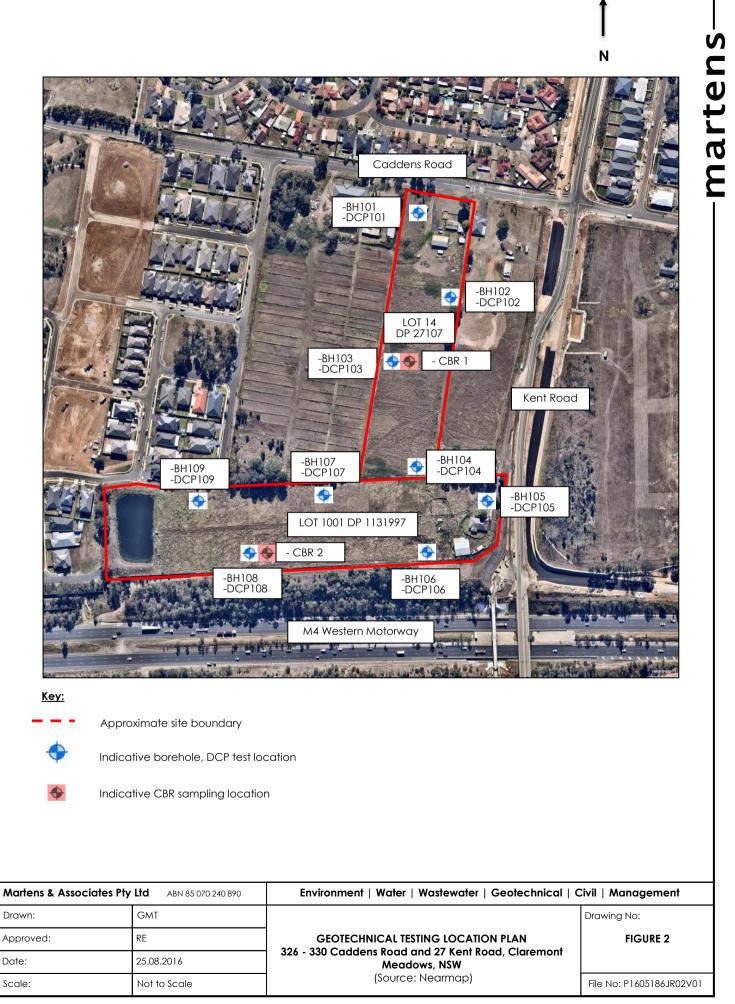
Geological Survey of NSW Department of Minerals and Energy (1991), Penrith 1:100,000 Geological Series Sheet 9030.

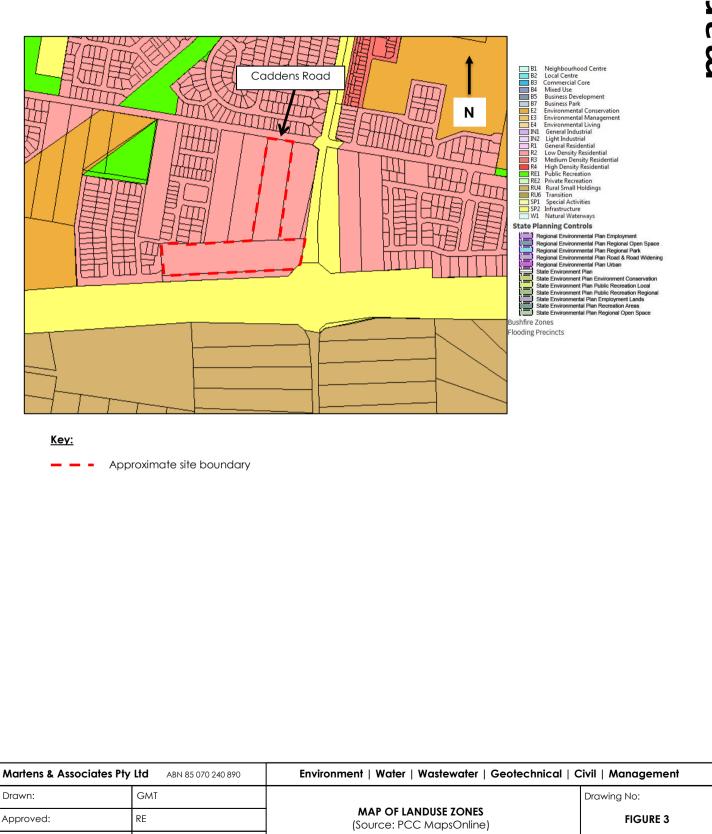
Landcom (2004) Managing Urban Stormwater: Soils and Construction.

Penrith City Council (2010), Development Control Plan.

Penrith City Council (2016), Engineering Construction Specification for Civil Works.

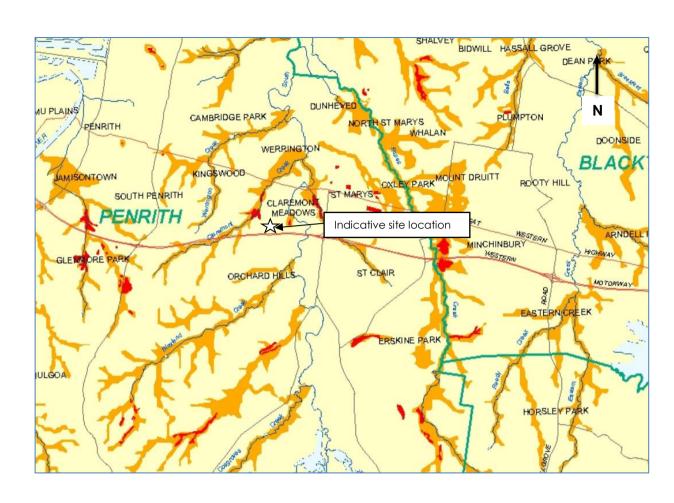
Western Sydney Regional Organisation of Councils (WSROC, 2003) Western Sydney Salinity Code of Practice.


9 Attachment A – Figures


Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 28

Version: 1, Version Date: 11/03/2022

File No: P1605186JR02V01



2508.2016

Not to Scale

Date:

Scale:

MAPPING CATEGORY	ASSOCIATED SOIL LANDSCAPES	LANDFORM - GEOLOGY
KNOWN SALINITY Areas where there is a known occurrence of saline soil, or where air photo interpretation and field observations have confirmed more than one of these: a - soalding b - salt efforescence c - vegetation dieback d - salt tolerant plant species e - waterlogging A high relative wetness index occurs in these areas.	 * Salinity outbreaks occur in Blacktown (bt), Luddenham (lu) and Richmond (ri) Soil Landscapes - common at breaks of slope, lower slopes and drainage lines. * Berkshire Park (bp) and Upper Castlereagh (up) Soil Landscapes have localised salinity due to the impermeable nature of the day parent material. * South Creek (sc), Monkey Creek (mk), Freemans Reach (tr) and Theresa Park (bp) Soil Landscapes have common saline outbreaks due to high run-on and lowlocal relief. * Soils in the above landscapes have high clay content in subsoils and are imperfectly to poorly drained. 	* Break of slope, lower slope and drainage lines of Wianamatta Shales (Rwb,Rwa and Rwm). * Localised salinity also occurs at the geological boundary between Tertiary Gravels (TI, Tr) and underlaying Wianamatta Shales (Rwb, Rwa/ Gwatemary Alluviais (Dq), Gapa, Qpi, Qal). * Localised salinity occurs in Guatemary Alluviaun (Qal, Qpn, Qpd) which underlies many of the drainage systems and wetland margins.
HIGH SALINITY POTENTIAL Areas where soil, geology, topography and groundwater conditions predispose a site to salinity. These conditions are similar to areas of known salinity (see above). These areas are most common in lower slopes and drainage systems where water accumulation is high (je. high relative wetness index).	* Soil Landscapes include Birrong (bi), Blacktown (bt) Berkshire Park (bp), Freemans Reach (fr), South Creek(sc0, Theresa Park (tp), Richmond (ri) and Luddenham (u). Drainage systems and convergent slopes are areas of highest risk. * Soils in these landscapes have high day content in the sub soils, love meability and high run-on. * Soil profiles may display signs of high salt concentrations at depth (i.e. >0.5m).	* Salinity is most likely to occur in lower slopes, foot-slopes, floodplains and creek lines on Quaternary Sediments (Qal, Qpn, Qpd, Qpc, Qpp, Qha)/Wanamatta Shales (Rwk, Rwn, Rwa) where run-on is high, resulting in seasonally high water tables and soil saturation.
MODERATE SALINITY POTENTIAL Areas on Wianamatta Group Shales and Tertiary Alluvial Terraces. Scattered areas of scalding and indicator vegetation have been noted but no concentrations have been mapped. Saline areas may occur in this zone, which have not yet been identified or may occur if risk factors change adversely.	* Areas of Agnes Banks (ab), Berkshire Park (bp), Blacktown (bt), Luddenham (lu) and Lucas Heights (lh). * Steeper areas with moderate to high local relief and well drained subsoils such as Picton (pn), West P ennant Hills (wp) and Glenorie (gn) are at a lower risk of developing salinty. * Soils are moderate to well-drained due to their elevated position in the landscape.	* Hill-slopes and hill-crests on Wianamatta Shales (Rwb, Rwn, Rwa). * Raised abandoned alluvial terraces and drainage lines on Quatemary Alluvium (Oal, Qpn, Opd, Opc, Qpp) from Richmond to Camden and east to Rookwood. Localised areas of elevated, well-drained Tertiary Gravels (Ta, TI, Tr).
VERY LOW SALINITY POTENTIAL Areas where salinity processes do not operate or are of minor significance. Soils are rapidly drained and underlaying strata (Hawkesbury/Marrabeen Sandstone) are highly permeable, resulting in continual flushing and rem oval of salts in the landscape. No salinity has been observed in these areas and is not expected to occur.	* Rapidly drained soil landscapes with shallow soils include Warragamba (wb) and Hawkesbury (ha). * Gymea (gy) and Faulconbridge (fb) Soil Landscapes consist of highly permeable sands with well-drained subsoils. * Soils are well to rapidly drained. * Soils have high sand content.	* Occurring on Hawkesbury and Narrabeen Sandstone (Rh, Rno). * Groundwater is relatively fresh in these areas due to the sandstone's elevated position in the landscape and highly permeable nature, resulting in continuous flushing of the system (rem oval of any accum ulated saits).

Martens & Associates Pty Ltd ABN 85 070 240 890		Environment Water Wastewater Geotechnical Civil Management		
Drawn:	GMT		Drawing No:	
Approved:	RE	1:100,000 MAP OF SALINITY POTENTIAL IN WESTERN SYDNEY (Source: DIPNR, 2002)	FIGURE 4	
Date:	25.08.2016			
Scale:	Not to Scale		File No: P1605186JR02V01	

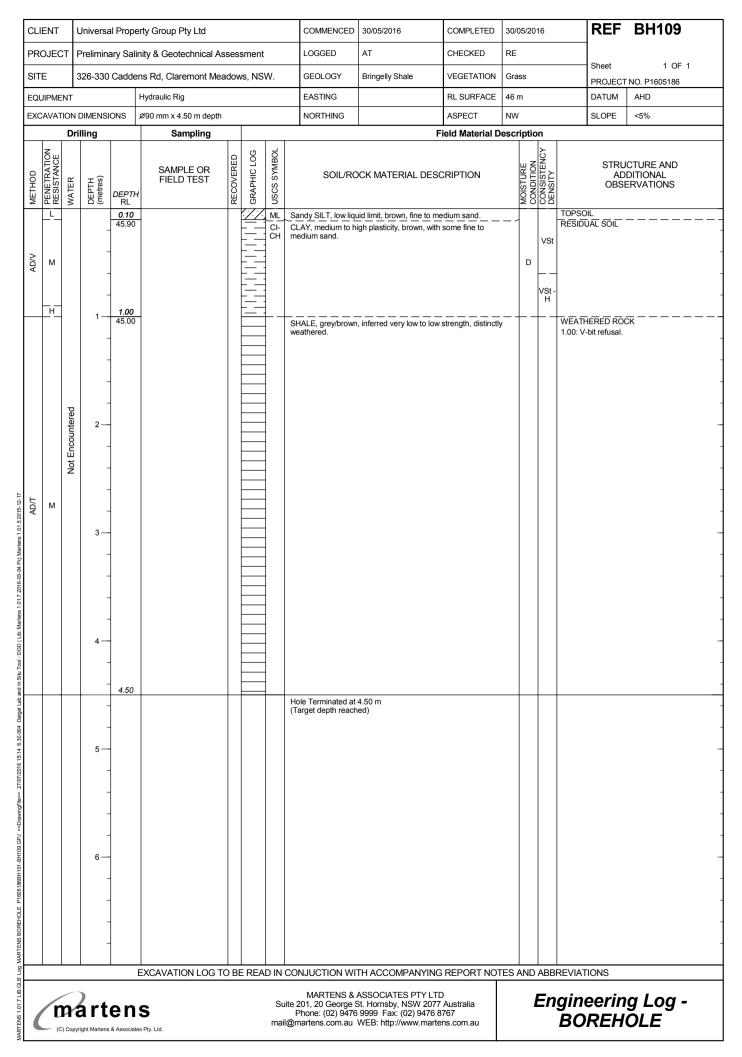
10 Attachment B - Borehole Logs

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 33

CL	IENT	ι	Jniversa	al Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/05/2016				REF	BH101	
PROJECT			Prelimina	ary Sali	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE						
SIT	ΓE	3	326-330	0 Caddens Rd, Claremont Meadows, NSW.					GEOLOGY	Bringelly Shale	VEGETATION	Grass				Sheet PROJECT	1 OF 1 NO. P1605186	
EQ	UIPME	NT			Hydraulic Rig			EASTING		RL SURFACE	44 m				DATUM	AHD		
EX									NORTHING		ASPECT	NW						
	-	Dri	lling		Sampling					F	ield Material D		_					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	SOIL/ROCK MATERIAL DESCRIPTION						STRUCTURE AND ADDITIONAL OBSERVATIONS		
				44.00				ML	Sandy SILT, low liqu	id limit, brown, fine to me	edium sand		D		TOPSC	DIL		
				0.25 43.75	5186/BH101/0.2/S/1 D 0.20 m		<u>, Z.Z.</u>	CI- CH	CLAY, medium to hi medium sand.	gh plasticity, brown gradi	ng to grey, trace	fine			RESIDU	UAL SOIL		
			_		5186/BH101/0.5/S/1 D 0.50 m	-											-	
	L		_											VSt			-	
AD/V		ered	1		5186/BH101/1.0/S/1 D								- M				_	
		counte	_		1.00 m							ľ	- 141				-	
		Not Encountered	-	-													-	
			_		5186/BH101/1.5/S/1 D 1.50 m												-	
	м		-	1.80 42.20				<u></u> - -+ -+				_+		н				
			2	72.20					SHALE, brown/grey weathered.	, inferred very low to low a	strength, distinctly	y				-bit refusal.	-	
AD/T	м-н																-	
			-														-	
				2.60					Hole Terminated at	ole Terminated at 2.60 m						C-bit refusal	on inferred low to	
2015-12-7			-						(Target depth reach							n strength sh		
ns 1.01.5			3—														-	
Prj: Marte			-														-	
16-03-04			-														-	
1.01.7 20														-				
Martens			-												-			
OGD Lib			4															
tu Tool - E			-												-			
and In S			-												-			
Datgel Lat			-														-	
.30.004			-														-	
6 15:13			5														_	
27/07/20																	-	
ngFile>>																	-	
< <drawi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawi<>																	-	
109.GPJ																	-	
3H101-B			6-															
1605186																	-	
EHOLE F																-		
ENS BOR																		
9 MARTI																		
B.GLB Lc					EXCAVATION LOG T) BI	E REA	D IN C				ES Al						
MARTENS 1017 LIB GLB LOg MARTENS BOREHOLE P16051688H101-BH109.GPJ < <dawingfile>> 27/07/2016 15:13 8.30.004 Datget Lab and InSiu Tool - DGD Lib: Martens 1.017 2016-02-04 Pr; Martens 1.015 2015-02-17</dawingfile>			art ight Martens						e 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	Australia 767		E			eerin REH	g Log - OLE	

CL	IENT	l	Jniversa	Il Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/0	5/201	16	F	REF	BH102		
PF	ROJEC	T F	Prelimina	ary Sali	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE							
SI	ΤE	3	326-330	Cadde	Idens Rd, Claremont Meadows, NSW.				GEOLOGY	Bringelly Shale	VEGETATION	Gras	s			heet ROJECT	1 OF 1 NO. P1605186		
EC	UIPME	INT			Hydraulic Rig			EASTING		RL SURFACE	48 m				DATUM	AHD			
EXCAVATION DIMENSIONS Ø90 mm x 1.80 m depth								NORTHING		ASPECT	NW			s	SLOPE	<5%			
	Drilling Sampling									F	ield Material D		-						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	SOIL/ROCK MATERIAL DESCRIPTION						STRUCTURE AND ADDITIONAL OBSERVATIONS			
			_	48.00 0.30	5186/BH102/0.2/S/1 D			ML	Sandy SILT, low liqu	uid limit, brown, fine to me	edium sand								
ARTENS 1.017 LIB GLB Log MARTENS BOREHOLE P1805188BH101-BH109.GPJ < <dawngfile>> 27/07/2016 15:13 8.30.004 Dage Lab and In Siu Tool - DGD Llb: Martens 1.017 2016-02-04 Pr; Martens 1.015 2015-12-17</dawngfile>	L	Not Encountered		<u>0.30</u> 47.70	5186/BH102/0.2/S/1 D 0.20 m 5186/BH102/1.0/S/1 D 1.00 m 5186/BH102/1.5/S/1 D 1.50 m			СН	CLAY, medium to hi to medium sand.		ing to grey, trace	fine	D	VSt	RESIDUA 1.80: V-bit low streng	t refusal oi			
BOREHOLE P16051861			-														-		
ARTENS			-														-		
3 Log M,		I			EXCAVATION LOG TO) D BI	I E REA	L L D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	ND /	ABB	I REVIATIC	NS			
MARTENS 1.01.7 LIB.GLL	(art ight Martens						e 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	Australia 3767		E		gine BOF		g Log - DLE		

CLIENT Universal Property Group Pty Ltd							COMMENCED	COMMENCED 30/05/2016 COMPLETED 30						REF	BH103		
PROJECT Preliminary Salinity & Geotechnical Assessment								LOGGED	AT	CHECKED	RE				Chart		
SIT	E		326-330	Cadde	ns Rd, Claremont Mea	dov	vs, NS	W.	GEOLOGY	Bringelly Shale	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P1605186
QL	JIPME	NT			Hydraulic Rig	_			EASTING		RL SURFACE	47 r	n			DATUM	AHD
хс	AVAT	ION	DIMENSI	ONS	Ø90 mm x 3.80 m depth				NORTHING		ASPECT	NW				SLOPE	<5%
			illing	1	Sampling						Field Material I		· ·				
MEIHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	OCK MATERIAL DE	ESCRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	ICTURE AND DITIONAL ERVATIONS
	L		-	47.00 0.30	5186/BH103/0.2/S/1 D 0.20 m			ML	Sandy SILT, low liqu	uid limit, brown, fine to	o medium sand		D		TOPSO		
			-	46.70	5186/BH103/0.3-0.8/S/1 D 0.30 m 5186/BH103/0.5/S/1 D 0.50 m	 		CI- CH	CLAY, medium to h angular sand.	igh plasticity, brown, t	race fine to medium				RESIDU	JAE SOIE	
	М		1														
		untered	-	<u>1.50</u> 45.50	5186/BH103/1.5/S/1 D 1.50 m			СН	CLAY, high plasticit ironstone gravel.	y, grey mottled red/br	own, trace medium			VSt			
	м	Not Encountered	2		5186/BH103/2.0/S/1 D 2.00 m								М				
	IVI		-	-													
			3	-	5186/BH103/3.0/S/1 D 3.00 m												
	Н		-	3.80											2.90:1/	hit rofuool o	on inferred very low to
			4	-					Hole Terminated at (Target depth reach						low stre	ngth shale.	n meneu very iow to
			-	-													
			5	-													
			- - 6	-													
			-														
			-	-	EXCAVATION LOG TO) D BI	EREA	DIN		TH ACCOMPANYI	NG REPORT NO	TES A		ABB	REVIAT	10NS	
	n	n	art					Su	MARTENS & ite 201, 20 George \$ Phone: (02) 9476	ASSOCIATES PTY St. Hornsby, NSW 20 9999 Fax: (02) 947 WEB: http://www.ma	LTD 077 Australia ′6 8767			Ξn	gine		g Log - OLE


CL	IENT		Jniversa	l Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/05/2	016		REF	BH104
PR	OJEC	т	Prelimina	ary Sali	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE				
SIT	E	:	326-330	Cadde	ns Rd, Claremont Mea	dov	vs, NS	W.	GEOLOGY	Bringelly Shale	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P1605186
EQ	JIPME	NT			Hydraulic Rig				EASTING		RL SURFACE	52 m			DATUM	AHD
EXC	CAVAT	ION	DIMENSI	SNC	Ø90 mm x 2.50 m depth				NORTHING		ASPECT	NW			SLOPE	<5%
		Dr	lling		Sampling	-				F	ield Material D		-	1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL		CK MATERIAL DESC		MOISTURE			AD OBSE	CTURE AND DITIONAL ERVATIONS
	L		-	52.00 0.35	5186/BH104/0.2/S/1 D 0.20 m	_		ML	Sandy SILT, Iow liqu	iid limit, brown, fine to me	edium sand		VSt	TOPSO	ΠL	-
			-	51.65	5186/BH104/0.5/S/1 D 0.50 m			CI- (CH f	CLAY, medium to hi ine to medium sand	gh plasticity, brown mottl I.	ed grey, with som	e	– –	RESIDU	JAL SOIL	
AD/V	м	untered	1		5186/BH104/1.0/S/1 D							D		-		-
		Not Encountered	-		1.00 m								VSt			-
	н		-	<u>1.70</u> 50.30	-				 SHALE, grey inferre		n, distinctly	-+-	н		IERED ROO	ж
AD/T	м		2						weathered.					1.70: V-	bit refusal.	-
∢			-	2.50												-
ŧ			-	2.00					Hole Terminated at Target depth reach						C-bit refusal strength sh	on inferred low to allow to
1.5 2015-12			-													-
MARTENS 1017 LIB GLB LOG MARTENS BOREHOLE P16051888H101-BH109.GPJ < <dawingfiles> 27/07/2016 15:13 8:30.004 Datget Lab and In Slu. Fool - DGD Lib. Martens 1 017 2016-02-04 Pr; Martens 1 01 5 2015-02-17</dawingfiles>			3 — - - - - - - - - - - - - - - - - - - -													
Log MAR					EXCAVATION LOG TO	 С ВІ	E REA		ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	 REVIAT	IONS	
MARTENS 1.01.7 LIB.GLE			art right Martens						201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	Australia 767		En		eerin REH	g Log - OLE

С	LIEN	-	Universa	Il Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/0)5/20	16		REF	BH105
Р	ROJE	ст	Prelimina	ary Sali	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE					
s	ITE		326-330	Cadde	ns Rd, Claremont Mea	dov	vs, NS	N.	GEOLOGY	Bringelly Shale	VEGETATION	Gras	ss			Sheet PROJECT	1 OF 1 NO. P1605186
E	QUIPN	ENT			Hydraulic Rig				EASTING		RL SURFACE	54.5	5 m			DATUM	AHD
E	KCAVA	TION	DIMENSI	ONS	Ø90 mm x 5.50 m depth				NORTHING		ASPECT	NW				SLOPE	<5%
	-	Dr	illing	-	Sampling	-				F	ield Material D		-	1	1		
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
	L			54.50			\boxtimes		Silty SAND, fine to r ravels.	nedium grained, brown, ti	race fine angular		D		TOPSC	DIL	
		-	-	0.30 54.20	5186/BH105/0.2/S/1 D 0.20 m		\bowtie			Im plasticity, brown, fine t				VSt	RESIDI		
	i M-H	4	-		5186/BH105/0.5/S/1 D			fi	ne angular gravel.	in plasticity, brown, line t		ace	м				-
		'	-	0.00	0.50 m								IVI	н			-
	+-		-	0.80 53.70	-		<u> </u>		HALE. grey, inferre	ed very low to low strengt	h, distinctly					ERED ROO	ск — — — — — — — — — — — — — — — — — — —
			1						leamered.						0.60. V	-Dit reiusai.	-
																	-
	м																-
			-														-
																	-
		-	2														-
	н																-
		Led	-														-
		Not Encountered	-														-
/1-71-91.07 9'10		Enco	_														-
17 G.TU.T		Not	3														_
																	_
Z.																	
50-50-01/2																	-
r1.0.1. Su			-														-
-ID: Marte	м		-														-
- 090			4														-
			-														-
and in second			-														-
argei Lar			-														-
30.004 L																	-
10.14 8.			5														
91/12//0																	-
12 <<8			-	5.50													
rawingr			-						lole Terminated at Target depth reach							C-bit refusal n strength sh	on inferred low to nale.
657			-														-
-BH109.			6-														-
30BH10																	-
19091			-														-
KEHOLE			-														-
ENS BO			-														-
9 MARI														<u> </u>			
					EXCAVATION LOG TO	BI	E REA	D IN CO				IES A	۹ND	ABB	REVIAT	IONS	
MARTENS 1.01.7 LIE			art rright Martens						201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767			En	gin BO	eerin REH	g Log - OLE

CL	IENT	ι	Jniversa	al Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/05/20)16		REF	BH106
PR	OJEC	T F	Prelimina	ary Sali	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE				
SIT	Ē	3	26-330	Cadde	ns Rd, Claremont Mea	Idov	vs, NS	W.	GEOLOGY	Bringelly Shale	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P1605186
EQ	UIPME	NT			Hydraulic Rig				EASTING		RL SURFACE	55 m			DATUM	AHD
EX	CAVAT	'ION [DIMENSI	ONS	Ø90 mm x 1.00 m depth				NORTHING		ASPECT	NW			SLOPE	<5%
	-		lling		Sampling	_				F	ield Material D		-	1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL ERVATIONS
	L	ered	_	55.00	5186/BH106/0.2/S/1 D		\bigotimes	SM S	ilty SAND, fine to r	nedium grained, brown, ti	race rootlets.			TOPSC	DIL	-
AD/V	м	Not Encountered	-	0.30 54.70	5186/BH106/0.5/S/1 D 0.50 m			CI-S CH to	andy CLAY, mediu medium sand.	im to high plasticity, brow	n mottled grey, fi	ne D	VSt	RESIDI	JAL SOIL	
	н	~	1	1.00	5186/BH106/0.95/S/1				- In The state of the	1.00			н	1.00: \/	hit refusal o	n inferred very low to
AARTENS 1017 LIB GLB LOG MARTENS BOREHOLE P1605168BH101-BH109.GPJ < <dawnpfie>> 27/07/2016 1514 6.30.004 Daget Lab and In Siu Tool - DOD Lb. Martens 1 017 2016-02-04 Pr; Martens 1 015 2015-12-17</dawnpfie>					<u>D 0.95 m</u>				ole Terminated at l'arget depth reach					1.00: V- low stre	-bit refusal o ingth shale.	n inferred very low to
AAR'I EN:			-													
P Log A	I				EXCAVATION LOG TO) BI	EREA		NJUCTION WI	TH ACCOMPANYING	REPORT NOT		ABB	REVIAT	IONS	
WARTENS 1.01.7 LIB.GL			art ight Martens						201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTE St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767				eerin REH	g Log - OLE

CL	IENT	l	Jniversa	l Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/05/20)16		REF	BH107
PR	OJEC	TF	Prelimina	ary Sali	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE				
SIT	E	3	26-330	Cadde	ns Rd, Claremont Mea	dov	vs, NS	W.	GEOLOGY	Bringelly Shale	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P1605186
EQ	UIPME	NT			Hydraulic Rig				EASTING		RL SURFACE	50 m			DATUM	AHD
EXC	CAVAT	ION [DIMENSI	SNC	Ø90 mm x 3.00 m depth				NORTHING		ASPECT	NW			SLOPE	<5%
		Dri	lling		Sampling	-		<u>г</u> г		F	ield Material D		-			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS
	L	-		50.00 0.15			[.].]		Sandy SILT, low liqu	uid limit, brown, fine to me	dium sand			TOPSO		
			-	49.85	5186/BH107/0.2/S/1 D 0.20 m			CI- CH	CLAY, medium to hi red below 0.9 m, tra	gh plasticity, brown beco ce fine to medium sand.	ming grey mottled	4 	VSt	RESIDU	JAL SOIL	
			-		5186/BH107/0.5/S/1 D 0.50 m											
	м	ntered	1		5186/BH107/1.0/S/1 D 1.00 m								VSt - H			
AD/V		Not Encountered	-		5186/BH107/1.5/S/1 D 1.50 m							D				
			2—		5186/BH107/2.0/S/1 D		<u> </u>									
			_		2.00 m											
			-										н			
	н		-													
ens 1.01./ 2010-03-04 Prj; Martens 1.01.2 2010-12-17			-													
0.10.1 SN			3	3.00					Hole Terminated at	3.00 m			<u> </u>			
FIJ. WALE			-						(Target depth reach							
to-20-01			-													
77.10.1 2			-													
			-													
- DGU LID: Mar			4 —													
			-													
			-													
+ Larger																
0.00.00			5-													
1 20 0107																
10177 ~~			-													
awinghlie			-													
10>> 145			-													
1-60109.0			6—													
			-													
1			-													
			-													
AKIENS			-													
	1				EXCAVATION LOG TO) B	E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	I REVIAT	IONS	
			art ight Martens			_			e 201, 20 George S Phone: (02) 9476	ASSOCIATES PTY LTE 5t. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767		En		eerin REH	g Log - OLE

CLI	ENT	l	Jniversa	l Prope	erty Group Pty Ltd				COMMENCED	30/05/2016	COMPLETED	30/0)5/20	16		REF	BH108
PR	OJEC	T F	Prelimina	ary Salir	nity & Geotechnical As	ses	sment		LOGGED	AT	CHECKED	RE					
SIT	E	3	26-330	Cadde	ns Rd, Claremont Mea	dov	vs, NS	W.	GEOLOGY	Bringelly Shale	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P1605186
EQI	JIPME	NT			Hydraulic Rig				EASTING		RL SURFACE	52 r	n			DATUM	AHD
EXC	CAVAT	'ION E	DIMENSI	SNC	Ø90 mm x 2.50 m depth				NORTHING		ASPECT	NW				SLOPE	<5%
		Dri	lling		Sampling	_				F	ield Material D		r.	-			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD OBSI	CTURE AND DITIONAL ERVATIONS
				0.10 51.90	5186/BH108/0.1-0.6/S/		<u> </u>	CI-	CLAY, medium to hi	uid limit, brown, fine to me					TOPSOII RESIDU		
	L				B 0.10 m 5186/BH108/0.2/S/1 D 0.20 m			СН	red below 0.9 m, tra	ice sand.	J ~ J ~ J	-					
					5186/BH108/0.5/S/1 D	_							D	VSt			-
			_		0.50 m												-
		red	_				[-
		Not Encountered	1 —		5186/BH108/1.0/S/1 D 1.00 m												-
AD/V		Ence	-											VSt - H			-
		Not	-		5186/BH108/1.5/S/1 D												-
	м		-		1.50 m												-
			_										м				-
			2—											н			-
			-														-
			-	2.50	5186/BH108/2.4/S/1 D												-
			_		2.40 m	Γ			Hole Terminated at (Target depth reach	2.50 m led)							-
			-														-
			3—														-
			-														-
			-														-
			-														-
			_														
			4 —														_
			_														-
			_														-
																	-
																	-
			5 —														-
																	-
,																	-
			-														-
			-														
			6 —														_
			-														-
			-														-
			-														
			-														
,					EXCAVATION LOG TO) BI	E RFA		CONJUCTION WI			TES 4			 REVIATIO	ONS	
										ASSOCIATES PTY LTE							
(art (e 201, 20 George S Phone: (02) 9476	St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	Australia 767						g Log - OLE

11 Attachment C - DCP 'N' Counts

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 43

Dynamic Cone Penetrometer Test Log Summary

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

	Site		dens Road and 2 mont Meadows,			DCP Group	Reference		P1605186	6JS01V01
	Client	Universo	al Property Group	Pty Ltd		Log	Date		30.05	.2016
Lo	gged by		GMT							
Ch	ecked by		RE							
Co	omments									
		•		TE	ST DATA					
Depth Interval (m)	DCP101	DCP102	DCP103	DCP104	DCP105	DCP106	DCP107	DCP108	DCP109	
0.15	10	10	8	8	13	8	10	7	8	
0.30	12	15	10	12	15	8	6	10	12	
0.45	14	11	11	15	9	11	7	13	14	
0.60	14	11	11	22	15	8	7	13	15	
0.75	15	9	8	25	17	30	16	14	18	
0.90	10	8	7	12	21	Terminated @	18	12	18	
1.05	9	9	7	12		0.75 m due to	19	14	Bounce @ 0.9	
1.20	7	8	7	10	Bounce @ 0.9 m	high 'N' counts	18	17	m	
1.35	9	9	7	13			17	19		
1.50	15	10	7	11			18	22		
1.65	20	9	8	16			18	24		
1.80 1.95	26	13/100mm	7	25/100mm			23 32	28 35		
2.10	Bounce @ 1.8 m	Davida e 0 1 75 m	8	D			32 Terminated @	35 Terminated @		
2.10	bounce @ 1.8 m	Bounce @ 1.75 m	9	Bounce @ 1.75 m			1.95 m due to	1.95 m due to		
2.25			13				high 'N' counts	high 'N' counts		
2.40			10				Tight N COUNTS	HIGH N COUNTS		
2.70			15							
2.85			15							
3.00			21							
3.15			26							
3.30			35							
3.45			Terminated @ 3.3							
3.60			m due to high							
		+								
3.75			'N' counts							

12 Attachment D - Envirolab Laboratory Test Results

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 45

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANAL	YSIS	<u>147</u>	738
Client:			
Martens & Associates Pty Ltd			
Suite 201, 20 George St			
Hornsby			
NSW 2077			
Attention: Amir Tavasol			
Sample log in details:			
Your Reference:	P1605186, S	alinity A	Assess. Claremont Meadows
No. of samples:	32 Soils		
Date samples received / completed instructions received	01/06/16	1	01/06/16
Analysis Details: Please refer to the following pages for results, methodolog Samples were analysed as received from the client. Results Results are reported on a dry weight basis for solids and of Please refer to the last page of this report for any com	Its relate specific on an as received	ally to th basis fo	ne samples as received. or other matrices.
Report Details: Date results requested by: / Issue Date: Date of Preliminary Report:	8/06/16 Not issued	1	7/06/16
NATA accreditation number 2901. This document shall not		evcent ir	a full
	•	-	A are denoted with *.

Results Approved By:

147738 R 00

r						
Misc Inorg - Soil Our Reference: Your Reference	UNITS	147738-1 5186/101/0.2/S/	147738-2 5186/101/0.5	147738-3 5186/101/1.0	147738-4 5186/101/1.5	147738-6 5186/102/1.0
Date Sampled Type of sample		1 30/05/2016 Soil	30/05/2016 Soil	30/05/2016 Soil	30/05/2016 Soil	30/05/2016 Soil
		5011	5011	5011	501	501
Date prepared	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
Date analysed	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
pH 1:5 soil:water	pH Units	6.8	5.5	4.7	5.2	5.0
Electrical Conductivity 1:5 soil:water	µS/cm	220	150	780	490	650
Sulphate, SO4 1:5 soil:water	mg/kg	28	150	540	360	260
Misc Inorg - Soil						
Our Reference:	UNITS	147738-7	147738-8	147738-9	147738-10	147738-11
Your Reference	 -	5186/102/1.5	5186/103/0.2	5186/103/0.5	5186/103/1.5	5186/103/2.0
Date Sampled		30/05/2016	30/05/2016	30/05/2016	30/05/2016	30/05/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
Date analysed	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
pH 1:5 soil:water	pH Units	5.1	7.3	6.7	4.9	5.2
Electrical Conductivity 1:5	μS/cm	660	150	350	620	480
Sulphate, SO4 1:5 soil:water	mg/kg	310	20	420	580	220
	0.0					
Misc Inorg - Soil						
Our Reference:	UNITS	147738-13	147738-15	147738-16	147738-17	147738-18
Your Reference		5186/104/0.2	5186/104/1.0	5186/105/0.2	5186/105/0.5	5186/106/0.2
Date Sampled	-	30/05/2016	30/05/2016	30/05/2016	30/05/2016	30/05/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
Date analysed	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
pH 1:5 soil:water	pHUnits	6.6	5.8	7.2	5.7	7.2
Electrical Conductivity 1:5 soil:water	µS/cm	130	720	170	150	110
Sulphate, SO4 1:5 soil:water	mg/kg	34	300	31	170	10
Misc Inorg - Soil Our Reference:	UNITS	147738-20	147720 00	147720 04	147738-25	147738-26
Your Reference	01113	147738-20 5186/106/1.0	147738-22 5186/107/0.5	147738-24 5186/107/1.5	147738-25 5186/107/2.0	5186/108/0.2
	-	0100/100/1.0	0100/107/0.0	0100/107/1.0	0100/10//2.0	0100/100/0.2
Date Sampled		30/05/2016	30/05/2016	30/05/2016	30/05/2016	30/05/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date prepared	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
Date analysed	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016	06/06/2016
pH 1:5 soil:water	pH Units	5.0	5.0	5.1	5.2	5.7
Electrical Conductivity 1:5 soil:water	µS/cm	150	410	430	370	120
Sulphate, SO4 1:5 soil:water	mg/kg	190	490	390	230	160
		100	-100	000	200	100

Envirolab Reference: Revision No: 147738 R 00

Misc Inorg - Soil					
Our Reference:	UNITS	147738-28	147738-30	147738-31	147738-32
Your Reference		5186/108/1.0	5186/108/2.5	5186/109/0.2	5186/109/0.5
Date Sampled Type of sample		30/05/2016 Soil	30/05/2016 Soil	30/05/2016 Soil	30/05/2016 Soil
Date prepared	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016
Date analysed	-	06/06/2016	06/06/2016	06/06/2016	06/06/2016
pH 1:5 soil:water	pH Units	5.2	5.2	6.4	5.7
Electrical Conductivity 1:5 soil:water	µS/cm	380	330	140	240
Sulphate, SO4 1:5 soil:water	mg/kg	330	200	83	290

R 00

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.

Client Reference:

P1605186, Salinity Assess. Claremont Meadows

			lient Referenc			inity Assess. Claremo			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	,
Misc Inorg - Soil						Base II Duplicate II % RPD			
Date prepared	-			03/06/2 016	147738-1	06/06/2016 06/06/2016	LCS-1	03/06/20)16
Date analysed	-			06/06/2 016	147738-1	06/06/2016 06/06/2016	LCS-1	06/06/20)16
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	147738-1	6.8 6.7 RPD:1	LCS-1	103%	, D
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	147738-1	220 210 RPD:5	LCS-1	103%	, D
Sulphate, SO41:5 soil:water	mg/kg	10	Inorg-081	<10	147738-1	28 21 RPD: 29	LCS-1	107%	, D
QUALITY CONTROL Misc Inorg - Soil	UNITS	3	Dup.Sm#		Duplicate Duplicate + %RP	Spike Sm# D	Spike % Reco	overy	
Date prepared	-		147738-13	06/06/2	2016 06/06/201	6 LCS-2	03/06/201	6	
Date analysed	-		147738-13	06/06/2	2016 06/06/201	6 LCS-2	06/06/201	6	
pH 1:5 soil:water	pHUn	its	147738-13	6.6	6.7 RPD:2	LCS-2	101%		
Electrical Conductivity 1:5 soil:water	µS/cr	n	147738-13	130	100 RPD:26	LCS-2	98%		
Sulphate, SO4 1:5 soil:water	mg/k	g	147738-13	34	29 RPD:16	LCS-2	108%		
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy	
Misc Inorg - Soil				Base + I	Duplicate + %RP	D			
Date prepared	-		[NT]		[NT]	147738-2	03/06/201	6	
Date analysed	-		[NT]		[NT]	147738-2	06/06/201	6	
pH 1:5 soil:water	pH Un	its	[NT]		[NT]	[NR]	[NR]		
Electrical Conductivity 1:5 soil:water	µS/cr	n	[NT]		[NT]	[NR]	[NR]		
Sulphate, SO41:5 soil:water	mg/k	g	[NT]		[NT]	147738-2	130%		

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Envirolab Reference: 147738 Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Envirolab Reference: 147738 Revision No: R 00

Document Set ID: 9942239 Version: 1, Version Date: 11/03/2022

13 Attachment E - CBR Test Results

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 53

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Martens & Associates Pty Ltd Job number: 16-0033 P1605186 **Project:** Location: 326-330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW

Report number: 1

Page: 1 of 1

California Bearing Ratio

Sampling method: Samples tested as received

Test method(s): AS 1289.1.1, 2.1.1, 5.1.1, 6.1.1

		Res	ults
Laboratory sample no.	8452	8453	
Customer sample no.	5186/103/ 0.3-0.8/S/1	5186/108/ 0.1-0.6/S/1	
Date sampled	30/05/2016	30/05/2016	
Material description	CLAY, with silt, trace of gravel, brown mottled grey/red-brown	CLAY, with silt, trace of gravel, pale-brown mottled red-brown	
Maximum dry density (t/m³)	1.64	1.64	
Optimum moisture content (%)	21.1	21.9	
Field moisture content (%)	n/a	n/a	
Oversize retained on 19.0mm sieve (%)	0	0	
Oversize included (Y/N)	Ν	N	
Dry density before soak (t/m ³)	1.60	1.61	
Dry density after soak (t/m ³)	1.57	1.58	
Moisture content before soak (%)	21.2	21.7	
Moisture content after soak (%)	24.4	24.1	
Moisture content after test - top 30mm (%)	29.0	27.3	
Moisture content after test - remaining depth (%)	22.6	22.7	
Density ratio before soaking (%)	98.0	98.0	
Moisture ratio before soaking (%)	100.5	99.5	
Period of soaking (days)	4	4	
Compactive effort	Standard	Standard	
Mass of surcharge applied (kg)	4.5	4.5	
Swell after soaking (%)	2.0	1.5	
Penetration (mm)	2.5	2.5	
CBR Value (%)	3.0	4.0	

Approved Signatory:

E. Maldonado

Date: 15/06/2016

Accredited for compliance with ISO/IEC 17025.

14 Attachment F - CSIRO Sheet BTF 18

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 55

Foundation Maintenance and Footing Performance: A Homeowner's Guide

replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES				
	Class	Foundation			
_	А	Most sand and rock sites with little or no ground movement from moisture changes			
_	S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes			
_	M Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
	H1	Highly reactive clay sites, which may experience high ground movement from moisture changes			
	H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes			
	E Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Notes

1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.

3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

^{2.} Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

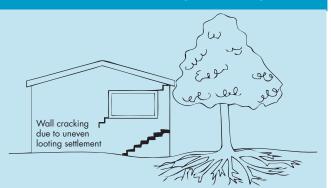
Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay


Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

Trees can cause shrinkage and damage

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred. The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

• Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS					
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category			
Hairline cracks	Hairline cracks <0.1 mm				
Fine cracks which do not need repair	<1 mm	1			
Cracks noticeable but easily filled. Doors and windows stick slightly. <5 mm		2			
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3			
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4			

Gardens for a reactive site Shrubs Clump of trees; height selected for distance from house lawn Drained pathway Carport Path Garden bed \$ 0 X covered with Driveway mulch Medium height tree

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

15 Attachment G - Notes About This Report

Preliminary Salinity and Geotechnical Assessment: 326 - 330 Caddens Road and 27 Kent Road, Claremont Meadows, NSW P1605186JR02V01 – August 2016 Page 60

Information

Important Information About Your Report (1 of 2)

These notes have been prepared by Martens to help you interpret and understand the limitations of your report. Not all are necessarily relevant to all reports but are included as general reference.

Engineering Reports - Limitations

Engineering reports are based on information that may be gained from limited subsurface site testing and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Engineering Reports - Project Specific Criteria

Engineering reports are prepared by qualified personnel. They are based on information obtained, on current engineering standards of interpretation and analysis, and on the basis of your unique project specific requirements as understood by Martens. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the Client.

Where the report has been prepared for a specific design proposal (e.g. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (e.g. to a twenty storey building). Your report should not be relied upon, if there are changes to the project, without first asking Martens to assess how factors, which changed subsequent to the date of the report, affect the report's recommendations. Martens will not accept responsibility for problems that may occur due to design changes, if not consulted.

Engineering Reports – Recommendations

Your report is based on the assumption that site conditions, as may be revealed through selective point sampling, are indicative of actual conditions throughout an area. This assumption often cannot be substantiated until project implementation has commenced. Therefore your site investigation report recommendations should only be regarded as preliminary.

Only Martens, who prepared the report, are fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project If another party undertakes the develops. implementation of the recommendations of this report, there is a risk that the report will be misinterpreted and Martens cannot be held responsible for such misinterpretation.

Engineering Reports - Use for Tendering Purposes

mårtens consulting engine

Where information obtained from investigations is provided for tendering purposes, Martens recommend that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document.

Martens would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Engineering Reports - Data

The report as a whole presents the findings of a site assessment and should not be copied in part or altered in any way.

Logs, figures, drawings etc are customarily included in a Martens report and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), desktop studies and laboratory evaluation of field samples. These data should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Engineering Reports – Other Projects

To avoid misuse of the information contained in your report it is recommended that you confer with Martens before passing your report on to another party who may not be familiar with the background and purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Subsurface Conditions - General

Every care is taken with the report in relation to interpretation of subsurface conditions, discussion of geotechnical aspects, relevant standards and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions the potential will depend partly on test point (eg. excavation or borehole) spacing and sampling frequency, which are often limited by project imposed budgetary constraints.
- Changes in guidelines, standards and policy or interpretation of guidelines, standards and policy by statutory authorities.

Information

Important Information About Your Report (2 of 2)

- o The actions of contractors responding to commercial pressures.
- Actual conditions differing somewhat from those inferred to exist, because no professional, no matter how qualified, can reveal precisely what is hidden by earth, rock and time.

The actual interface between logged materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

If these conditions occur, Martens will be pleased to assist with investigation or providing advice to resolve the matter.

Subsurface Conditions - Changes

Natural processes and the activity of man create subsurface conditions. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Reports are based on conditions which existed at the time of the subsurface exploration / assessment.

Decisions should not be based on a report whose adequacy may have been affected by time. If an extended period of time has elapsed since the report was prepared, consult Martens to be advised how time may have impacted on the project.

Subsurface Conditions - Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those that were expected from the information contained in the report, Martens requests that it immediately be notified. Most problems are much more readily resolved at the time when conditions are exposed, rather than at some later stage well after the event.

Report Use by Other Design Professionals

To avoid potentially costly misinterpretations when other design professionals develop their plans based on a Martens report, retain Martens to work with other project professionals affected by the report. This may involve Martens explaining the report design implications and then reviewing plans and specifications produced to see how they have incorporated the report findings.

Subsurface Conditions – Geo-environmental Issues

Your report generally does not relate to any findings, conclusions, or recommendations about the potential for hazardous or contaminated materials existing at the site unless specifically required to do so as part of Martens' proposal for works.

Specific sampling guidelines and specialist equipment, techniques and personnel are typically used to perform geo-environmental or site contamination assessments. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Martens for information relating to such matters.

Responsibility

Geo-environmental reporting relies on interpretation of factual information based on professional judgment and opinion and has an inherent level of uncertainty attached to it and is typically far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded.

To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Martens to other parties but are included to identify where Martens' responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Martens closely and do not hesitate to ask any questions you may have.

Site Inspections

Martens will always be pleased to provide engineering inspection services for aspects of work to which this report relates. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site. Martens is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction.

Soil Data

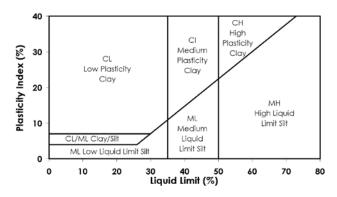
Explanation of Terms (1 of 3)

mártens consulting engine

Definitions

In engineering terms, soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material does not exhibit any visible rock properties and can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

The methods of description and classification of soils and rocks used in this report are typically based on Australian Standard 1726 and the Unified Soil Classification System (USCS) – refer Soil Data Explanation of Terms (2 of 3). In general, descriptions cover the following properties strength or density, colour, structure, soil or rock type and inclusions.


Particle Size

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (e.g. sandy CLAY). Unless otherwise stated, particle size is described in accordance with the following table.

Division	Subdivision	Size (mm)
BOULDERS		>200
COBBLES		63 to 200
	Coarse	20 to 63
GRAVEL	Medium	6 to 20
	Fine	2.36 to 6
	Coarse	0.6 to 2.36
SAND	Medium	0.2 to 0.6
	Fine	0.075 to 0.2
SILT		0.002 to 0.075
CLAY		< 0.002

Plasticity Properties

Plasticity properties of cohesive soils can be assessed in the field by tactile properties or by laboratory procedures.

Moisture Condition

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and damp and is darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

Consistency of	of Cohesive Soils
----------------	-------------------

Cohesive soils refer to predominantly clay materials.

Term	Cu (kPa)	Approx. SPT "N"	Field Guide
Very Soft	<12	2	A finger can be pushed well into the soil with little effort. Sample extrudes between fingers when squeezed in fist.
Soft	12 - 25	2 – 4	A finger can be pushed into the soil to about 25mm depth. Easily moulded in fingers.
Firm	25 - 50	4 – 8	The soil can be indented about 5mm with the thumb, but not penetrated. Can be moulded by strong pressure in the figures.
Stiff	50 - 100	8 – 15	The surface of the soil can be indented with the thumb, but not penetrated. Cannot be moulded by fingers.
Very Stiff	100 - 200	00 - 200 15 - 30 with a knife. Thumbreak index with a knife. Thumbreak index readily index	
Hard	> 200	> 30	The surface of the soil can be marked only with the thumbnail. Brittle. Tends to break into fragments.
Friable	-	-	Crumbles or powders when scraped by thumbnail.

Density of Granular Soils

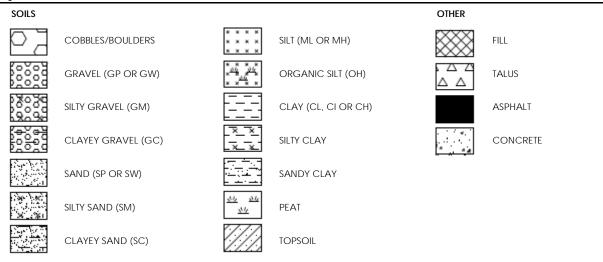
Non-cohesive soils are classified on the basis of relative density, generally from standard penetration test (SPT) or Dutch cone penetrometer test (CPT) results as below:

Relative Density	%	SPT 'N' Value* (blows/300mm)	CPT Cone Value (q _c MPa)
Very loose	< 15	< 5	< 2
Loose	15 - 35	5 - 10	2 - 5
Medium dense	35 - 65	10 - 30	5 - 15
Dense	65 - 85	30 - 50	15 - 25
Very dense	> 85	> 50	> 25

 * Values may be subject to corrections for overburden pressures and equipment type.

Minor Components

Minor components in soils may be present and readily detectable, but have little bearing on general geotechnical classification. Terms include:


Term	Assessment	Proportion of Minor component In:		
Trace of	Presence just detectable by feel or eye. Soil properties little or no different to general properties of primary component.	Coarse grained soils: < 5 % Fine grained soils: < 15 %		
With some	Presence easily detectable by feel or eye. Soil properties little different to general properties of primary component.	Coarse grained soils: 5 – 12 % Fine grained soils: 15 – 30 %		

Soil Data

Explanation of Terms (2 of 3)

Symbols for Soils and Other

Unified Soil Classification Scheme (USCS)

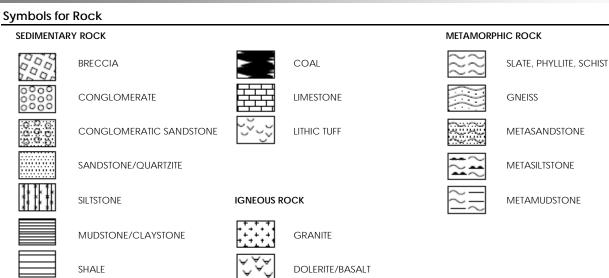
		(Excluding p		DENTIFICATION PROC	EDURES g fractions on estimated mass)	USCS	Primary Name		
than	e)	rse 1 mm.	AN VELS or no ss)	Wide range in grain si	ze and substantial amounts of all intermediate particle sizes.	GW	Gravel		
COARSE GRAINED SOILS More than 50 % of material less than 63 mm is larger than 0.075 mm		GRAVELS More than half of coarse fraction is larger than 2.0 mm.	CLEAN GRAVELS (Little or no fines)	Predominantly one	size or a range of sizes with more intermediate sizes missing	GP	Gravel		
OILS 63 mm		GRAVELS e than half of on is larger thar	GRAVELS WITH FINES (Appreciable amount of fines)	Non-plastic fin	es (for identification procedures see ML below)	GM	Silty Gravel		
AINED S ess than mm	aked e	Mo	GRA WITH (Appre amou	Plastic fines	(for identification procedures see CL below)	GC	Clayey Gravel		
COARSE GRAINED SOILS of material less than 63 m 0.075 mm	to the n	arse .0 mm	CLEAN SANDS (Little or no fines)	Wide range in grai	n sizes and substantial amounts of intermediate sizes missing.	SW	Sand		
COA % of m	e visible	SANDS More than half of coarse fraction is smaller than 2.0 mm	CLEAN SANDS (Little or i fines)	Predominantly one	size or a range of sizes with some intermediate sizes missing	SP	Sand		
than 50	mallest particle	SAN e than h n is small	SANDS WITH FINES (Appreciable amount of fines)	Non-plastic fin	es (for identification procedures see ML below)	SM	Silty Sand		
More		Mor	SAND MITH FIN (Apprecia amount fines)	Plastic fines (for identification procedures see CL below)		SC	Clayey Sand		
	0.075 mm particle is about the smallest particle visible to the naked eye)			IDENTIFICATIO	ON PROCEDURES ON FRACTIONS < 0.2 MM	-			
53 mm is		DRY STRENG (Crushing Characteristi	DILATANC	(TOUGHNESS	DESCRIPTION	USCS	Primary Name		
ILS s than 6 mm		None to Lo	Ouick to Slow	None	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	ML	Silt		
JED SOI erial les	d mm g	Medium t High	o None	Medium	Inorganic clays of low to medium plasticity ¹ , gravely clays, sandy clays, silty clays, lean clays	CL 2	Clay		
FINE GRAINED SOILS 50 % of material less th smaller than 0.075 mm	(A 0.075	(A 0.075	(A 0.075	Low to Medium	Slow to Ve Slow	ry Low	Organic slits and organic slity clays of low plasticity	OL	Organic Silt
FINE GRAINED SOILS More than 50 % of material less than 63 mm is smaller than 0.075 mm				Low to Medium	Slow to Ve Slow	ry Low to Medium	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	MH	Silt
ore the		High	None	High	Inorganic clays of high plasticity, fat clays	СН	Clay		
		Medium t High	o None	Low to Medium	Organic clays of medium to high plasticity	OH	Organic Silt		
HIGHLY ORGANI SOILS		Rea	idily identified by	colour, odour, spon	gy feel and frequently by fibrous texture	Pt	Peat		
		2 1	id Limit W∟< 35 9 d for clay of med		ty – Liquid limit W∟35 to 60 % High Plasticity - Li nguish from clay of low plasticity.	quid limit '	<i>W</i> _L > 60 %.		

Soil Data

Explanation of Terms (3 of 3)

mártens consulting engineers

Soil Agricultural Classification Scheme


In some situations, such as where soils are to be used for effluent disposal purposes, soils are often more appropriately classified in terms of traditional agricultural classification schemes. Where a Martens report provides agricultural classifications, these are undertaken in accordance with descriptions by Northcote, K.H. (1979) *The factual key for the recognition of Australian Soils*, Rellim Technical Publications, NSW, p 26 - 28.

Symbol	Field Texture Grade	Behaviour of moist bolus	Ribbon length	Clay content (%)
S	Sand	Coherence nil to very slight; cannot be moulded; single grains adhere to fingers	0 mm	< 5
LS	Loamy sand	Slight coherence; discolours fingers with dark organic stain	6.35 mm	5
CLS	Clayey sand	Slight coherence; sticky when wet; many sand grains stick to fingers; discolours fingers with clay stain	6.35mm - 1.3cm	5 - 10
SL	Sandy loam	Bolus just coherent but very sandy to touch; dominant sand grains are of medium size and are readily visible	1.3 - 2.5	10 - 15
FSL	Fine sandy loam	Bolus coherent; fine sand can be felt and heard	1.3 - 2.5	10 - 20
SCL-	Light sandy clay loam	Bolus strongly coherent but sandy to touch, sand grains dominantly medium size and easily visible	2.0	15 - 20
L	Loam	Bolus coherent and rather spongy; smooth feel when manipulated but no obvious sandiness or silkiness; may be somewhat greasy to the touch if much organic matter present	2.5	25
Lfsy	Loam, fine sandy	Bolus coherent and slightly spongy; fine sand can be felt and heard when manipulated	2.5	25
SiL	Silt loam	Coherent bolus, very smooth to silky when manipulated	2.5	25 + > 25 silt
SCL	Sandy clay loam	Strongly coherent bolus sandy to touch; medium size sand grains visible in a finer matrix	2.5 - 3.8	20 - 30
CL	Clay loam	Coherent plastic bolus; smooth to manipulate	3.8 - 5.0	30 - 35
SiCL	Silty clay loam	Coherent smooth bolus; plastic and silky to touch	3.8 - 5.0	30- 35 + > 25 silt
FSCL	Fine sandy clay loam	Coherent bolus; fine sand can be felt and heard	3.8 - 5.0	30 - 35
SC	Sandy clay	Plastic bolus; fine to medium sized sands can be seen, felt or heard in a clayey matrix	5.0 - 7.5	35 - 40
SiC	Silty clay	Plastic bolus; smooth and silky	5.0 - 7.5	35 - 40 + > 25 silt
LC	Light clay	Plastic bolus; smooth to touch; slight resistance to shearing	5.0 - 7.5	35 - 40
LMC	Light medium clay	Plastic bolus; smooth to touch, slightly greater resistance to shearing than LC	7.5	40 - 45
MC	Medium clay	Smooth plastic bolus, handles like plasticine and can be moulded into rods without fracture, some resistance to shearing	> 7.5	45 - 55
HC	Heavy clay	Smooth plastic bolus; handles like stiff plasticine; can be moulded into rods without fracture; firm resistance to shearing	> 7.5	> 50

Rock Data

Explanation of Terms (1 of 2)

martens consulting engineers

Definitions

Descriptive terms used for Rock by Martens are based on AS1726 and encompass rock substance, defects and mass.

Rock Substance	In geotechnical engineering terms, rock substance is any naturally occurring aggregate of minerals and organic matter which cannot be disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Rock substance is effectively homogeneous and may be isotropic or anisotropic.
Rock Defect	Discontinuity or break in the continuity of a substance or substances.
Rock Mass	Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or

Rock Mass Any body of material which is not effectively homogeneous. It can consist of two or more substances without defe one or more substances with one or more defects.

Degree of Weathering

Rock weathering is defined as the degree of decline in rock structure and grain property and can be determined in the field.

Term	Symbol	Definition	
		Soil derived from the weathering of rock. The mass structure and substance fabric are no longer evident. There is a large change in volume but the soil has not been significantly transported.	
Extremely weathered ¹	EW	ock substance affected by weathering to the extent that the rock exhibits soil properties - i.e. it can be emoulded and can be classified according to the Unified Classification System, but the texture of the original bock is still evident.	
Highly weathered ²	² HW Rock substance affected by weathering to the extent that limonite staining or bleaching affects the rock substance and other signs of chemical or physical decomposition are evident. Porosity a may be increased or decrease compared to the fresh rock usually as a result of iron leaching or colour and strength of the original rock substance is no longer recognisable.		
weathered ² INIW substance and the original colour of the fresh rock is no longer recognisable. Slightly SW Rock substance affected by weathering to the extent that partial staining or disco		Rock substance affected by weathering to the extent that staining extends throughout the whole of the rock substance and the original colour of the fresh rock is no longer recognisable.	
		Rock substance affected by weathering to the extent that partial staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable.	
Fresh	FR	Rock substance unaffected by weathering	

Notes:

1 The term "Distinctly Weathered" (DW) may be used to cover the range of substance weathering between EW and SW.

2 Rs and EW material is described using soil descriptive terms.

Rock Strength

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the direction normal to the loading. The test procedure is described by the International Society of Rock Mechanics.

Term	ls (50) MPa	Field Guide	Symbol
Very low	>0.03 ≤0.1	May be crumbled in the hand. Sandstone is 'sugary' and friable.	VL
Low	>0.1 ≤0.3	A piece of core 150mm long x 50mm diameter may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.	L
Medium	>0.3 ≤1.0	A piece of core 150mm long x 50mm diameter can be broken by hand with considerable difficulty. Readily scored with a knife.	М
High	>1 ≤3	A piece of core 150mm long x 50mm diameter cannot be broken by unaided hands, can be slightly scratched or scored with a knife.	Н
Very high	>3 ≤10	A piece of core 150mm long x 50mm diameter may be broken readily with hand held hammer. Cannot be scratched with pen knife.	VH
Extremely high	>10	A piece of core 150mm long x 50mm diameter is difficult to break with hand held hammer. Rings when struck with a hammer.	EH

Rock Data

Explanation of Terms (2 of 2)

martens consulting engineers

Degree of Fracturing

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but exclude fractures such as drilling breaks (DB) or handling breaks (HB).

Term	Description
Fragmented	The core is comprised primarily of fragments of length less than 20 mm, and mostly of width less than core diameter.
Highly fractured	Core lengths are generally less than 20 mm to 40 mm with occasional fragments.
Fractured	Core lengths are mainly 30 mm to 100 mm with occasional shorter and longer sections.
Slightly fractured	Core lengths are generally 300 mm to 1000 mm, with occasional longer sections and sections of 100 mm to 300 mm.
Unbroken	The core does not contain any fractures.

Rock Core Recovery

TCR = Total Core Recovery	SCR = Solid Core Recovery	RQD = Rock Quality Designation
$=\frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100\%$	$=\frac{\sum \text{Length of cylindrical core recovered}}{\text{Length of core run}} \times 100\%$	$=\frac{\sum Axial lengths of core > 100 mm long}{Length of core run} \times 100\%$

Rock Strength Tests

- ▼ Point load strength Index (Is50) axial test (MPa)
- Point load strength Index (Is50) diametral test (MPa)
- Unconfined compressive strength (UCS) (MPa)

Defect Type Abbreviations and Descriptions

Defect Ty	ype (with inclination given)	Planarity		Roughness		
BP	Bedding plane parting	PI	Planar	Pol	Polished	
FL	Foliation	Cu	Curved	SI	Slickensided	
CL	Cleavage	Un	Undulating	Sm	Smooth	
JT	Joint	St	Stepped	Ro	Rough	
FC	Fracture	Ir	Irregular	VR	Very rough	
SZ/SS	Sheared zone/ seam (Fault)	Dis	Discontinuous			
CZ/CS	Crushed zone/ seam	Thickness		Coating or Filling		
DZ/DS FZ IS VN CO HB DB	Decomposed zone/ seam Fractured Zone Infilled seam Vein Contact Handling break Drilling break	Zone Seam Plane Inclinatio	> 100 mm > 2 mm < 100 mm < 2 mm	Cn Sn Ct Vnr Fe X Qz MU	Clean Stain Coating Veneer Iron Oxide Carbonaceous Quartzite Unidentified mineral	
		Inclination of defect is measured from perpendicular to and down the core axis. Direction of defect is measured clockwise (looking down core) from magnetic north.				

Test, Drill and Excavation Methods Explanation of Terms (1 of 3) Non-core Rotary Drilling - the hole is advanced by a rotary in the the annulus, carrying the drill cuttings. Only information from 'feer

Disturbed samples taken during drilling or excavation provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples may be taken by pushing a thinwalled sampling tube, e.g. U₅₀ (50 mm internal diameter thin walled tube), into soils and withdrawing a soil sample in a relatively undisturbed state. Such samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Other sampling methods may be used. Details of the type and method of sampling are given in the report.

Drilling / Excavation Methods

The following is a brief summary of drilling and excavation methods currently adopted by the Company and some comments on their use and application.

Hand Excavation - in some situations, excavation using hand tools, such as mattock and spade, may be required due to limited site access or shallow soil profiles.

Hand Auger - the hole is advanced by pushing and rotating either a sand or clay auger, generally 75-100 mm in diameter, into the ground. The penetration depth is usually limited to the length of the auger pole; however extender pieces can be added to lengthen this.

Test Pits - these are excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and, if it is safe to descend into the pit, collection of bulk disturbed samples. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (e.g. Pengo) - the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

Continuous Sample Drilling (Push Tube) - the hole is advanced by pushing a 50 - 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength etc. is only marginally affected.

Continuous Spiral Flight Augers - the hole is advanced using 90 - 115 mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling or insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface or, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Rotary Mud Drilling - similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

Continuous Core Drilling - a continuous core sample is obtained using a diamond tipped core barrel of usually 50 mm internal diameter. Provided full core recovery is achieved (not always possible in very weak or fractured rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

In-situ Testing and Interpretation

Cone Penetrometer Testing (CPT)

Cone penetrometer testing (sometimes referred to as Dutch Cone) described in this report has been carried out using an electrical friction cone penetrometer.

The test is described in AS 1289.6.5.1-1999 (R2013). In the test, a 35 mm diameter rod with a cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system.

Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the push rod centre to an amplifier and recorder unit mounted on the control truck. As penetration occurs (at a rate of approximately 20 mm per second) the information is output on continuous chart recorders. The plotted results given in this report have been traced from the original records. The information provided on the charts comprises:

- Cone resistance (q_c) the actual end bearing force divided by the cross sectional area of the cone, expressed in MPa.
- Sleeve friction (q_f) the frictional force of the sleeve (ii) divided by the surface area, expressed in kPa.
- (iii) Friction ratio - the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower (A) scale (0 - 5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main (B) scale (0 - 50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1 % - 2 % are commonly encountered in sands and very soft clays rising to 4 % - 10 % in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

q_c (MPa) = (0.4 to 0.6) N (blows/300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:

Test, Drill and Excavation Methods Explanation of Terms (2 of 3)

calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on soil classification is required, direct drilling and sampling may be preferable.

Standard Penetration Testing (SPT)

Standard penetration tests are used mainly in noncohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample.

The test procedure is described in AS 1289.6.3.1-2004. The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm penetration depth increments and the 'N' value is taken as the number of blows for the last two 150 mm depth increments (300 mm total penetration). In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued. The test results are reported in the following form:

- Where full 450 mm penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7 blows:
 - as 4, 6, 7 N = 13
- (ii) Where the test is discontinued, short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm

as 15, 30/40 mm.

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally, the test method is used to obtain samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

Dynamic Cone (Hand) Penetrometers

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150mm increments of penetration. Normally, there is a depth limitation of 1.2m but this may be extended in certain conditions by the use of extension rods. Two relatively similar tests are used.

Perth sand penetrometer (PSP) - a 16 mm diameter flat ended rod is driven with a 9 kg hammer, dropping 600 mm. The test, described in AS 1289.6.3.3-1997 (R2013), was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling

Cone penetrometer (DCP) - sometimes known as the Scala Penetrometer, a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm. The test, described in AS 1289.6.3.2-1997 (R2013), was developed initially for pavement sub-grade investigations, with correlations of the test results with California Bearing Ratio published by various Road Authorities.

Pocket Penetrometers

The pocket (hand) penetrometer (PP) is typically a light weight spring hand operated device with a stainless steel

consulting engi

D

conditions. In use, the free end of the piston is pressed into the soil at a uniform penetration rate until a line, engraved near the piston tip, reaches the soil surface level. The reading is taken from a gradation scale, which is attached to the piston via a built-in spring mechanism and calibrated to kilograms per square centimetre (kPa) UCS. The UCS measurements are used to evaluate consistency of the soil in the field moisture condition. The results may be used to assess the undrained shear strength, Cu, of fine grained soil using the approximate relationship:

 $q_u = 2 \times C_u$.

It should be noted that accuracy of the results may be influenced by condition variations at selected test surfaces. Also, the readings obtained from the PP test are based on a small area of penetration and could give misleading results. They should not replace laboratory test results. The use of the results from this test is typically limited to an assessment of consistency of the soil in the field and not used directly for design of foundations.

Test Pit / Borehole Logs

Test pit / borehole log(s) presented herein are an engineering and / or geological interpretation of the subsurface conditions. Their reliability will depend to some extent on frequency of sampling and methods of excavation / drilling. Ideally, continuous undisturbed sampling or excavation / core drilling will provide the most reliable assessment but this is not always practicable, or possible to justify on economic grounds. In any case, the test pit / borehole logs represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of test pits / boreholes, the frequency of sampling and the possibility of other than 'straight line' variation between the test pits / boreholes.

Laboratory Testing

Laboratory testing is carried out in accordance with AS 1289 Methods of Testing Soil for Engineering Purposes. Details of the test procedure used are given on the individual report forms.

Ground Water

Where ground water levels are measured in boreholes, there are several potential problems:

- In low permeability soils, ground water although present, may enter the hole slowly, or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent prior weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes, which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Fe	st. Drill a	nd	Excavati	on	Methods
					on of Terms (3 of 3)
			-//2		
DRILLII	NG / EXCAVATION METHOD				
HA	Hand Auger	RD	Rotary Blade or Drag Bit	NQ	Diamond Core - 47 mm
AD/V	Auger Drilling with V-bit	RT	Rotary Tricone bit	NMLC	Diamond Core – 51.9 mm
AD/T	Auger Drilling with TC-Bit	RAB	Rotary Air Blast	HQ	Diamond Core – 63.5 mm
AS	Auger Screwing	RC	Reverse Circulation	HMLC	Diamond Core – 63.5 mm
HSA	Hollow Stem Auger	CT	Cable Tool Rig	DT	Diatube Coring
S	Excavated by Hand Spade	PT	Push Tube	NDD	Non-destructive digging
BH	Tractor Mounted Backhoe	PC	Percussion	PQ	Diamond Core - 83 mm
JET	Jetting	E	Tracked Hydraulic Excavator	Х	Existing Excavation
SUPPO	DRT				
Nil	No support	S	Shotcrete	RB	Rock Bolt
С	Casing	Sh	Shoring	SN	Soil Nail
WB	Wash bore with Blade or Bailer	WR	Wash bore with Roller	Т	Timbering
WATER	2				
	$\overline{\bigtriangledown}$ Water level at date shown		Partial water loss		
	▷ Water inflow		 Complete water loss 		
GROUNDWATER NOT OBSERVED (NO)		The observation of groundwater, whether present or not, was not possible due to drilling wate surface seepage or cave in of the borehole/test pit.			
GROUNDWATER NOT ENCOUNTERED (NX)		The borehole/test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open for a longer period.			

Low resistance: Rapid penetration possible with little effort from the equipment used. L

Μ Medium resistance: Excavation possible at an acceptable rate with moderate effort from the equipment used.

Н High resistance: Further penetration possible at slow rate & requires significant effort equipment.

R Refusal/Practical Refusal. No further progress possible without risk of damage/unacceptable wear to digging implement / machine.

These assessments are subjective and dependent on many factors, including equipment power, weight, condition of excavation or drilling tools, and operator experience.

SAMPLING

D	Small disturbed sample W Water Sample		Water Sample	С	Core sample			
В	Bulk disturbed sample	G	Gas Sample	CONC	Concrete Core			
U63 Thin walled tube sample - number indicates nominal undisturbed sample diameter in millimetres TESTING								
SPT	Standard Penetration Test to AS128	9.6.3.1-20	004 CPT	Static cone pen	etration test			

SPT 4,7,11 N=18	Standard Penetration Test to AS1289.6.3.1-2004 4,7,11 = Blows per 150mm. 'N' = Recorded blows per 300mm penetration following 150mm seating	CPT CPTu PP	Static cone penetration test CPT with pore pressure (u) measurement Pocket penetrometer test expressed as				
DCP	Dynamic Cone Penetration test to A\$1289.6.3.2-1997. 'n' = Recorded blows per 150mm penetration	FP VS	instrument reading (kPa) Field permeability test over section noted Field vane shear test expressed as uncorrected shear strength (sv = peak value, sr = residual value)				
Notes: RW	Penetration occurred under the rod weight only	vS					
HW	Penetration occurred under the hammer and rod weight only	PM PID	Pressuremeter test over section noted Photoionisation Detector reading in ppm				
HB 30/80mm	Hammer double bouncing on anvil after 80 mm penetration	WPT	Water pressure tests				
N=18	Where practical refusal occurs, report blows and penetration for that interval						

SOIL DESCRIPTION

Density		Consistency		Moisture		Strength		Weathering		
	VL	Very loose	VS	Very soft	D	Dry	VL	Very low	EW	Extremely weathered
	L	Loose	S	Soft	Μ	Moist	L	Low	HW	Highly weathered
	MD	Medium dense	F	Firm	W	Wet	Μ	Medium	MW	Moderately weathered
	D	Dense	St	Stiff	Wp	Plastic limit	Н	High	SW	Slightly weathered
	VD	Very dense	VSt	Very stiff	WI	Liquid limit	VH	Very high	FR	Fresh
			Н	Hard			EH	Extremely high		

ROCK DESCRIPTION