

Report on Preliminary Site (Contamination) Investigation

Proposed Hotel Development 28-32 Somerset Street, Kingswood

> Prepared for Boston Global

Project 99851.00 November 2020

Document History

Document details

Project No.	99851.00	Document No.	R.002.Rev0
Document title	Report on Preliminary Site (Contamination) Investigation		
	Proposed Hotel Development		
Site address	28-32 Somerset Street, Kingswood		
Report prepared for	Boston Global		
File name	99851.00.R.002.Rev0		

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Lisa Teng	John Russell	10 November 2020	

Distribution of copies

Status	Electronic	Paper	Issued to	
Revision 0	1	-	Michael Viskovich, Boston Global	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author LisaTeng	10 November 2020
Reviewer	10 November 2020

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Intro	duction1				
2.	Back	ground2				
3.	Scope of Works2					
4.	Site	Identification and Description				
	4.1	Site Identification				
	4.2	Site Description4				
	4.3	Proposed Development5				
5.	Regi	onal Topography, Geology and Hydrogeology5				
6.	Desk	top Review- Historical Information				
	6.1	Aerial Photographs6				
	6.2	Historical Land Titles6				
	6.3	WorkCover Dangerous Goods Search9				
	6.4	Council Section 149 Planning Certificates9				
	6.5	Council Records9				
	6.6	Regulatory Notice Search9				
7.	Preli	minary Conceptual Site Model10				
	7.1	Potential Contamination Sources11				
	7.2	Potential Contamination Migration Pathways11				
	7.3	Potential Receptors of Concern11				
	7.4	Conceptual Site Model12				
8.	Field	work and Analysis13				
	8.1	Data Quality Objectives and Project Quality Procedures13				
	8.2	Data Quality Indicators13				
	8.3	Field Quality Assurance and Quality Control13				
	8.4	Laboratory QA / QC14				
	8.5	Sample Location and Rationale14				
	8.6	Fieldwork Methods14				
	8.7	Soil Sampling Procedure14				
	8.8	Analytical Rationale15				
9.	Site	Assessment Criteria15				
	9.1	Health Investigation and Screening Levels15				
	9.2	Ecological Investigation Levels				

	9.3	Ecological Screening Levels - Petroleum Hydrocarbons	19
	9.4	Management Limits - Petroleum Hydrocarbons	20
	9.5	Asbestos in Soil	21
	9.6	Waste Classification Criteria	21
10.	Fieldv	vork Results	22
	10.1	Field Observations	22
	10.2	Field Testing Results	22
	10.3	Laboratory Results	23
11.	Discu	ssion of Results	23
	11.1	Contaminants in Soil	23
	11.2	Provisional Waste Classification	23
12.	Updat	ed Conceptual Site Model	24
13.	Concl	usion and Recommendations	24
14.	Limita	tions	25

Appendix A:	Drawing 1
Appendix B:	Site Photographs
Appendix C:	Historical Information
Appendix D:	QA / QC Procedures and Results
Appendix E:	Test Bore Logs
	About this Report
Appendix F:	Laboratory Summary Results Table
	Laboratory Certificates of Analysis and Chain of Custody Documentation

Report on Preliminary Site (Contamination) Investigation Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

1. Introduction

This report presents the results of a Preliminary Site (Contamination) Investigation undertaken by Douglas Partners Pty Ltd (DP) in 2015¹ for a previous residential development at 28-32 Somerset Street, Kingswood (as shown on Drawing 1, Appendix A (referred to herein as the 'site'). The property has since changed ownership and the new owners are proposing a hotel development. A walkover of the site was undertaken to confirm that the results of the 2015 site investigation remain generally valid. This report represents an update of the 2015 report in the context of the new development proposal. This current investigation was commissioned by Boston Global and was prepared in accordance with DP's proposal SYD201126 dated 9 October 2020.

It is understood that the proposed development of the site includes the construction of a new hotel that will have six above ground floor levels, rooftop facilities and two basement levels. Excavation to depths of approximately 6 m to 7 m will be required.

The objectives of the PSI were to:

- Review current and historical information to gain an understanding of likely current and past land uses and hence site activities which may be potentially contaminating;
- Develop a conceptual site model (CSM) based on the available desktop information, site walkover and limited soil analysis program. This involved assessing potential contamination source pathway - receptor linkages; and
- Provide an opinion on the suitability of the site for the proposed development.

The PSI was conducted and reported in general accordance with the National Environment Protection Council (NEPC) *National Environment Protection (Assessment of Site Contamination) Measure 1999* (amended 2013) (NEPC, 2013) and included a review of desktop information, a site walkover, development of a CSM, drilling of six test bores, collection of soil samples and analysis of selected samples for various contaminants of concern.

A geotechnical investigation was also conducted in 2015 and is currently being updated for the new development proposal. The results are presented separately (refer DP report Ref: 99851.00.R.001.Rev0 dated 10 November 2020).

¹ Douglas Partners *Report of Preliminary Site (Contamination) Investigation, 28-32 Somerset Street, Kingswood,* dated October 2015 (DP Project 85085.01.R.001.Rev0) (DP 2015).

2. Background

The 2015 development proposal was for a residential apartment building that included five above ground floor levels and two basement floor levels. The develop footprint was similar in nature to the currently proposed hotel, with the current proposed land use (commercial) being less sensitive compared to the previous proposed residential use. Similar to the 2015 proposal, the proposed hotel will occupy most of the site area and will require a similar depth of excavation to accommodate the two basement levels. In the current proposal, the lowest basement floor level is proposed at reduced level (RL) 41.6 m AHD.

Original investigations undertaken in 2015 included six boreholes that were drilled to depths of between 9.9 m and 11.6 m with the bottom of the boreholes extended to between 6.5 m and 8.3 m into rock, equating to borehole termination depths of between RL 38.7 and RL 36.1, approximately 3.5 m to 5 m below the proposed depth of bulk excavation. Site conditions have remained generally unchanged since the 2015 investigation (demolition of Number 30). Accordingly, the data obtained in 2015 is considered suitable to use for the purpose of assessing the suitability of the site (from a contamination perspective) for the new proposed use.

3. Scope of Works

The scope of works for the PSI comprised:

- Review the previous DP (2015) PSI;
- Undertake a site walkover to observe any changes in site conditions which may have occurred since 2015;
- Search of the NSW EPA Register for notices issued under the *Contaminated Land Management Act* 1997 and the *Protection of the Environment Operations Act* 1997 to see if any have been reported since DP (2015).

The scope of works carried out under DP (2015) comprised:

- Review of current and historical land titles;
- Review of historical aerial photographs;
- Search of the NSW WorkCover dangerous goods register (now known as the SafeWork NSW Schedule 11 hazardous chemicals stored on the premise);
- Search of Council records accessible under an informal Government Information (Public Access) (GIPA);
- Review of Section 149 Planning Certificates provided by the Client (now known as the Section 10.7 Planning Certificates);
- Search of the NSW EPA Register for notices issued under the *Contaminated Land Management Act* 1997 and the *Protection of the Environment Operations Act* 1997;
- Search of the NSW Department of Primary Industries Water groundwater database for registered groundwater bores in the vicinity of the site;
- Review of published geological, soil landscape and acid sulphate soil maps;

- A site walkover to observe current and recent land use and assess the potential for contamination;
- Development of a preliminary CSM;
- Service clearance of test bore locations;
- Auguring of six test bores using a drill rig and hand tools for contamination and geotechnical purposes;
- Soil samples were generally collected at the near surface and then at regular depth intervals to 0.5 m into natural soils and where signs of potential contamination were observed;
- Screening of all soil samples for volatile organic compounds using a photo-ionisation detector (PID);
- Analysis at a National Association of Testing Authorities (NATA) accredited laboratory of nine selected soil samples (plus QA / QC) and one material sample for the following potential contaminants and properties:
 - Metals (total arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc);
 - Total recoverable hydrocarbons (TRH) as a screening test for total petroleum hydrocarbons (TPH);
 - Benzene, toluene, ethylbenzene and total xylenes (BTEX);
 - Polycyclic aromatic hydrocarbons (PAH);
 - Total phenols;
 - Organochlorine pesticides (OCP);
 - Organophosphorus pesticides (OPP);
 - Polychlorinated biphenyls (PCB);
 - Asbestos (40 g soil samples for screening purposes and a potential asbestos containing material fragment);
 - Cation exchange capacity (CEC) and pH to assist calculation of site specific ecological investigation levels; and
 - Quality control / quality assurance sampling and analysis, comprising one intra-laboratory replicate.
- Preparation of an updated CSM; and
- Preparation of this report outlining the methodology and results of the PSI, discussion of the requirements for remediation and an assessment of the suitability of the site for the proposed development. A preliminary waste classification assessment has also been included.

4. Site Identification and Description

4.1 Site Identification

The site is located at 28-32 Somerset Street, Kingswood, on the corner with Hargrave Street. It comprises three lots, two of which are currently occupied by single-storey weatherboard houses and a third which is vacant. These are identified as Lot 59, Deposited Plan 36728 for Number 28, Lot 58, Deposited Plan 36278 for Number 30 and Lot 57, Deposited Plan 215146 for Number 32.

The site is understood to cover an area of approximately 1,700 m². Drawing 1, Appendix A, shows the location of the site.

4.2 Site Description

A site walkover was also undertaken by a DP environmental scientist on 21 September 2015 as part of DP (2015). It is noted that Number 28 and 30 were occupied at the time of the inspection. Site photographs from the site walkover are included in Appendix B. The following site features were observed:

- The site is bound by residential properties to the north and east, Hargrave Street to the south and Somerset Street and Nepean Hospital to the west;
- Number 28 was predominantly covered by a weatherboard house with concrete slabs and grass covering the backyard. Concrete pieces and gravel were observed in various locations across the property whilst the front yard comprised a grassed area with garden beds. A piece of fibrous material was observed adjacent to the rear fence (and was collected for analysis) (refer to Photographs 1 - 5, Appendix B);
- Number 30 was also occupied by a weatherboard house, with the front and rear areas grassed (refer to Photographs 6 8, Appendix B);
- Number 32 was a vacant lot with temporary fencing. Small pieces of building/demolition waste (e.g., concrete) were observed to be spread sporadically across the lot (refer to Photographs 8 -10, Appendix B);
- The site generally sloped towards the east/north-east; and
- There was no evidence of gross contamination at the site.

A second site walkover was undertaken by a DP environmental engineer on 4 November 2020. Site photographs form the site walkover are also included in Appendix B. The following general site features and changes since DP (2015) were noted:

- Number 28 was still occupied by the house observed in 2015, however, the house appears to be vacant and the vegetation is not overgrown, particularly in the back yard (refer to Photographs 11 and 12, Appendix B);
- The house at number 30 had been removed and the site was now a vacant lot with temporary fencing. The lot was mostly overgrown with grass and small pieces of building/demolition waste (e.g., concrete, brick and tile) were observed to be spread sporadically across the lot (refer to Photographs 13 and 14, Appendix B); and
- Number 32 was still a vacant lot with signs of building rubble spread across the lot and no significant changes to the site were observed (refer to Photograph 15, Appendix B).

It is noted that existing structures and a grass coverage across the majority of the site precluding detailed visual inspection of the surface. Additionally, the walkover did not include a hazardous materials (HAZMAT) survey, although the existing structures on the site (and adjacent sites) appeared to include potential bonded asbestos containing material (ACM) / fibre cement sheeting.

4.3 **Proposed Development**

The proposed development is understood to be a seven-storey hotel with two basement levels. The building will have the reception and bar on the ground floor, with hotel rooms from ground floor up to level 5 and a rooftop bar and dining. Selected architectural plans have been included in Appendix A, showing the proposed cross sections and elevations of the proposed hotel.

5. Regional Topography, Geology and Hydrogeology

The majority of the site has been generally levelled, with a slight slope to the north-east, consistent with the local topography. It is expected that groundwater migrates towards local waterways approximately 4 km to the east of the site which ultimately are expected to source the Nepean River. Review of the NSW Department of Primary Industries Water groundwater bore database indicated that there were no registered water bores present within 500 m of the site.

Reference to the Penrith 1:100 000 Series Geological Sheet indicates the site is underlain by Bringelly Shale which typically comprises shale, carbonaceous claystone, laminite and fine to medium grained lithic sandstone. The results of the investigation (refer to Section 9) were consistent with this geological mapping which identified residual soils overlying shale. The geological setting is shown in Figure 1.

According to NSW Acid Sulphate Soil Risk mapping (1994-1998) the site is not located within or close to an area with a risk for acid sulphate soils.

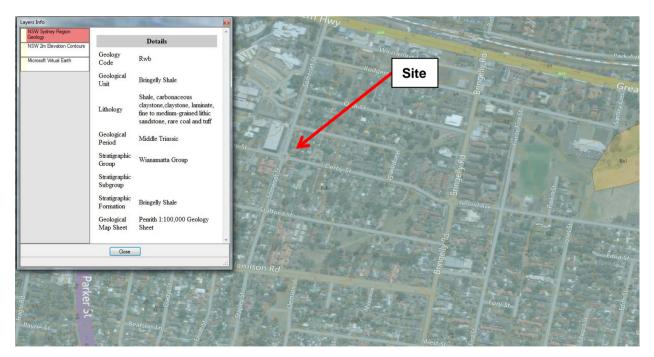


Figure 1: Showing the Geological Setting of the Site

Preliminary Site (Contamination) Investigation 28-32 Somerset Street, Kingswood

Douglas Partners Geotechnics | Environment | Groundwater

6. Desktop Review- Historical Information

6.1 Aerial Photographs

Historical aerial photographs were obtained from databases held by the NSW Land & Property Information Division for the years 1947, 1956, 1970, 1986, 1994 and 2005 with Nearmap the source of the 2015 photograph. Extracts of the photographs are provided in Appendix C.

1947 - The photograph shows the site and general area to be undeveloped. Some tree clearing may have occurred and the general area typically comprises rural/semi-rural properties. Somerset Street is now present.

1956 - There appears to have been little change to the site since the 1947 photograph, although the area is becoming more populated with residential buildings and associated infrastructure (e.g., local roads). The first buildings for the Nepean Hospital had been built on the property to the west.

1970 - The site is occupied by three residential buildings along with additional sheds. Hargrave Road is now present and properties to the north, east and south have been developed for residential purposes. Further development of Nepean Hospital was evident.

1986, 1994 and 2005 - There appeared to be no significant change to the site or local area which is still dominated by residential properties. Development of Nepean Hospital has been ongoing.

2015 - There has been minimal change to Numbers 28 and 30, whilst the building on Number 32 is no longer present. Further development of Nepean Hospital, including a multistorey carpark that abuts Somerset Street is now present. Note: Nearmap photographs indicate that the building on Number 32 was removed between February and April 2013.

2020 - Reflective of current site conditions, observed and discussed in Section 3.2, the only building remaining is at Number 28 and the remaining two lots are vacant. Further development of Nepean Hospital is still being undertaken north-east of the site.

6.2 Historical Land Titles

A historical title deeds search was used to obtain ownership and occupancy information including company names and the occupations of individuals. The title information can assist in the identification of previous land uses by the company names or the site owners and can, therefore, assist in establishing whether there were potentially contaminating activities occurring at the site. A summary of the title deeds and possible land uses (with reference to the aerial photographs) is presented in the tables below for the three lots which cover the site. A full copy of the search, including the cadastre map, is provided in Appendix C.

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Potential Land Use
01.03.1909 (1909 to 1922)	Permanent Trustee Company of New South Wales Limited	Open space / possibly grazing
13.05.1922 (1922 to 1939)	Frederick Charles Jones (Tanner)	Open space / possibly grazing
22.09.1939 (1939 to 1942)	Amy Amelia Jones (Widow) Frederick Nepean Jones (Master Tanner) Reginald Neale (Store Keeper)	Open space / possibly grazing
27.03.1942 (1942 to 1958)	Commonwealth of Australia (Acquired for Postal & Telegraphic Services)	Open space / vacant
28.08.1958 (1958 to 1974)	Housing Commission of New South Wales	Residential
04.11.1974 (1974 to 2000)	George Albert French (Managing Director)	Residential
05.10.2000 (2000 to 2001)	Jennifer Beth Taylor Mervyn Reginald Taylor Elizabeth Mary Taylor	Residential
22.11.2001 (2001 to 2006)	Jennifer Beth Taylor	Residential
06.06.2006 (2006 to 2007)	Dural Holdings Australia Pty Ltd	Residential
08.01.2007 (2007 to date)	# Zeftco Pty Ltd	Residential

Table 1: Part of Lot 59, Deposited Plan 36278 - 28 Somerset Street

Denotes current registered proprietor

Table 2: Lot 58, Deposited Plan 36278 - 30 Somerset Street

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Potential Land Use
01.03.1909 (1909 to 1922)	Permanent Trustee Company of New South Wales Limited	Open space / possibly grazing
13.05.1922 (1922 to 1939)	Frederick Charles Jones (Tanner)	Open space / possibly grazing
22.09.1939 (1939 to 1942)	Amy Amelia Jones (Widow) Frederick Nepean Jones (Master Tanner) Reginald Neale (Store Keeper)	Open space / possibly grazing
27.03.1942 (1942 to 1958)	Commonwealth of Australia (Acquired for Postal & Telegraphic Services)	Open space / vacant
28.08.1958 (1958 to 1990)	Housing Commission of New South Wales	Residential
21.03.1990 (1990 to 2004)	Robert William Bunt (Driver) Margaret Elizabeth Bunt (Married Woman)	Residential

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Potential Land Use
19.03.2004 (2004 to 2004)	Somerset Bed and Breakfast Pty Limited	Residential / B&B
19.03.2004 (2004 to 2006)	Jennifer Beth Taylor	Residential
06.06.2006 (2006 to 2007)	Dural Holdings Australia Pty Ltd	Residential
08.01.2007 (2007 to date)	# Zeftco Pty Ltd	Residential

Denotes current registered proprietor

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Potential Land Use
01.03.1909 (1909 to 1922)	Permanent Trustee Company of New South Wales Limited	Open space / possibly grazing
13.05.1922 (1922 to 1939)	Frederick Charles Jones (Tanner)	Open space / possibly grazing
22.09.1939 (1939 to 1942)	Amy Amelia Jones (Widow) Frederick Nepean Jones (Master Tanner) Reginald Neale (Store Keeper) (Transmission Application not investigated)	Open space / possibly grazing
27.03.1942 (1942 to 1958)	Commonwealth of Australia (Acquired for Postal & Telegraphic Services)	Open space / vacant
28.08.1958 (1958 to 1989)	Housing Commission of New South Wales	Residential
25.01.1989 (1989 to 1993)	Peter Reginald Walker (Factory Supervisor) Jacoba Walker (Married Woman)	Residential
08.09.1993 (1993 to 2001)	Jacoba Walker (Widow)	Residential
28.06.2001 (2001 to 2004)	Raphael Rahme John Rahme Joseph Rahme	Residential
29.03.2004 (2004 to 2014)	Angelo Peter Preketes	Residential
03.12.2014 (2014 to date)	# Zeftco Pty Ltd	Vacant

Table 3: Lot 57, Deposited Plan 215146 - 32 Somerset Street

Denotes current registered proprietor

6.3 WorkCover Dangerous Goods Search

A search of records held by WorkCover NSW (now SafeWork NSW) was requested by DP. WorkCover advised that they had not located from their records any information on licences for keeping dangerous goods within the site boundary. A copy of the search result is provided in Appendix C.

6.4 Council Section 149 Planning Certificates

Section 149 Planning certificates (now known as Section 10.7 Planning Certificates) provided to DP by the client were reviewed. The review indicated that:

- The residential properties 28, 30 and 32 Somerset Street are zoned RB4 Mixed Use;
- The land has not been identified as significantly contaminated land within the meaning of the Contaminated Land Management Act 1997 (CLM Act);
- The land is not subject to a management order within the meaning of the CLM Act;
- The land is not the subject of an approved voluntary management proposal or maintenance order within the meaning of the CLM Act; and
- Council has not been provided with a site audit statement for this land.

Copies of the provided Section 149 Planning certificates are attached in Appendix C.

6.5 Council Records

An informal request to review available Council records associated with the site under the *Government Information (Public Access) Act 2009* was completed. Penrith City Council advised that there were no records for the site with respect to *inter alia*:

- Information indicating previous land use and site activities;
- Previous contamination assessments;
- Pollution notifications or other breaches of Council's environmental policies; and
- Use of asbestos or other hazardous materials on the site.

It is noted that the lack of records is not unexpected given the extended period of use as residential properties and the lack of notable development on the site since the 1950s / 1960s (as indicated by the aerial photographs (Section 5.1)).

6.6 Regulatory Notice Search

The EPA publishes records of contaminated sites under Section 58 of the *Contaminated Land Management Act* 1997 (CLM Act) on a public database accessed via the internet. The notices relate to investigation and / or remediation of site contamination considered to be significantly contaminated under the definition in the CLM Act. More specifically the notices cover the following:

• Actions taken by the EPA under sections 15, 17, 19, 21, 23, 26 or 28 of the CLM Act;

- Actions taken by the EPA under sections 35 or 36 of the Environmentally Hazardous Chemicals Act 1985; and
- Site audit statements provided to the EPA under section 52 of the CLM Act on sites subject to an in-force remediation order.

A search of the public database on 17 September 2015 and on 9 November 2020 indicated that neither the site nor any other properties within a 1 km radius were listed.

It should be noted that the EPA record of Notices for contaminated land does not provide a record of all contaminated land in NSW.

The NSW EPA also issues environmental protection licenses under Section 308 of the *Protection of the Environment Operations Act* 1997 (POEO Act). The register contains:

- Environmental protection licenses;
- Applications for new licenses and to transfer or vary existing licenses;
- Environment protection and noise control licenses;
- Convictions in prosecutions under the POEO Act;
- The result of civil proceedings;
- License review information;
- Exemptions from provisions of the POEO Act or Regulations;
- Approvals granted under Clause 9 of the POEO (Control of Burning) Regulation; and
- Approvals granted under Clause 7a of the POEO (Clean Air) Regulation.

A search of the public register on 17 September 2015 indicated that no licenses were listed for the site or properties within 1 km. A search of the public register on 9 November 2020 indicated that there were no licenses listed for the site or properties within 1 km. DP notes that at the Nepean Hospital, 'Healthscope Limited' located approximately 3575 m north west of the site held a licenced for hazardous, Industrial or Group A waste Generation or Storage (>10 - 100 tonnes) which is no longer in force as of 19 February 2009.

7. Preliminary Conceptual Site Model

A CSM is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages.-

7.1 Potential Contamination Sources

Potential sources of contamination are listed in Table 4, and are based on the site walkover and review of desktop information (Section 5).

Potential Source	Description of Potential Contaminating Activity	Contaminants of Concern
Site buildings and structures	Hazardous building materials within buildings or structures.	Asbestos, possibly lead paint and / or other hazardous building materials.
Impacted filling / topsoil from general site activities over time	The use of pesticides to protect site structures, demolition and deterioration of buildings or structures and small areas levelled using site won or imported filling.	Asbestos, heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB and phenols

For the purpose of developing a CSM, the potential sources of contamination can be defined as:

- S1 Hazardous building materials within buildings or structures; and
- S2 Impacted filling / topsoil.

7.2 Potential Contamination Migration Pathways

The pathways by which the potential sources of contamination could reach potential receptors are described below:

- P1 Dermal contact and ingestion;
- P2 Inhalation of dust;
- P3 Inhalation of vapours;
- P4 Leaching and vertical migration into groundwater; and
- P5 Direct contact with in-ground structures and terrestrial ecology.

7.3 Potential Receptors of Concern

The potential receptors of potential contamination sourced from the site are considered to be:

- R1 Site users (current and future- commercial (hotel) land use);
- R2- Adjacent site users (current and future- commercial/industrial land use);
- R3- Construction and maintenance workers;
- R4 Groundwater;

- R5- Terrestrial ecology (current and future); and
- R6 Property (current and future).

There were no surface water bodies in the near vicinity of the site (refer Section 4) and hence were not considered to be of concern.

7.4 Conceptual Site Model

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 and S2) and receptors (R1 to R6) are provided in Table 5 below.

Potential Source	Pathway	Receptor
S1 - Hazardous building	P1 - Dermal contact and ingestion	R1 - Site users
materials within		R3 - Construction & maintenance workers
buildings or structures	P2 - Inhalation of dust	R1 - Site users
		R2 - Adjacent site users
		R3 - Construction & maintenance workers
S2 - Impacted filling /	P1 - Dermal contact and ingestion	R1 - Site users
topsoil		R3 - Construction & maintenance workers
	P2 - Inhalation of dust	R1 - Site users
	P3 - Inhalation of vapours	R2 - Adjacent site users
		R3 - Construction & maintenance workers
	P4 - Leaching and vertical migration to groundwater	R4 - Groundwater
	P5 - Direct Contact with in-ground structures and terrestrial ecology	R5 - Terrestrial ecology R6 - Property

Table 5: Preliminary Conceptual Site Model

Page 13 of 26

8. Fieldwork and Analysis

8.1 Data Quality Objectives and Project Quality Procedures

The PSI has been devised broadly in accordance with the seven step data quality objective (DQO) process which is provided in Appendix D, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

Referenced sections for the respective DQOs listed above are presented in Table D1, Appendix D.

8.2 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of Data Quality Indicators (DQI), defined as follows:

Precision:	A quantitative measure of the variability (or reproducibility) of data;
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value;
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;
Completeness:	A measure of the amount of useable data from a data collection activity; and
Comparability:	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.

Further comments on the DQIs are presented in Appendix D.

8.3 Field Quality Assurance and Quality Control

The field QC procedures for sampling were as prescribed in Douglas Partners' *Field Procedures Manual*, and are outlined later in this section.

Given the limited soil sampling and analysis undertaken for the investigation, field QA / QC was limited to one replicate recovered and analysed for a limited suite of contaminants by means of intra- laboratory analysis. This is in general accordance with standard industry practice and guidelines.

8.4 Laboratory QA / QC

The analytical laboratory, accredited by NATA, is required to conduct in-house QA/QC procedures. These are normally incorporated into every analytical run and include reagent blanks, spike recovery, surrogate recovery and duplicate samples.

The results of the DP assessment of laboratory QA / QC are shown in Appendix D with the full laboratory certificates of analysis included in Appendix F.

8.5 Sample Location and Rationale

The recommended minimum sampling density as stipulated in the NSW EPA's *Contaminated Sites: Sampling Design Guideline, 199*5 for a 1,700 m² site is between six and seven sampling points. Given the sites current and prolonged use as residential properties, buildings covering significant areas of the site and to undertake the works in conjunction with the geotechnical investigation, six sample locations were considered suitable for the investigation. Sampling locations were selected to provide general site coverage in conjunction with the geotechnical investigation requirements.

The test bore locations are shown on Drawing 1, Appendix A.

8.6 Fieldwork Methods

The auguring of six test bores was undertaken using a drill rig and hand tools. All test bores were augured to refusal on rock and then cored using NMLC-coring drilling techniques for geotechnical purposes. Additionally, it is noted that BH4 was converted for groundwater well installation to a depth of 10 m bgl, to allow groundwater level monitoring for geotechnical purposes at a later date (if required).

The depths of each test bore and drilling methods are shown on the test bore logs provided in Appendix E. The work was undertaken between 17 and 23 September 2015.

8.7 Soil Sampling Procedure

All sample locations were cleared for services and underground pipes by a services locator and by review of dial-before-you-dig (DBYD) plans.

All sampling data was recorded on DP's test bore logs with essential information included in the chainof-custody sheets. The general sampling procedure adopted for the collection of environmental samples is summarised below:

- Collection of disturbed soil samples directly from the auger using disposable sampling equipment;
- Transfer of samples into laboratory-prepared glass jars, filled to the top to minimise the headspace within the sample jar and capping immediately to minimise loss of volatiles. Replicate samples were placed into snap lock plastic bags for asbestos analysis;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth; and

• Placement of the glass jars, with Teflon lined lid, into an ice cooled, insulated and sealed container for transport to the laboratory.

8.8 Analytical Rationale

The analytical scheme was designed to obtain an indication of the potential presence and possible distribution of contaminants that may be attributable to past and present activities, or features within the site, as discussed in Section 6. It is noted that as the soil results indicated low risk from chemical contaminants (discussed in Sections 9 and 10), groundwater analysis was not considered warranted for this investigation.

Envirolab Services Pty Ltd (Envirolab) was used for the analysis of soil samples (including intralaboratory analysis of the replicate sample). The laboratory is required to carry out routine in-house QC procedures.

Laboratory analytical methods as stated by Envirolab are provided in the laboratory certificates of analysis in Appendix F and are summarised in the QA / QC section in Appendix D.

9. Site Assessment Criteria

It is understood that a development application is to be made to redevelop the site into a seven storey hotel building with a two level basement.

The site assessment criteria (SAC) applied in the current investigation is informed by the CSM which identified human and environmental receptors to be exposed to potential contamination on the site. Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, NEPC (2013). The NEPC guidelines are endorsed by the NSW EPA under the CLM Act 1997.

The investigation and screening levels are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation and screening levels are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g., Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

The investigation and screening levels for soils applied in the current investigation comprise levels adopted for a commercial/industrial land use scenario.

9.1 Health Investigation and Screening Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HILs are applicable to assessing health risk arising *via* all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface for commercial / industrial use. Site-specific conditions may determine the depth to which HILs apply for other land uses.

HSLs are applicable to selected petroleum compounds and fractions to assess the risk to human health via inhalation and direct contact pathways. HSL have been developed for different land uses, soil types and depths to contamination. Petroleum based Health Screening Levels for direct contact have been adopted from the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) *Technical Report no. 10 Health screening levels for petroleum hydrocarbons in soil and groundwater* (2011) as referenced by NEPC (2013).

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the site. Given the proposed land use the adopted HIL and HSL are:

- **HIL-D** Commercial / Industrial;
- HSL-D (vapour intrusion) Commercial / Industrial; and
- HSL-D (direct contact) Commercial / Industrial.

Given that the HIL B and HSL B values apply to a relatively sensitive land use, it is considered that the values are also protective of construction and maintenance workers at the site.

In addition, the HSL adopted are predicated on the inputs summarised in Table 6.

Variable	Input	Rationale
Potential exposure pathway	Soil vapour intrusion (inhalation) / Direct contact *	With the potential for vapour intrusion into new buildings, and direct contact with soils after construction, both pathways are considered viable.
Soil Type	Sand	In the absence of laboratory particle analysis sand HSLs have been adopted as an initial conservative screen. It is noted that the majority of the material is predominantly clay.
Depth to contamination	0 m to <1 m	0 to <1 m for soil HSLs (fill / topsoil - impacted soil recovered between 0 m and 0.7 m).

Table 6: Inputs to the Derivation of HSLs

*Developed by CRC CARE (2011)

The adopted HILs and HSLs for the analytes included in the PSI are listed in the following Table 7.

Contaminants		HIL-D & HSL-D	HSL-D
		Direct Contact	Vapour Intrusion
	Arsenic	3000	-
	Cadmium	900	-
	Chromium (VI)	3600	-
Metals	Copper	240 000	-
Wetais	Lead	1500	-
	Mercury (inorganic)	730	-
	Nickel	6000	-
	Zinc	400 000	-
РАН	Benzo(a)pyrene TEQ ¹	40	-
РАП	Naphthalene	11 000 (HSL)	NL
	Total PAH	4000	-
	C6 – C10 (less BTEX) [F1]	26 000 (HSL)	260
три	>C10-C16 (less Naphthalene) [F2]	20 000 (HSL)	NL
TRH	>C16-C34 [F3]	27 000 (HSL)	-
	>C34-C40 [F4]	38 000 (HSL)	-
втех	Benzene	430 (HSL)	3
	Toluene	99 000 (HSL)	NL
	Ethylbenzene	27 000 (HSL)	NL
	Xylenes	81 000 (HSL)	230
Phenol	Pentachlorophenol (used as an initial screen)	660	-
	Aldrin + Dieldrin	45	-
	Chlordane	530	-
	DDT+DDE+DDD	3600	-
	Endosulfan	2000	-
OCP	Endrin	100	-
	Heptachlor	50	-
	НСВ	80	-
	Methoxychlor	2500	-
OPP	Chlorpyrifos	2000	
·	PCB ²	7	-

Table 7: Health Investigation and Screening Levels (mg/kg)

Notes to Table 7:

1. sum of carcinogenic PAH

2. non dioxin-like PCBs only

3. NL – not limiting.

Preliminary Site (Contamination) Investigation 28-32 Somerset Street, Kingswood

9.2 Ecological Investigation Levels

Ecological Investigation Levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g., motor vehicle emissions). The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL,

The ABC is determined through direct measurement at an appropriate reference site (preferred) or through the use of methods defined by Olszowy et al *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on the soil characteristics of pH, CEC and clay content.

EILs (and ACLs where appropriate) have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. An *Interactive (Excel) Calculation Spreadsheet* may be used for calculating site-specific EIL for these contaminants, and has been provided in the ASC NEPM Toolbox available on the SCEW (Standing Council on Environment and Water) website (http://www.scew.gov.au/node/941).

The adopted EIL, derived from Tables 1B (1) to 1B(5), Schedule B1 of NEPC (2013) are shown in the following Table 8. The following site specific data and assumptions have been used to determine the EILs:

- A protection level for commercial / industrial;
- The EILs will apply to the top 2 m;
- Given the likely primary source of soil contaminants (i.e., historical filling) the contamination is considered as "aged" (>2 years);
- ABCs have been taken as the approximate average EPA background concentrations for NSW as published in Olszowy (1995); and
- Site specific pH and CEC have been tested whilst a conservative clay content has been assumed and as such these values have been used in the determination of EILs, where appropriate.

The adopted EILs are listed in the following Table 8.

	Analyte	EIL ²	Comments
	Arsenic	160	Adopted parameters:
	Copper	320	pH of 6.87 (average tested);
Matala	Nickel	380	CEC of 14.67 meq/100g (average tested);
Metals	Chromium III	320	Conservative clay content composition of 1%
	Lead	1800	used
	Zinc	970	Iron not tested as EIL aged criteria was
OCP	DDT	640	adopted.
PAH	Naphthalene	370	

Table 8: Ecological Investigation Levels (EIL) in mg/kg

9.3 Ecological Screening Levels - Petroleum Hydrocarbons

Ecological Screening Levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. ESL applies to the top 2 m of the soil profile as for EIL.

ESL has been derived in NEPC (2013) for petroleum fractions F1 to F4 as well as BTEX and Benzo(a)pyrene. Site specific data and assumptions as summarised in Table 9 have been used to determine the ESL. The adopted ESL, from Table 1B (6), Schedule B1 of NEPC (2013) are shown in Table 9.

Variable	Input	Rationale
Depth of ESL application	Top 2 m of the soil profile	The top 2 m depth below ground level corresponds to the root zone and habitation zone of many species.
Land use	Commercial/Industrial	Proposed future land use.
Soil Texture	Coarse	The most conservative values (soil profile sand, sand encountered in some of the filling, however, predominately the filling was clay).

Table 9: Inputs to the derivation of ESL

	Analyte	ESL	Comments
TRH	C6 - C10 (less BTEX) [F1]	215*	All ESLs are low reliability
	>C10-C16 (less Naphthalene) [F2]	170*	apart from those marked with * which are moderate
	>C16-C34 [F3]	1700	reliability
	>C34-C40 [F4]	3300	
BTEX	Benzene	75	
	Toluene	135	
	Ethylbenzene	165	
	Xylenes	180	
PAH	Benzo(a)pyrene	1.4	

Table 10: Ecological Screening Levels (ESL) in mg/kg

9.4 Management Limits - Petroleum Hydrocarbons

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

Management Limits to avoid or minimise these potential effects have been adopted in NEPC (2013) as interim Tier 1 guidance. Management Limits have been derived in NEPC (2013) for the same four petroleum fractions as the HSL (F1 to F4). The adopted Management Limits, from Table 1B (7), Schedule B1 of NEPC (2013) are shown in the following Table 11. The following site specific data and assumptions have been used to determine the Management Limits:

- The Management Limits will apply to any depth within the soil profile;
- The Management Limits for commercial/industrial land use apply; and
- A "coarse" soil texture has been adopted to take a conservative approach.

0 00		•
	Analyte	Management Limit
TRH	$C_6 - C_{10}$ (F1) #	700
	>C10-C16 (F2) #	1,000
	>C ₁₆ -C ₃₄ (F3)	3,500
	>C ₃₄ -C ₄₀ (F4)	10,000

Table 11: Management Limits in mg/kg

Separate management limits for BTEX and naphthalene are not available hence these have not been subtracted from the relevant fractions to obtain F1 and F2

Preliminary Site (Contamination) Investigation 28-32 Somerset Street, Kingswood

9.5 Asbestos in Soil

Bonded asbestos-containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites; and
- Commonly occurring in historical fill containing unsorted demolition materials.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and / or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

A detailed asbestos assessment as outlined in NEPC (2013) was not undertaken as part of the PSI. As such, asbestos was screened from replicate bag samples taken with each jar sample. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g/kg has been adopted for this assessment as an initial screen.

Where bonded materials were identified to be potentially ACM, these materials were analysed to confirm their ACM classification.

9.6 Waste Classification Criteria

To assess the waste classification of the material for off-site disposal purposes a preliminary waste classification assessment was undertaken in accordance with the six step process outlined in the NSW EPA *Waste Classification Guidelines 2014* (EPA, 2014). To soil results are assessed against the general solid waste (GSW) criteria outlined in Tables 1 and 2 of the guidelines.

With respect to the natural materials at the site, these are also assessed for their potential classification as Virgin Excavated Natural Material (VENM). In this regard EPA (2014) defines VENM as:

- "natural material (such as clay, gravel, sand, soil or rock fines):
- that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or process residues, as a result of industrial, commercial, mining or agricultural activities; and
- that does not contain any sulfidic ores or soils or any other waste; and
- includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette."

No further NSW EPA guidelines or Gazettal notices have been published/issued that provide additional criteria for assessing VENM. Given this DP have compared the results of the natural soils to published background concentrations in NEPC (1999) *National Environment Protection Measure (Assessment of Site Contamination)* Schedule B1, Table 5-A, Background Ranges and ANZECC/NHMRC (1992) *Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Environmental Soil Quality Guidelines* Background A [ANZECC A] as a screening criteria. In the case of organics where no reference values exist the laboratory PQL have been adopted as the screening level.

10. Fieldwork Results

10.1 Field Observations

Details of the subsurface conditions encountered in the investigation are given in the test bore logs in Appendix E, together with notes defining classification methods and descriptive terms.

The sequence of subsurface materials encountered within the boreholes, in increasing depth order, may be summarised as follows:

Filling / Topsoil:	Generally brown silty clay filling with some gravel and some sand filling (BH4 only) to depths of between 0.2 m and 0.7 m;
Clay / Silty Clay:	Red, brown and grey firm to very stiff clays/silty clays to depths of between 2.7 m and 4.3 m; and
Shale:	Extremely low to very low strength shale to depths of between 4.5 m and 6.0 m overlying low and then medium strength shale to termination depths of between 9.92 m and 11.6 m.

No free groundwater was observed during augering of the boreholes to maximum depths of 2.5 m. The use of water during rotary drilling and coring precluded further groundwater measurements during drilling. The water level recorded in the monitoring well installed in BH4 was 2.5 m depth (RL 45.2) on 9 October 2015.

There were no signs of gross chemical contamination during the drilling.

10.2 Field Testing Results

Replicate soil samples collected in plastic bags were allowed to equilibrate under ambient temperatures before screening for Total Photo-ionisable Compounds (TOPIC) using a calibrated photo-ionisation detector (PID). The PID readings were all <5 ppm, consistent with the field observations noted above.

10.3 Laboratory Results

The results of the laboratory analysis undertaken are summarised and presented in Table F1: Summary of Soil Laboratory Results in Appendix F.

The full laboratory certificates together with the chain of custody and sample receipt information are also presented in Appendix F.

11. Discussion of Results

11.1 Contaminants in Soil

The soil samples were generally free of significant signs of chemical contamination concern (e.g., strong odours, staining, etc). Filling / topsoil was generally minimal across the site with thickness ranging between 0.2 m and 0.7 m depth.

Soil samples were analysed for a variety of common contaminants including heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols and asbestos. The concentrations of BTEX, TRH, PCB, OCP, OPP, phenol and asbestos were all below the laboratory detection limits in all samples analysed. There was a very low detection of PAH in sample BH6/.01 from the filling, with a total positive PAH concentration of 0.2 mg/kg. Heavy metals were detected at all locations with concentrations generally low.

The fragment of fibrous material (possibly ACM) observed near the rear fence of 28 Somerset Street was tested for asbestos and was confirmed to not contain asbestos.

All results were within the health and ecological SAC.

11.2 Provisional Waste Classification

Chemical results for the filling were generally within the General Solid Waste (GSW) criteria without TCLP (CT1 criteria). There were minor exceedances for lead in BH4/0-0.1 and for nickel in BH2/0-0.1. TCLP analysis confirmed low leaching characteristics for both analytes in the respective samples and hence were within the GSW criteria with TCLP (TCLP1/SCC1 criteria). Therefore, based on the field and laboratory results the filling is provisionally classified as General Solid Waste (non-putrescible).

The natural clays, silty clays and bedrock similarly did not show any signs of gross contamination and the results were generally consistent with background ranges. On this basis and in conjunction with the filling not being mixed with the natural material, the natural clays and silty clays and bedrock at the site has a provisional classification of Virgin Excavated Natural Material (VENM).

12. Updated Conceptual Site Model

An updated CSM is presented in Table 12. It is a representation of site information regarding the potential contamination sources and associated exposure pathways and potential receptors identified from this investigation.

Table 12: Conceptual Site Model

Potential Source	Pathway	Receptor
S1 - Hazardous building	P1 - Dermal contact and	R1 - Site users
materials within buildings or	ingestion	R3 - Construction & maintenance workers
structures	P2 - Inhalation of dust	R1 - Site users
		R2 - Adjacent site users
		R3 - Construction & maintenance workers

The following summarises the inputs from the current investigation which have informed the above CSM.

The recorded concentrations of chemical contaminants in soil during the current investigation were all within the relevant health and ecological criteria.

The site inspection did observe the presence of some building rubble on the vacant lot (Number 32 Somerset Street) which is likely due to the demolition of the former residential building in 2013. Given the age of that building (which is thought to be consistent with the existing structures, i.e., 1950's/1960's as indicated by the aerial photographs) and site observations, it is likely that the demolished building and existing buildings contained / contain hazardous materials. In light of this and the grass coverage across large sections of the site (in particular Number 32), an appropriately licensed occupational hygienist should complete a HAZMAT survey prior to any demolition works of the existing buildings and provide clearance of the site post removal of the buildings and grass / vegetation coverage.

13. Conclusion and Recommendations

Based on the field and analytical results presented in this report it is considered the site can be made suitable for the proposed hotel (commercial) development, subject to the following being undertaken:

- A hazmat survey of existing buildings / structures prior to demolition and the site being cleared by an occupational hygienist post demolition works;
- Confirmation of the contamination status (and waste classification) of the soils under the existing buildings; and
- Development of an unexpected finds protocol for implementation during construction works.

Additionally, it is recommended that the vacant lots (Number 30 and 32) be cleared for asbestos during stripping of the grass coverage and / or the demolition and clearance documentation completed for the removal of the former house are obtained and reviewed.

Additionally, regarding the provisional *General Solid Waste (non-putrescible)* classification for the filling and the VENM classification for the underlying natural material, should material be identified during works which does not reflect those described herein or shows signs of contamination (e.g., results of testing under the existing buildings, odours, staining, asbestos) this material is to be segregated and an appropriately qualified environmental consultant engaged to confirm the classification of the material.

14. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at 29 - 32 Somerset Street, Kingswood in accordance with DP's proposal SYD201126.P.001.Rev0 dated 9 October 2020 and acceptance received from Boston Global dated 12 October 2020. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Boston Global for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

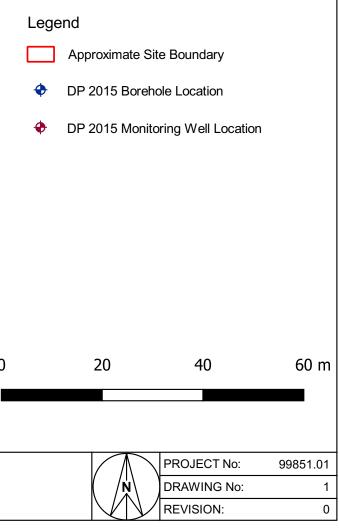
Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in filling materials at the test locations sampled and analysed. Building demolition materials, such as concrete, brick and tile were, however, observed on the surface and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

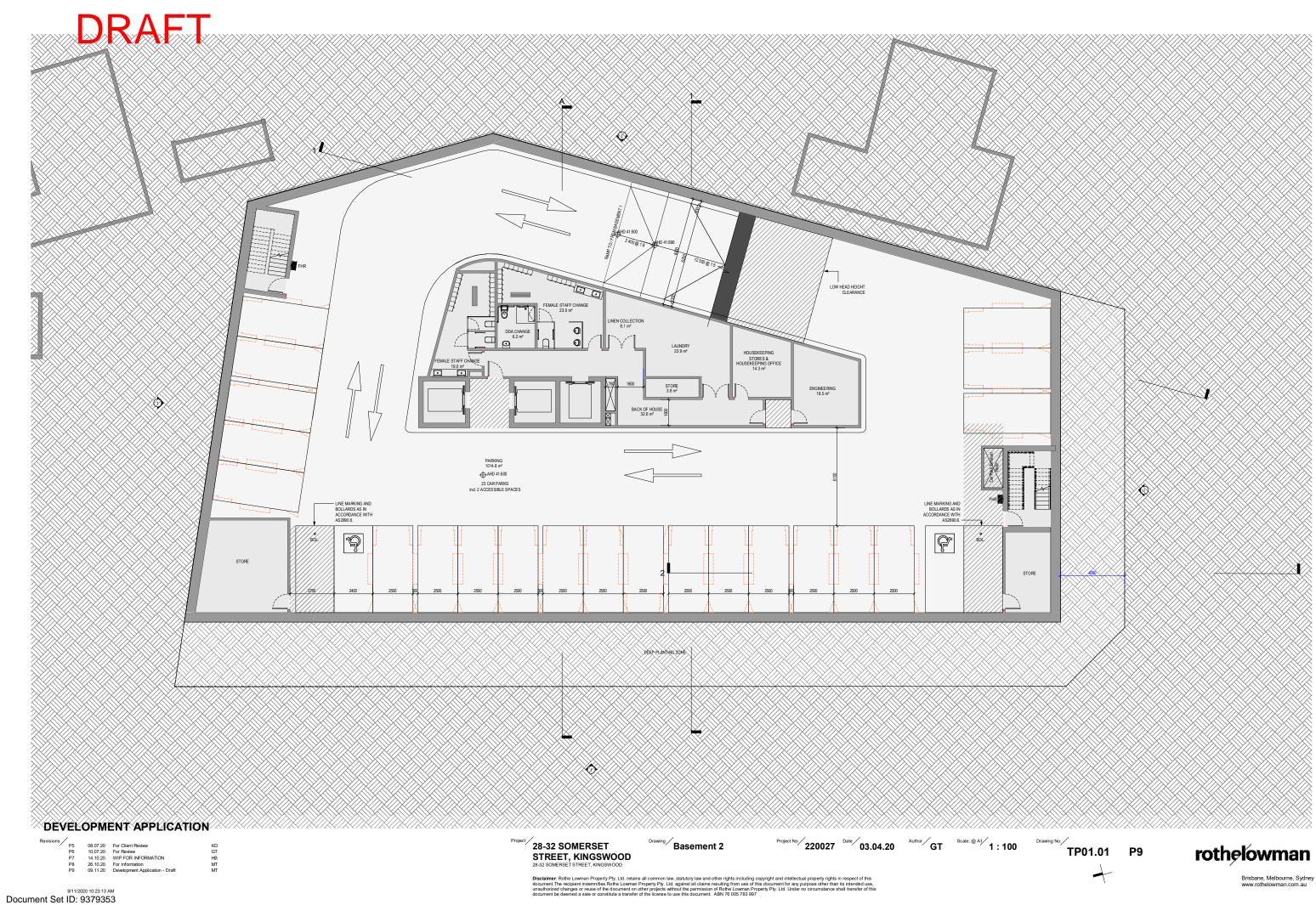
Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Douglas Partners Pty Ltd

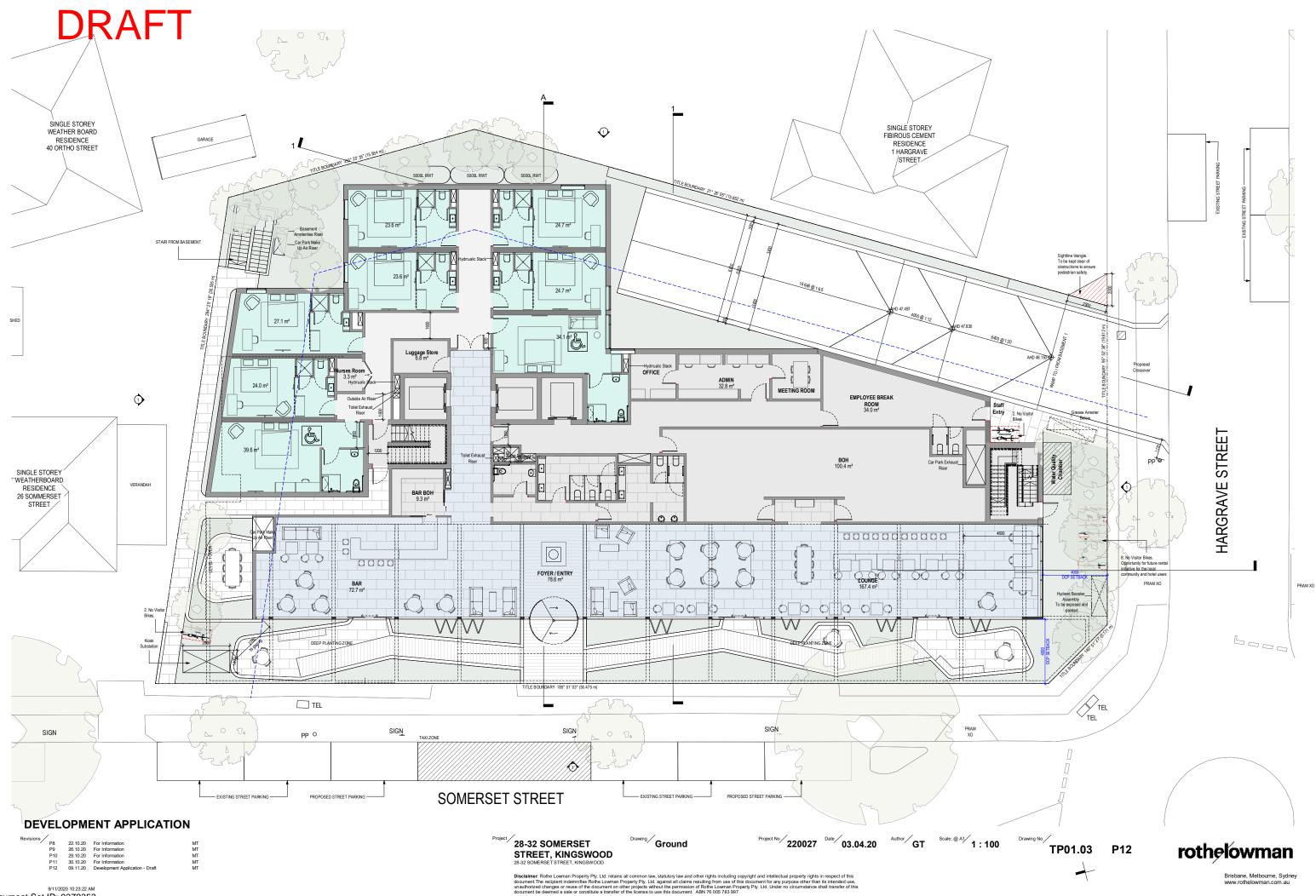
Appendix A

Drawing 1

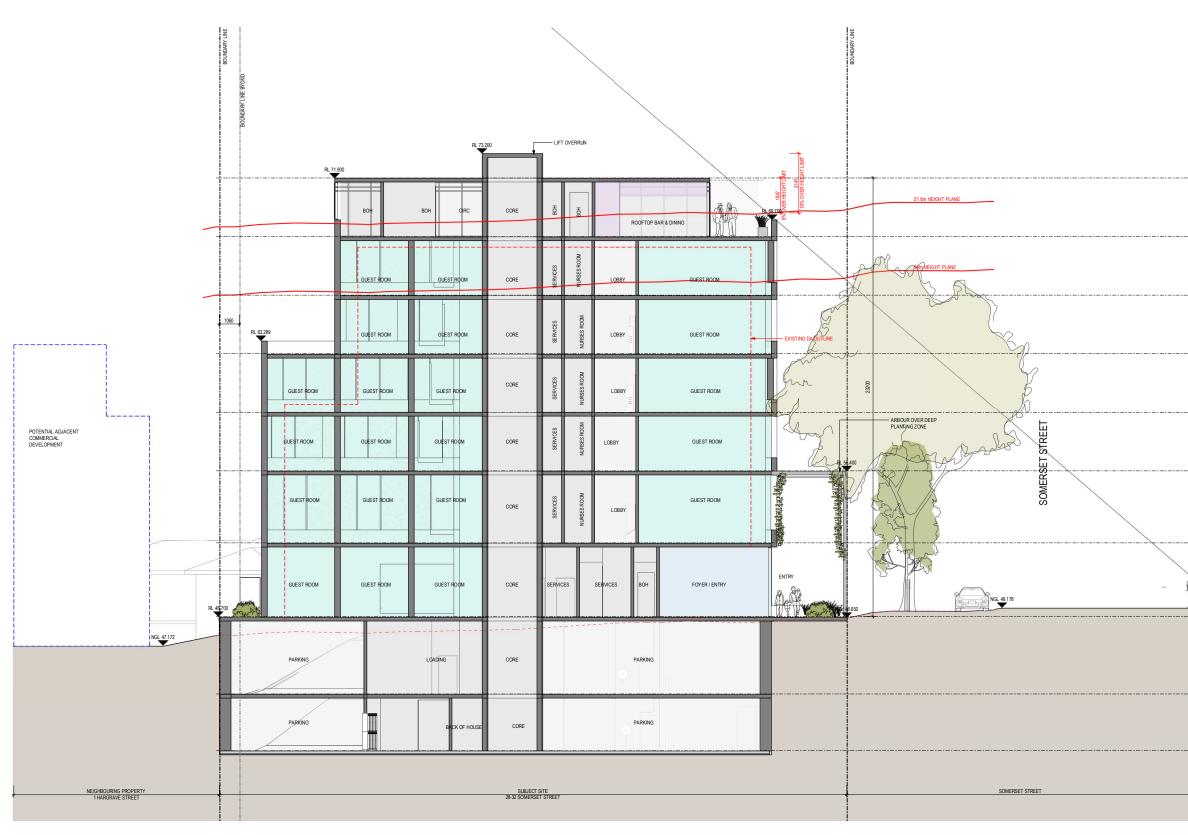

Douglas Partners Geotechnics Environment Groundwater
Geotechnics I Environment I Groundwater


	CLIENT: Boston Global		TITLE:	Site and Previous Test Location Plan
5	OFFICE: Sydney	DRAWN BY: LT		Proposed Hotel Development
r	SCALE: 1:750 @ A3	DATE: 06.11.2020		28 - 32 Somerset Street, Kingswood

Document Set ID: 9379353 Version: 1, Version Date: 17/11/2020



Notes: Basemap from nearmap.com (dated 01/10/2020)
 Test locations shown are approximate only



Version: 1, Version Date: 17/11/2020

Document Set ID: 9379353 Version: 1, Version Date: 17/11/2020

DRAFT

DEVELOPMENT APPLICATION

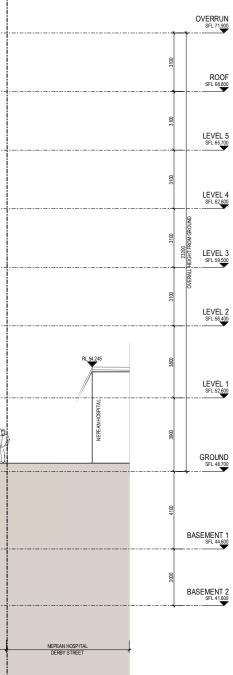
 P8
 14.10.20
 WIP FOR INFORMATION

 P9
 28.10.20
 For Information

 P10
 28.10.20
 For Information

 P11
 30.10.20
 For Information

 P12
 09.11.20
 For Information
 ation - Draft


HB MT MT MT MT

9/11/2020 10:24:45 AM Document Set ID: 9379353 Version: 1, Version Date: 17/11/2020 Project 28-32 SOMERSET STREET, KINGSWOOD

Project No 220027 Date 06/03/13 Author GT Scale: @ A1 1 : 100 Drawing No. TP03.01 P12

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Py. Ltd. Under no circumstance shall transfer of this document. Dedemed a sale or constitute a transfer of the license to use this document. ABN 76 005 763 997

Drawing Section A

+

Appendix B

Site Photographs

Photo 1 - Looking South at Front Yard of Number 28 (DP 2015)

Photo 2 - Concrete Pieces Found in Front Yard of Number 28 (DP 2015)

Douglas Partners Geotechnics Environment Groundwater	Site Photographs	PROJECT	99851
	Proposed Hotel Development	PLATE No	1
	Somerset Street, Kingswood	REV	А
	CLIENT: Boston Global Pty Ltd	DATE	9-Nov-20

Photo 3 - Asebstos Warning in Electrical Box of Number 28 (DP 2015)

Photo 4 - Pieces of Fibrous Materials Near Back Fence of Number 28 (DP 2015)

Douglas Partners Geotechnics Environment Groundwater r	Site Photographs	PROJECT	99851
	Proposed Hotel Development	PLATE No	2
	Somerset Street, Kingswood	REV	А
	CLIENT: Boston Global Pty Ltd	DATE	9-Nov-20

Photo 5 - North at Back Yard of Number 28 (DP 2015)

Photo 6 - Looking South at Front Yard of Number 30 (DP 2015)

Douglas Partners Geotechnics Environment Groundwaterr	Site Photographs	PROJECT	99851
	Proposed Hotel Development	PLATE No	3
	Somerset Street, Kingswood	REV	А
	CLIENT: Boston Global Pty Ltd	DATE	9-Nov-20

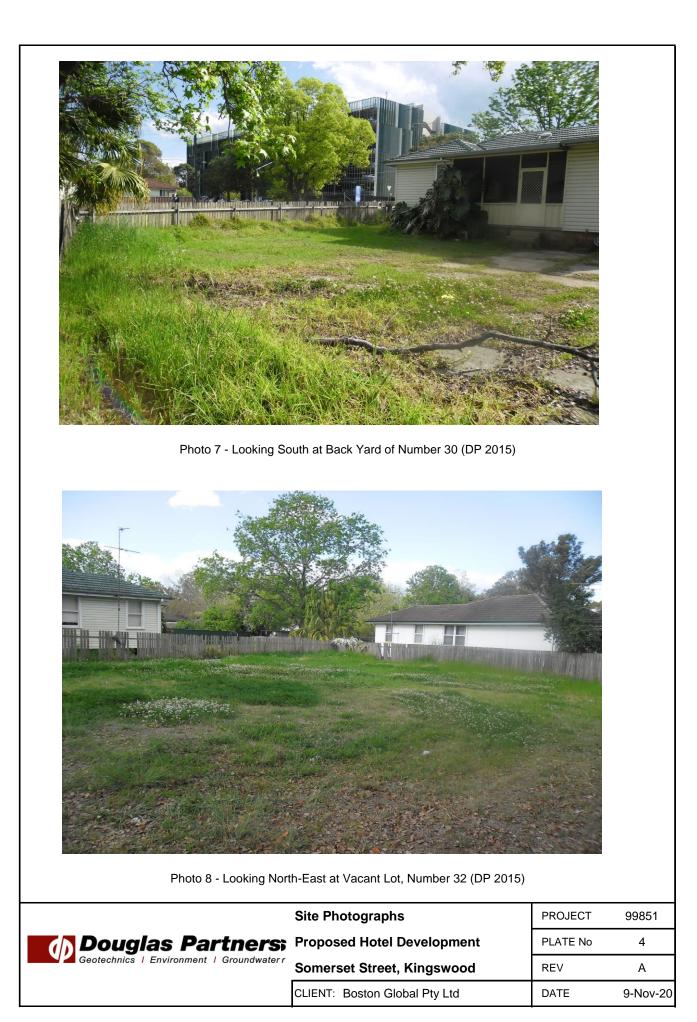
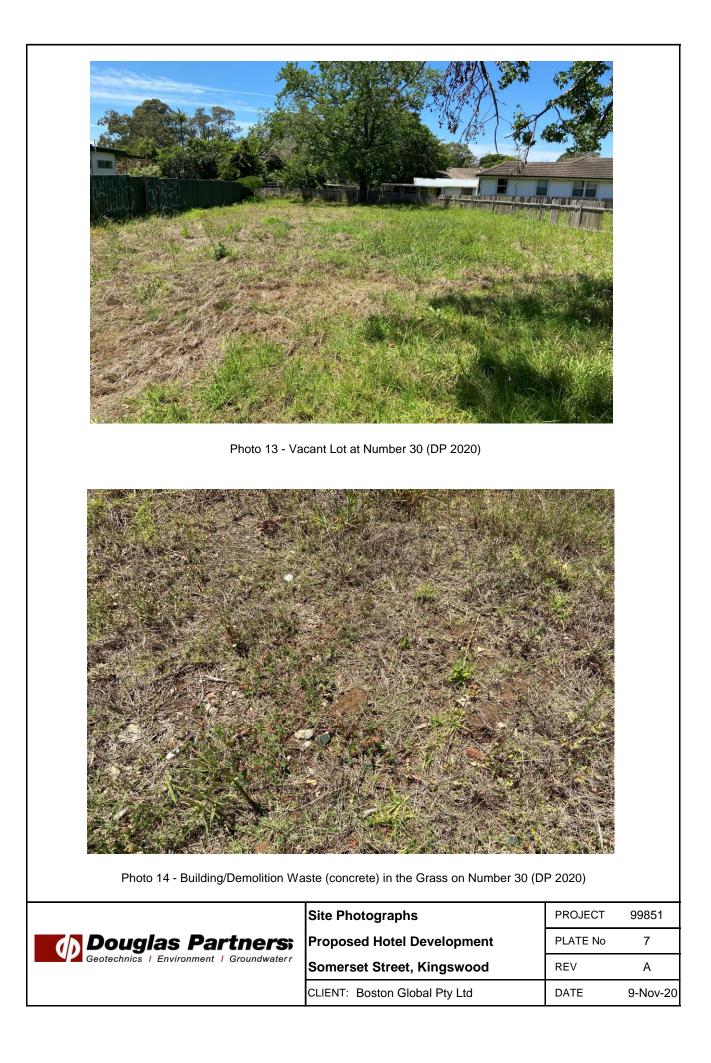
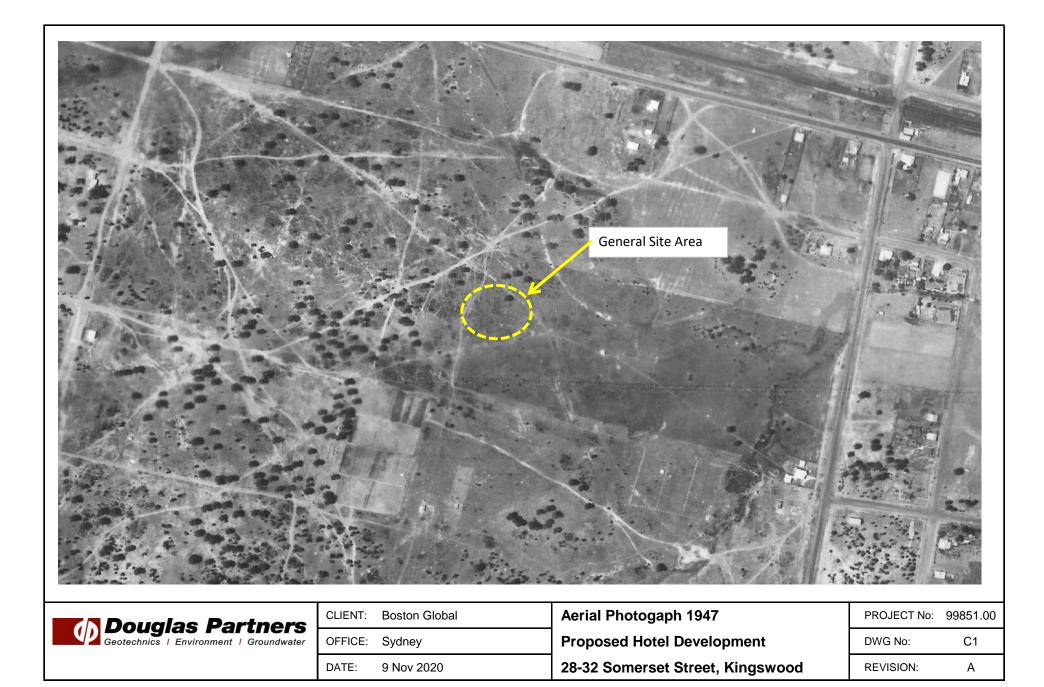
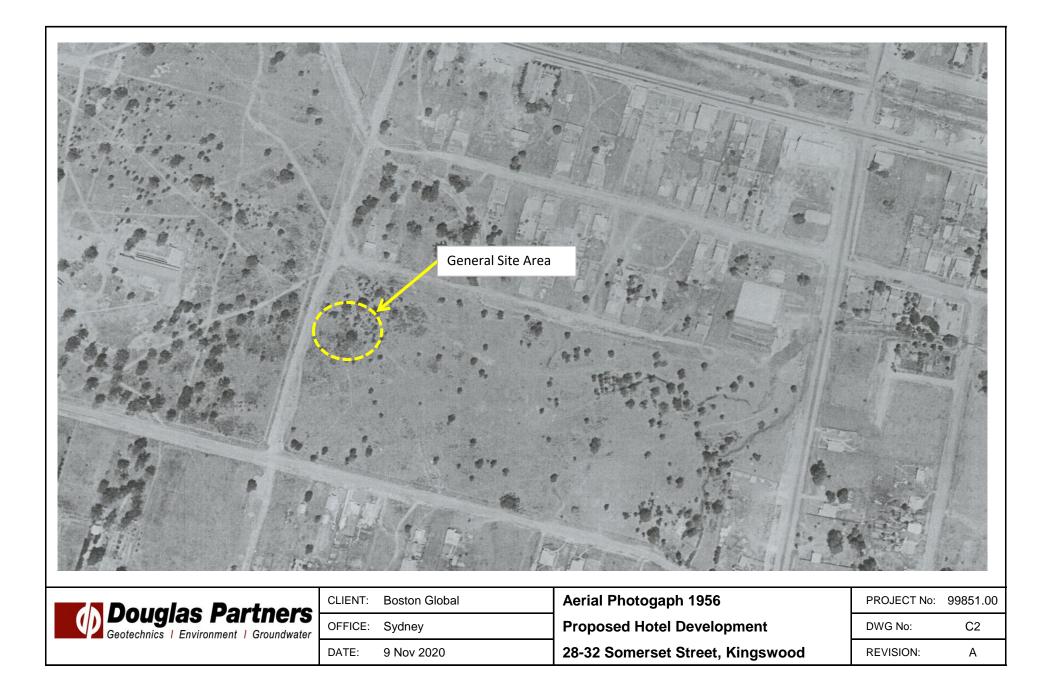
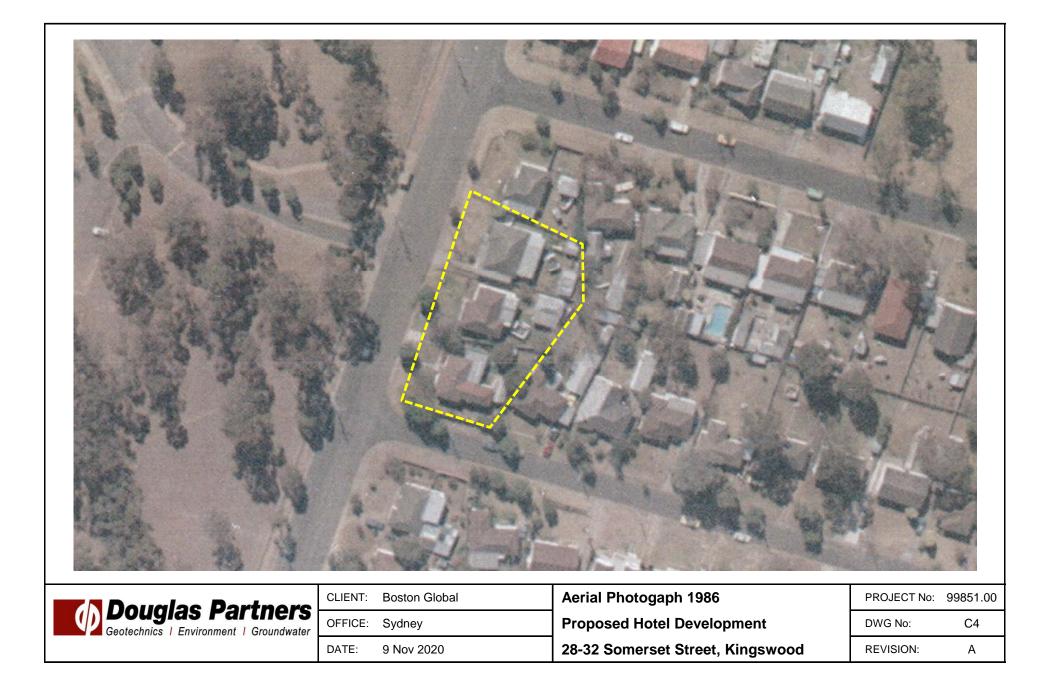



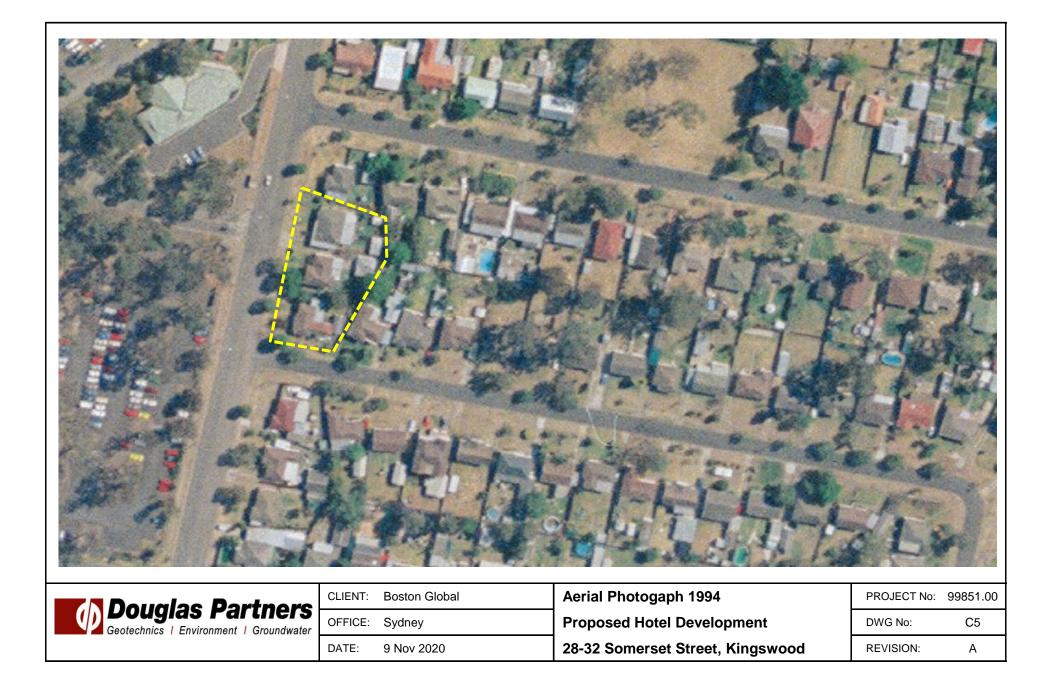
Photo 12 - Backyard of Number 32 with some waste and concrete slabs visible (DP 2020)


	Site Photographs	PROJECT	99851
	Proposed Hotel Development	PLATE No	6
	Somerset Street, Kingswood	REV	А
	CLIENT: Boston Global Pty Ltd	DATE	9-Nov-20



Fhoto 15 - Building/Demolition Waste (concrete)	e and tiles) on Number 32, no significant charge	ge since 2015	(DP 2020)
	Site Photographs	PROJECT	99851
Douglas Partners;		PROJECT PLATE No	99851 8


Appendix C


Historical Information

	CLIENT: Boston Global	Aerial Photogaph 1970	PROJECT No: 99851.00
Douglas Partners Geotechnics Environment Groundwater	OFFICE: Sydney	Proposed Hotel Development	DWG No: C3
	DATE: 9 Nov 2020	28-32 Somerset Street, Kingswood	REVISION: A

					11/00/10/00/00
Douglas Partners		Boston Global	Aerial Photogaph 2005	PROJECT No:	
Douglas Partners Geotechnics Environment Groundwater	OFFICE:	Sydney	Proposed Hotel Development	DWG No:	C6
	DATE:	9 Nov 2020	28-32 Somerset Street, Kingswood	REVISION:	А

<image/>	<image/>	<image/>	<image/>	map
Douglas Partners	CLIENT: Boston Global	Aerial Photogaph 2015	PROJECT No:	
Douglas Partners Geotechnics Environment Groundwater	OFFICE: Sydney	Proposed Hotel Development	DWG No:	C7
	DATE: 9 Nov 2020	28-32 Somerset Street, Kingswood	REVISION:	А

Appendix D

QA / QC Procedures and Results

QA / QC PROCEDURES AND RESULTS

D1. Data Quality Objectives

The Detailed Site Investigation (DSI) was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection (Assessment of Site Contamination) Measure* 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table D1.

Table D1: Data Quality Objectives	Table D1:	Data Quality	Objectives
-----------------------------------	-----------	--------------	------------

Data Quality Objective	Report Section where Addressed
State the Problem	S1 Introduction
Identify the Decision	S10 10 Discussion of Results
	S11 Updated Conceptual Site Model
	S12 Conclusion and Recommendations
Identify Inputs to the Decision	S1 Introduction
	S3 Site Information
	S4 Regional Topography, Geology and Hydrogeology
	S5 Desktop Review
	S8 Site Assessment Criteria
	S9 Fieldwork Results
Define the Boundary of the Assessment	S3 Site Identification and Description
	Site Drawings 1 - Appendix A
Develop a Decision Rule	S8 Site Assessment Criteria
Specify Acceptable Limits on Decision Errors	S7 Fieldwork and Analysis
	QA/QC Procedures and Results - Appendix D

Data Quality Objective	Report Section where Addressed
Optimise the Design for Obtaining Data	S2 Scope of Works
	S7.5 Sample Location and Rationale
	QA/QC Procedures and Results - Appendix D

D2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory quality control (QC) procedures and results are summarised in the following Table D2. Reference should be made to the fieldwork and analysis procedures in Section 7 and the laboratory results certificates in Appendix F for further details.

Item	Evaluation / Acceptance Criteria	Achievement
Analytical laboratories used	NATA accreditation	yes
Holding times	Various based on type of analysis	yes
Intra-laboratory replicates	5% of primary samples; <50% RPD (>5 x PQL)	yes ¹
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>yes</td></pql<>	yes
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	yes
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	yes
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	yes

Table D2: Field and Laboratory QC

Note: 1 Qualitative assessment of RPD results overall; refer Section D2.1

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

D2.1 Intra-Laboratory Replicates

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory Envirolab and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate sample are summarised in Table D3.

Analyte	Primary Sample ID- BH6/0.5	Replicate Sample ID – BD1/210915	Difference	RPD
Benzo(a)pyrene	<0.2	<0.2	0	0%
Total PAH	<1.55	<1.55	0	0%
Arsenic	5	4	1	25%
Cadmium	<0.4	<0.4	0	0%
Chromium	10	9	1	11%
Copper	14	12	2	15%
Lead	8	7	1	13%
Mercury	<0.1	<0.1	0	0%
Nickel	3	2	1	40%
Zinc	11	10	1	10%

Table D3: Intra-laboratory Results – Soils (mg/kg)

The calculated RPD values were all within the acceptable range except for nickel. However, the actual concentrations for nickel were < 5 times the PQL and therefore not considered significant. Given this and the other results, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable.

D3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present on-site;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table D4.

Table D4:	Data Quality I	ndicators

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and selected target locations sampled within site constraints;
	Works undertaken by appropriately experienced DP environmental scientists and engineers with 3-8 years' experience;
	Preparation of borehole logs, sample location plan and chain of custody (COC) records;
	Preparation of field groundwater sampling sheets;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM);
	Completion of COC documentation;
	NATA accredited laboratory results certificates provided by the laboratory;
	Satisfactory frequency and results for field and laboratory QC samples as discussed in Section D2.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project;
	Works undertaken by appropriately experienced DP environmental scientists and engineers with 3-8 years' experience;
	Use of NATA registered laboratory, with test methods the same or similar between laboratories;
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled;
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs;
	Samples were extracted and analysed within holding times;
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures;
	Acceptable RPD between original samples and replicates;
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures;
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Appendix D: QA/QC Report 28-32 Somerset Street, Kingswood

Appendix E

Test Bore Log Results

Notes About this Report

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

CLIENT:

PROJECT:

SURFACE LEVEL: 48.4 AHD **EASTING:** 288449 **NORTHING:** 6262070 **DIP/AZIMUTH:** 90°/-- BORE No: 1 PROJECT No: 85085 DATE: 21 - 23/9/2015 SHEET 1 OF 1

		Description	Degree of	0	Rock	Fracture	Discontinuities	Sa	mplir	ng &	In Situ Testing
RL	Depth (m)	of	Weathering	aphic og	Strength High Extend Medium High Extrige Addition Strength Medium	Spacing (m)	B - Bedding J - Joint			-	-
	(m)	Strata	H M M H E M M M M M M M M M M M M M M M M M M M	5	Kery Low) 	S - Shear F - Fault	Type	Cor Rec.	RQD %	& Comments
48	0.15	FILLING - brown, silty clay (topsoil) filling with some rootlets, humid SILTY CLAY - stiff, brown mottled red-brown and grey, silty clay, MC <pl, apparently="" moderate="" td="" to<=""><td></td><td></td><td></td><td></td><td></td><td>E E E</td><td></td><td></td><td></td></pl,>						E E E			
47	- - - - - - -	high plasticity SILTY CLAY - stiff to very stiff, brown mottled red-brown, silty clay with a trace of ironstone gravel and rootlets, MC <pl, apparently<br="">moderate to high plasticity</pl,>						S			2,4,6 N = 10
46	-2						Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				10.25/00mm
	2.65	SHALE - extremely low strength,						S			10,25/90mm refusal
45	-3 	SHALE - extremely low then very low strength, extremely then highly weathered, slightly fractured, light grey and red-brown, shale with some medium strength ironstone bands					3.2m: J70°, un, ro, fe 3.5m: J50° & 70°, st, ro, Cly 3.7m: B0°, fe	с	100	0	pp >600
44	- 4.5 	SHALE - low strength, highly then slightly weathered, slightly fractured, grey-brown shale					4.28 & 4.5m: B (x2) 0°, cly				PL(A) = 0.2
43	5.3	SHALE - medium strength, slightly weathered and fresh, slightly fractured and unbroken, grey shale					5.2 & 5.26m: B (x2) 0°, cly, 5mm 5.26m: J80°, ti 5.46m: B0°, fe, cly, 5mm 5.61m: B5°, fe, cly 5.77m: J50°, pl, sm, cln	с	94	78	PL(A) = 0.4
42	6.62						6.4-6.45m: Cs 6.45m: CORE LOSS: 170mm				PL(A) = 0.4
41	-						7.4-7.46m: Cs				PL(A) = 0.4
40	- 8 - - - - -						8.62m: J80°, ti	с	100	92	PL(A) = 0.6
39	-9 -9 						9.45m: J85°, un, ro, cly 9.55m: J45°, pl, sm, cly				PL(A) = 0.4
TY W/	Bore discontinued at 10.0m RIG: Hand tools/DT100 DRILLER: SM/JS LOGGED: JS/SI CASING: HW to 2.5m TYPE OF BORING: Hand auger to 0.6m; Solid flight auger to 2.5m; Rotary to 2.9m; NMLC-Coring to 10.0m VATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: Water loss from 4.0m to 5.0m										

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 P
 Pocket penetrometer (kPa)

 D Disturbed sample
 P
 Water level
 V
 Shandard penetrom test

 E Environmental sample
 ¥
 Water level
 V
 Shandard penetrom test

Document Set ID: 9379353 Version: 1, Version Date: 17/11/2020

SURFACE LEVEL: 47.7 AHD **EASTING:** 288470 **NORTHING:** 6262064 **DIP/AZIMUTH:** 90°/--

BORE No: 2 **PROJECT No: 85085** DATE: 17 - 21/9/2015 SHEET 1 OF 2

							90*/				- 2
		Description	Degree of Weathering	.e	Rock Strength	Fracture	Discontinuities	Sa		-	n Situ Testing
ᆋ	Depth (m)	of	Weathering	Log	Strength Low Low Medium High Kety High Kety High Kety High Kety High Kety High Kety High Kety High Kety High Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵° ۵	Test Results &
	()	Strata	H M M M M M M M M M M M M M M M M M M M	G	Very Low Very Low Medium Medium Ex High	0.01 0.10 1.00	S - Shear F - Fault	Ļ	S S	R0%	α Comments
47	0.1 -	FILLING - dark brown and grey, sandy clay topsoil filling with some rootlets and some fine gravel, moist FILLING - dark brown, silty clay filling with some fine to medium gravel and a trace of rootlets, moist From 0.4m: wet with slight odour						D/E D/E D/E			1,2,3
46	-2	CLAY - firm, grey and brown, clay with a trace of rootlets, wet						S	-		N = 5
	-3							S	-		4,9,14 N = 23
43 44	-4 4.3-	SHALE - extremely low strength, light grey-brown shale					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	s	-		6,17,25/120mm refusal
42	4.9 -5 -6 -6 -6.1	SHALE - very low strength, highly weathered, slightly fractured, light brown shale SHALE - medium strength, slightly					5.13-5.35m: J (x3) 40°- 45°, un, ro, cly 5.8-5.85m: Cz 5.92m: B0°, fe	с	100	10	
40	-7	weathered and fresh, slightly fractured, grey shale with some clay bands 7.0-7.52m: low strength					6.95m: B0°, cly vn 7.45 & 7.55m: B (x2) 0°, cly, 10mm	с	100	97	PL(A) = 0.5 PL(A) = 0.2 PL(A) = 0.9
	8.46 8.72 -9 9.34						8.46m: CORE LOSS: 260mm 9.06m: B0°, cly co 9.18m: CORE LOSS: 160mm 9.78m: J45°, pl, sm, cln	c	80	65	PL(A) = 0.8

RIG: Hand tools/DT100 DRILLER: SM/JS LOGGED: AL/SI CASING: HW to 2.5m TYPE OF BORING: Hand auger to 1.0m; Solid flight auger to 2.5m; Rotary to 4.9m; NMLC-Coring to 11.6m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SHU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample PL(A) Point load axial test Is(50) (MPa) U Tube sample (x mm dia). PL(D) Point toad diametral test Is(50) (MPa) W Water sample P P Water sample Standard penetration test Is(50) (MPa) W Water seep Standard penetration test ¥ Water level V Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Zeftco Pty Ltd Proposed Residential Development LOCATION: 28-32 Somerset Street, Kingswood

SURFACE LEVEL: 47.7 AHD **EASTING:** 288470 NORTHING: 6262064 DIP/AZIMUTH: 90°/--

BORE No: 2 **PROJECT No: 85085** DATE: 17 - 21/9/2015 SHEET 2 OF 2

Rock Degree of Fracture Discontinuities Sampling & In Situ Testing Description Graphic Weathering Strength Spacing Depth Water 0 Test Results Core Rec. % % ROD % 님 of Low High Type B - Bedding J - Joint Very Lov Low Medium (m) (m) 8 High & S - Shear F - Fault Strata 98 88 ligh. S M M M M Comments S D SHALE - medium strength, slightly weathered and fresh, slightly 10.1m: B0°, cly co PL(A) = 0.4fractured, grey shale with some 10.3-10.34m: Cs clay bands (continued) 10.43-10.83m: B (x4) 0°, cly, 5-10mm 11 PL(A) = 1.411.05-11.33m: B (x3) 0°, cly, 10mm PL(A) = 0.511.6 Bore discontinued at 11.6m 8 1 1 12 1 35-13 4 14 2 15 1 16 17 - 8 18 50 19

RIG: Hand tools/DT100

DRILLER: SM/JS

LOGGED: AL/SI

CASING: HW to 2.5m

TYPE OF BORING: Hand auger to 1.0m; Solid flight auger to 2.5m; Rotary to 4.9m; NMLC-Coring to 11.6m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

Auger sample Bulk sample Block sample Core drilling Disturbed sample Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample G P Ux W PID Photo ionisation detector (ppm) PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) R BLK DE Water seep Water level ₽

Proposed Residential Development 28-32 Somerset Street, Kingswood

Zeftco Pty Ltd

CLIENT:

PROJECT:

LOCATION:

 SURFACE LEVEL:
 48.6 AHD

 EASTING:
 288443

 NORTHING:
 6262058

 DIP/AZIMUTH:
 90°/-

BORE No: 3 PROJECT No: 85085 DATE: 22/9/2015 SHEET 1 OF 1

<u> </u>										
		Description	Degree of Weathering 은	Rock Strength	Fracture	Discontinuities	Sa	· ·	-	In Situ Testing
씸	Depth (m)	of	Weathering		Spacing	B - Bedding J - Joint	Type	5. %	RQD %	Test Results &
		Strata	A M M M M M M M M M M M M M M M M M M M	Ex Low Very Low Medium Very High	0.05	S - Shear F - Fault	F	ပိမ္ရွိပိ	ж.	Comments
	0.2	FILLING - brown, silty clay (topsoil) filling with some rootlets and a trace of gravel, humid					E			
148	- 1	SILTY CLAY - stiff to very stiff, brown mottled red-brown and grey, silty clay, MC <pl, apparently<br="">moderate to high plasticity</pl,>					s	-		2,4,7 N = 11
47	-2					Note: Unless otherwise stated, rock is fractured		-		N- II
46	2.7	SHALE - extremely low to very low strength, extremely to highly				along rough planar bedding dipping 0°- 10°	S	-		13,22,15/30mm refusal
45	-3	weathered, fractured and slightly fractured, light grey-brown and red-brown, shale with some medium strength ironstone bands				3.07-3.21m: B (x3) 0°, cly, 10mm 3.29m: B0°, cly vn 3.45m: J45°, un, ro, fe	с	100	0	PL(A) = 0.5
	- 4					¹ 3.5-3.55m: Ćs	с	100	0	
	4.65 - 5	SHALE - low strength, highly and slightly weathered, slightly fractured, grey-brown shale				4.68m: B5°, fe, cly				PL(A) = 0.2
	5.8	SHALE - medium strength, fresh, slightly fractured and unbroken, grey shale				5.15m: B0°, cly, 5mm 5.66-5.7m: Cs 5.70-5.72m: Cs 6m: J85°, pl, ro, cln	с	100	92	PL(A) = 0.5
42						6.84m: B0°, cly, 10mm				PL(A) = 0.4
	- 7					7.13m: J, sv (85°- 90°) pl, ro, cln 7.75m: J60°, un, ro, cln	с	100	100	PL(A) = 0.4
40	- 9									PL(A) = 0.5
		9.6-9.7m: carbonaceous shale band				∖ 9.69m: J35°, un, ro, cln	С	100	99	PL(A) = 0.4 PL(A) = 0.5
ĽТ	9.92	Bore discontinued at 9.92m	<u>├ ╎ ╎ ╎ │ [┃] [</u>	╉┊┊┊╹	┤┟╷╴╷╷╇╶╷╷╴	9.73m: B5°, cly, 10mm		<u> </u>	1	1 = (/ () = 0.5
TY WA	PE OF E	Hools/DT100 DRILL BORING: Hand auger to 0.5m; S BSERVATIONS: No free groundwa		to 2.5m; Rota	OGGED: JS/SI ry to 3.0m; NM		V to 2	2.5m		
RE	MARKS	:								

SAMPLING & IN SITU TESTING LEGEND

I A	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
E		Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
E	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
0	2	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
)	Disturbed sample	⊳	Water seep	S	Standard penetration test
E		Environmental sample	¥	Water level	V	Shear vane (kPa)
_						

ſ

CLIENT:

PROJECT:

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

Douglas Partners Geotechnics | Environment | Groundwater

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

CLIENT:

PROJECT:

SURFACE LEVEL: 47.7 AHD **EASTING:** 288467 **NORTHING:** 6262048 DIP/AZIMUTH: 90°/--

BORE No: 4 **PROJECT No: 85085** DATE: 17/9/2015 SHEET 1 OF 1

		Description	Degree of Weathering	. <u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng &	In Situ Testing
ᆋᅵ	Depth (m)	of		Graphic Log	Very High	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵۵%	Test Results &
	. ,	Strata	H H K K K K K K K K K K K K K K K K K K	Ů	Ex Low Very Low Medium High Ex High	0.01	S - Shear F - Fault			Я С	Comments
	0.1 0.25	FILLING - dark brown, fine sand topsoil filling with some rootlets, damp		Ž				D/E A D/E			
	-	FILLING - dark brown, fine sand filling with some medium gravel, damp						A			
1 	1	CLAY - firm, brown clay, damp From 0.75m: brown-grey						D A S			2,2,3 N = 5
- 2	2										
-	2.2-	CLAY - very stiff, grey clay with some ironstone bands, damp							-		6,8,9
-3	3							S			N = 17
	3.5-	SHALE - extremely low to very low strength, grey and brown shale					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
- 4	4							s			10,18,25/130m refusal
2 2 - - - - - - - - - - - - - - - - - -	4.45- 5	SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale					4.64m: B0°, fe, cly, 10mm	с	100	0	
							5.35m: B0°, cly co, 5mm	с	100	0	
	6.12-	SHALE - low to medium strength, slightly weathered and fresh, fractured and slightly fractured, light grey to grey shale					5.7-5.72m: Cs 5.8m: B0°, fe, cly co 5.93m: B0°, fe, cly 6.12 & 6.19m: B (x2) 0°, fe, cly 6.5 & 6.89m: B0°, cly vn	С	100	90	PL(A) = 0.3
							7.0-7.1m: cly 7.4m: B0°, cly, 5mm 7.52-7.57m: cly 7.66m: B0°, cly, 10mm				PL(A) = 0.3
-8	3 7.95-	SHALE - medium strength, fresh then slightly weathered, slightly fractured, grey shale						с	100	80	PL(A) = 0.4
, - 9 9 	9						8.8m: J30°, ti 8.92-8.95m: Cz 9m: B0°, cly co 9.85-9.95m: B (x2) 0°,				PI (A) = 0.5
	9.85 10 10.0-	9.7-10.0m: low strength band					cly, 5mm 9.65m: CORE LOSS: 200mm	С	41	0	PL(A) = 0.5
YP /A1	E OF B	Bore discontinued at 10.0m DO DRILL CORING: Solid flight auger to 2.5r SERVATIONS: No free groundwa : Standpipe installed to 10.0m (scr	ter observed	while	m; NMLC-Const augering	-	CASING: HW			er)	
LK	Auger sar Bulk sam Block san Core drilli	SAMPLING & IN SITU TESTING I mple G Gas sample ple P Piston sample nple U _x Tube sample (xmm dia.)	EGEND PID Photo ionis PL(A) Point load	sation d axial te diametr	etector (ppm) st Is(50) (MPa) al test Is(50) (MPa)		Douglas	-	_		tner

Document Set ID: 9379353 Version: 1, Version Date: 17/11/2020

SURFACE LEVEL: 48.8 AHD **EASTING:** 288438 **NORTHING:** 6262032 DIP/AZIMUTH: 90°/--

BORE No: 5 **PROJECT No: 85085** DATE: 17/9/2015 SHEET 1 OF 2

										i Ur	_
		Description	Degree of Weathering	jc	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
	Depth (m)	of Strata	Weathering	Graph	Strendth Very Low Neddium Medium Very High Very High Very High Very High Very Low Neddium Very Low Neddium Very Low	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
48	0.25-	FILLING - brown, silty, fine sand filling with some rootlets and some fine gravel, humid CLAY - stiff, red-grey clay, humid						D/E D/E			
47		0.9m: stiff to very stiff						s			3,6,8 N = 14
-2							Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				6,20,25/100mn
-3 -3	3.0-	CLAY - hard, light grey and						S	_		refusal
42	3.48-	red-brown, clay with ironstone gravel, moist SHALE - extremely low to very low strength, extremely to highly weathered, slightly fractured, grey-brown shale					3.63 & 3.78m: B (x2) 5°, cly co	с	100	0	pp = 550
-							4.45m: B0°, cly				
++ - 5 	6.0-	SHALE - medium then medium to					5.22m: J40°, pl, ro, fe 5.5m: B0°, cly	с	100	10	
7		high strength, slightly weathered and fresh, slightly fractured and unbroken, grey shale					6.18m: B0°, fe	с	100	100	PL(A) = 0.4
8							7.1m: B0°, cly co 7.46-7.56m: fg 7.6-7.63m: Cs				PL(A) = 0.4
6							8.38m: J85°, un, ro, cln 9.12m: B0°, cly, 10mm	С	100	95	PL(A) = 0.4
36		9.5-10.2m: interbedded shale/siltstone									PL(A) = 0.6

RIG: Hand tools/DT100

DRILLER: AL/SM

LOGGED: AL/SI CASING: HW to 2.5m

TYPE OF BORING: Hand auger to 0.5m; Solid flight auger to 2.5m; Rotary to 3.0m; NMLC-Coring to 10.2m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SHU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample PL(A) Point load axial test Is(50) (MPa) U Tube sample (x mm dia). PL(D) Point toad diametral test Is(50) (MPa) W Water sample P P Water sample Standard penetration test Is(50) (MPa) W Water seep Standard penetration test ¥ Water level V Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Zeftco Pty Ltd Proposed Residential Development

LOCATION: 28-32 Somerset Street, Kingswood

SURFACE LEVEL: 48.8 AHD EASTING: 288438 NORTHING: 6262032 DIP/AZIMUTH: 90°/--

BORE No: 5 **PROJECT No: 85085** DATE: 17/9/2015 **SHEET** 2 OF 2

			Dograa of		Rock				-			
Ι.	Depth	Description	Degree of Weathering ≞ ≩ ≩ § ∞ ଝ	hic	Rock Strength	e	Fracture Spacing	Discontinuities				n Situ Testing
Ч	(m)	of		Log	[8] - [8] [8] [9] - [8] [8] [9]	Nat	(m)	B - Bedding J - Joint	Type	ore c. %	0% 0	Test Results &
		Strata	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	G	Strength		0.10	S - Shear F - Fault	Ê	ပိမ္ရွိ	RQD %	Comments
E	10.2								С	100	95	PL(A) = 1
E	10.2	Bore discontinued at 10.2m				7 G						
E	-											
-8												
1	- 11		iiiii			i	ii ii					
ŧ												
ŧ												
F	-											
£⊳	-					1 li						
Ł	- 12		i i			li						
ŧ												
ŧ	.					i						
F.,												
36	- 13											
Ł												
ţ	-											
ŧ												
35												
F	- 14		iiiii			i	ii ii					
E	-											
Ł						i						
ŧ.												
-8	-					li						
F	- 15											
E												
ŧ	-											
-8												
F	- 16		İİİİİ			i						
F												
E												
ţ	.											
32-												
F	- 17											
E												
ŧ						i						
-5												
ţ	- 18											
ŧ												
Ē							11 11					
E												
-8	-											
ŧ	- 19		İİİİİ									
ŧ												
ŧ												
_ م	-											
-8- -	-											
Ľ												

RIG: Hand tools/DT100

DRILLER: AL/SM

LOGGED: AL/SI

CASING: HW to 2.5m

TYPE OF BORING: Hand auger to 0.5m; Solid flight auger to 2.5m; Rotary to 3.0m; NMLC-Coring to 10.2m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

		SAMPLING & IN SITU TE	STING LEGEND
Δ	Auger sample	G Gas sample	PID Photo io

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

CLIENT: PROJECT:

SAIVIE		GAINSHULESHING	LEGI			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	~	Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		Dolidise Darthere
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 48.1 AHD **EASTING:** 288455 NORTHING: 6262030 DIP/AZIMUTH: 90°/--

BORE No: 6 **PROJECT No: 85085** DATE: 22/9/2015 SHEET 1 OF 1

_		Description	Degree of Weathering	ic	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
	epth (m)	of	Weathering	Log	Very Low Very Low Medium High High High High High High High High	Spacing (m)	B - Bedding J - Joint	Type	ore 2. %	RQD %	Test Results &
	· /	Strata	M M M M M M M M M M M M M M M M M M M	U	Low Very Very Very Very	0.05 0.10 1.00	S - Shear F - Fault	È	с я В	Я,	Comments
47 1	0.2-	FILLING - brown, silty clay (topsoil) filling with some rootlets SILTY CLAY - firm to stiff, grey mottled brown, silty clay with a trace of ironstone gravel, MC~PL, apparently moderate to high plasticity						E	_		2,2,3
	1.5 -	SILTY CLAY - stiff to very stiff, grey mottled red-brown, silty clay with some ironstone gravel bands, MC <pl, apparently="" moderate="" to<br="">high plasticity</pl,>					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	s	-		N = 5 7,10,17
-3				K					-		N = 27
45	3.2-	SHALE - extremely low then extremely low to very low strength, extremely then extremely to highly weathered, light grey-brown shale						с	100	0	
4 4 4							5.07-5.09m: Cs	с	100	0	
42	6.2-	SHALE - medium strength, slightly weathered and fresh, slightly fractured then unbroken, grey shale with some siltstone laminations					5.7-6.2m: B (x8) 0°- 5°, cly co 6.7m: B0°, fe	с	100	65	PL(A) = 0.4
40 8		7.4-7.68m: very low to low strength					7.4-7.68m: B's 0°, cly co 7.68m: J35°, pl, sm, cly	с	100	93	PL(A) = 0.4
9	10.0								100	93	PL(A) = 0.5 PL(A) = 0.4
IYPE NATI	DT10 E OF B	ORING: Solid flight auger (TC-b SERVATIONS: No free groundwa			ry to 3.2m; NMLC	GED: JS/SI C-Coring to 1	CASING: HV 0.0m	V to 2	2.5m	<u> </u>	

SAMPLING & IN SITU TESTING LEGEND LING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample PL(A) Point load axial test Is(50) (MPa) U, Tube sample (x mm dia.) PL(D) Point load axial test Is(50) (MPa) W Water sample pp Pocket penetrometer (kPa) D Water seep S Standard penetration test ¥ Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Zeftco Pty Ltd

Proposed Residential Development LOCATION: 28-32 Somerset Street, Kingswood

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)		
Boulder	>200		
Cobble	63 - 200		
Gravel	2.36 - 63		
Sand	0.075 - 2.36		
Silt	0.002 - 0.075		
Clay	<0.002		

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 - 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

- with clays or silts	
Term	Prop

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example			
	of coarser				
	fraction				
And	Specify	Sand (60%) and			
		Gravel (40%)			
Adjective	>30%	Gravelly Sand			
With	15 - 30%	Sand with gravel			
Trace	0 - 15%	Sand with trace			
		gravel			

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured Core lengths of 20-40 mm with occasional fragments	
Fractured Core lengths of 30-100 mm with occasional shorter and longer sections	
Slightly Fractured Core lengths of 300 mm or longer with occasional sections of 100-300 mm	
Unbroken Core contains very few fractures	

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

art

sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

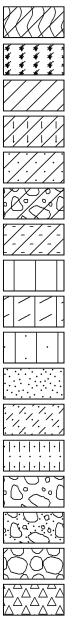
Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

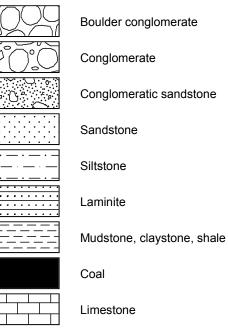

A. A. A. A	

Asphalt Road base

Concrete

Filling

Soils


Topsoil Peat Clay Silty clay Sandy clay Gravelly clay Shaly clay Silt Clayey silt Sandy silt Sand Clayey sand Silty sand Gravel

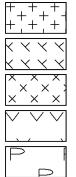
Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Metamorphic Rocks


+

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix F

Laboratory Summary Results Table Laboratory Certificates of Analysis and Chain of Custody Documentation

Table F1: Sum	nmary of Soil L	Laboratory Results	6					BTEX						Le	Lead Metals Organochlorine Pesticides															
				B(a)P Total Potency Equivalent	Benzene	Ethylbenzene	Toluene	Xylene (m & p)	Xylene (o)	Xylene Total ^{#4}	C6-C10 less BTEX (F1)	pH (aqueous extract)	Cation Exchange Capacity	Lead	Lead (TCLP)	Arsenic	Cadmium	Chromium (III+VI)	Copper	Mercury	Nickel	Nickel (TCLP)	Zinc	4,4-DDE	a-BHC	Aldrin	<u>ح</u>	b-BHC	Chlordane (cis)	Chlordane (trans) d-BHC
				mg/kg	0. 0		mg/kg		mg/kg	mg/kg		pH_Units	meq/100g			mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/L								g/kg mg/kg
EQL				0.5	0.2	1	0.5	2	1		25			1	0.03	4	0.4	1	1	0.1	1	0.02	1	0.1	0.1	0.1		0.1		0.1 0.1
	-1	mmercial/Industria		40	430	27,000	,			81,000	26,000			1500		3000	900	00 240,000 730 6000 400,00		400,000				45		530				
			ntrusion, Sand 0-1m		3	NL	NL			230	260																			
			ial, Coarse/Sand 0-2m		75	165	135			180				1100		160		320	320		380		970							
			al/Industrial, Coarse Soil		10	600	200			1000				100		100	20	100			40									
NSW 2014 Ger					10	600	288			1000				100		100	20	100		4	40									
		aste (SCC1 and TCL	.P1)											1500	5	4.50		5 4 000	2.400	0.02	1050	2	40.200							
NEPC (1999)- F					0.05.4		0.4.4							2-200		1-50	1	5-1,000		0.03	5-500		10-300							
ANZECC (1992	,		Cutata.		0.05-1		0.1-1							<2-200		0.2-30	0.04-2	0.5-110	1-190	0.001-0.1	2-400		2-180							
	0.1	th Sample Date	Srtata Filling	< 0.5	-0.2	1	<0 F	2	- 1	(2)	(25	6.2	12	20			<0.4	12	22	-0.1	0				I	1				
		21/09/2015			<0.2	<1	<0.5	<2	<1	<3	<25	6.3	12	26	-	4		12	22	<0.1	8	-	66	-	-	-				
	0-0.1	17/09/2015	Filling	<0.5	<0.2	<1	<0.5	<2	<1	<3	<25	8.2	22	13	-	<4	<0.4	93	31	<0.1	78	0.03	68	<0.1	<0.1					:0.1 <0.1
		17/09/2015	Filling	< 0.5	<0.2	<1	<0.5	<2	<1	<3	<25			25	-	11	4	29	21	<0.1	11	-	130	-	-	-	-	-		
BH3	0.1	21/09/2015	Filling	<0.5	<0.2	<1	<0.5	<2	<1	<3	<25		-	66	-	6	0.4	24	18	<0.1	8	-	64	<0.1	<0.1					0.1 <0.1
	0-0.1	17/09/2015	Filling	<0.5	<0.2	<1	<0.5	<2	<1	<3	<25	-	-	110	< 0.03	<4	0.7	18	38	<0.1	10	-	310	<0.1	<0.1					:0.1 <0.1
	0.4-0.5	17/09/2015	Natural	< 0.5	<0.2	<1	<0.5	<2	<1	<3	<25	6.1	10	15	-	8	<0.4	18	18	<0.1	4	-	36	-	-	-	-			
	0-0.1	17/09/2015	Filling	< 0.5	<0.2	<1	<0.5	<2	<1	<3	<25			26	-	<4	<0.4	11	16	<0.1	12	-	160	-	-	-	-			
BH6	0.1	21/09/2015	Filling	<0.5	<0.2	<1	<0.5	<2	<1	<3	<25	-		22	-	9	<0.4	27	16	<0.1	6	-	37	<0.1	<0.1					:0.1 <0.1
BH6	0.5	21/09/2015	Natural	<0.5	<0.2	<1	<0.5	<2	<1	<3	<25			8	-	5	<0.4	10	14	<0.1	3	-	11	-	-	-	-	-	-	
BD1 (intra)	-	21/09/2015	Natural	<0.5	-	-	-	-	-	-	-	-		7	-	4	<0.4	9	12	<0.1	2	-	10	-	-	-	-			
MS1	-	21/09/2015	Material	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Data Comments

#1 ESDAT Combined with Non-Detect Multiplier of 0.5. Some Analytes are missing from this Combined Compound.

#2 ESDAT Combined. Some Analytes are missing from this Combined Compound.

#3 ESDAT Combined with Non-Detect Multiplier of 0.5.

#4 ESDAT Combined.

#5 NIL (+)VE

Table F1: Summ	nary of Soil La	aboratory Results	s	Organophosphorous Pesticides											PAH/Phenols																	
				DDD	рот	DDT+DDE+DDD #2	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Bromophos-ethyl	Chlorpyrifos	Chlorpyrifos-methyl	Diazinon	Dimethoate	Ethion	Fenitrothion	Ronnel	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a) pyrene	Benzo(b)&(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene
				mg/kg		mg/kg	mg/kg			mg/kg															mg/kg				mg/kg			
EQL	(110) 5.0			0.1	0.1		0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.2	0.1	0.1
		mercial/Industri				3600	<u> </u>	20	00		100			50		2500		2000														
		·	Intrusion, Sand 0-1m		640																								1.4			
	-		rial, Coarse/Sand 0-2m al/Industrial, Coarse Soil		640																								1.4			
NSW 2014 Gene			al/industrial, Coarse Soli															4						_					0.8			
		ste (SCC1 and TCI	LD1)	+			<u> </u>											4											10			
NEPC (1999)- Fo		· · ·	LP1)																										10			
ANZECC (1992)							<u> </u>																									
		h Sample Date	Srtata																													
	0.1	21/09/2015	Filling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
	0-0.1	17/09/2015	Filling	<0.1	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05		<0.1	<0.1
	0.4-0.5	17/09/2015	Filling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.2	<0.1	<0.1
	0.1	21/09/2015	Filling	<0.1	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
BH4 C	0-0.1	17/09/2015	Filling	<0.1	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
BH4 C	0.4-0.5	17/09/2015	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
BH5 C	0-0.1	17/09/2015	Filling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
BH6 C	0.1	21/09/2015	Filling	<0.1	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.07	<0.2	<0.1	<0.1
BH6 C	0.5	21/09/2015	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
BD1 (intra) -	-	21/09/2015	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1
MS1 -	-	21/09/2015	Material	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Data Comments

#1 ESDAT Combined with Non-Detect Multiplier of 0.5. Some Analytes are missing f#2 ESDAT Combined. Some Analytes are missing from this Combined Compound.

#3 ESDAT Combined with Non-Detect Multiplier of 0.5.

#4 ESDAT Combined.

#5 NIL (+)VE

Table F1: Sum	nmary of Soil La	boratory Results												Р	olychlo	rinated I	Biphenyl	ls	ТРН											
				Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	PAHs (Sum of total)	Phenanthrene	Phenolics Total	Pyrene	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	C10-C16	C16-C34	C34-C40	F2-NAPHTHALENE	ce - co	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	C6-C10	Asbestos
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g/kg
EQL				0.1	0.1	0.1	0.1	0.1		0.1	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	50	100	100	50	25	50	100	100		25	0.1
		mercial/Industria						11,000	4000												27,000	38,000	20,000							
		· · · · · · · · · · · · · · · · · · ·	ntrusion, Sand 0-1m					NL															NL							
			ial, Coarse/Sand 0-2m					370												120	300	2800							180	
			al/Industrial, Coarse Soil																	1000	3500	10,000							700	
NSW 2014 Ge	neral Solid Was	ste (CT1)																						650				10,000		
NSW 2014 Ge	neral Solid Was	ste (SCC1 and TCL	P1)																											
NEPC (1999)-	For Natural Ma	terial																												
ANZECC (1992	2) - For Natural	Material							0.95-5		0.03-0.5																			
Location	Sample Dept		Srtata																											
BH1	0.1	21/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	-	<0.1	-	-	-	-	-	-	-	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	<0.1
BH2	0-0.1	17/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	<0.1
BH2	0.4-0.5	17/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	-	<0.1	-	-	-	-	-	-	-	<50	<100	<100	<50	<25	<50	<100	<100	<250#4	<25	<0.1
BH3	0.1	21/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	<0.1
BH4	0-0.1	17/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	<0.1
BH4	0.4-0.5	17/09/2015	Natural	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	-	<0.1	-	-	-	-	-	-	-	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	-
BH5	0-0.1	17/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	-	<0.1	-	-	-	-	-	-	-	78	<100	<100	78	<25	<50	<100	<100	<250 ^{#4}	<25	<0.1
BH6	0.1	21/09/2015	Filling	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	<0.1
BH6	0.5	21/09/2015	Natural	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	-	<0.1	-	-	-	-	-	-	-	<50	<100	<100	<50	<25	<50	<100	<100	<250 ^{#4}	<25	-
BD1 (intra)	-	21/09/2015	Natural	<0.1	<0.1	<0.1	<0.1	<0.1	0#5	<0.1	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MS1	-	21/09/2015	Material	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD

Data Comments

#1 ESDAT Combined with Non-Detect Multiplier of 0.5. Some Analytes are missing f

#2 ESDAT Combined. Some Analytes are missing from this Combined Compound.

#3 ESDAT Combined with Non-Detect Multiplier of 0.5.

#4 ESDAT Combined.

#5 NIL (+)VE

CERTIFICATE OF ANALYSIS

134843

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: David Holden

Sample log in details:

Your Reference:85085.01, Kingswood - Somerset StreetNo. of samples:12 SoilsDate samples received / completed instructions received23/09/2015/23/9/2015

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 30/09/15
 / 29/09/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

134843 R 00

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	134843-1	134843-2	134843-3	134843-4	134843-5
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0.1	0-0.1	0.4-0.5	0.1	0-0.1
Date Sampled		21/09/2015	17/09/2015	17/09/2015	21/09/2015	17/09/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	26/09/2015	26/09/2015	26/09/2015	26/09/2015	26/09/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	88	92	89	86	74

vTRH(C6-C10)/BTEXN in Soil					
Our Reference:	UNITS	134843-6	134843-7	134843-8	134843-9
Your Reference		BH4	BH5	BH6	BH6
Depth		0.4-0.5	0-0.1	0.1	0.5
Date Sampled		17/09/2015	17/09/2015	21/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	26/09/2015	26/09/2015	26/09/2015	26/09/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25
$vTPHC_6 - C_{10}$ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	83	80	89	89

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	134843-1	134843-2	134843-3	134843-4	134843-5
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0.1	0-0.1	0.4-0.5	0.1	0-0.1
Date Sampled		21/09/2015	17/09/2015	17/09/2015	21/09/2015	17/09/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	26/09/2015	26/09/2015	26/09/2015	26/09/2015	26/09/2015
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	86	86	89	90

svTRH (C10-C40) in Soil					
Our Reference:	UNITS	134843-6	134843-7	134843-8	134843-9
Your Reference		BH4	BH5	BH6	BH6
Depth		0.4-0.5	0-0.1	0.1	0.5
Date Sampled		17/09/2015	17/09/2015	21/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	26/09/2015	26/09/2015	26/09/2015	26/09/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100
TRHC∞ - C∞	mg/kg	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	78	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	78	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100
Surrogate o-Terphenyl	%	86	93	87	87

PAHs in Soil						
Our Reference:	UNITS	134843-1	134843-2	134843-3	134843-4	134843-5
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0.1	0-0.1	0.4-0.5	0.1	0-0.1
Date Sampled Type of sample		21/09/2015 Soil	17/09/2015 Soil	17/09/2015 Soil	21/09/2015 Soil	17/09/2015 Soil
	_					
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	89	88	87	89	94

Client Reference: 85085.01, Kingswood - Somerset Street

PAHs in Soil						
Our Reference:	UNITS	134843-6	134843-7	134843-8	134843-9	134843-10
Your Reference		BH4	BH5	BH6	BH6	BD1/210915
Depth		0.4-0.5	0-0.1	0.1	0.5	0.1-0.2
Date Sampled		17/09/2015	17/09/2015	21/09/2015	21/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.07	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	0.20	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	92	83	94	87	95

Organochlorine Pesticides in soil					
Our Reference:	UNITS	134843-2	134843-4	134843-5	134843-8
Your Reference		BH2	BH3	BH4	BH6
Depth		0-0.1	0.1	0-0.1	0.1
Date Sampled		17/09/2015	21/09/2015	17/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	85	88	83

Organophosphorus Pesticides					
Our Reference:	UNITS	134843-2	134843-4	134843-5	134843-8
Your Reference		BH2	BH3	BH4	BH6
Depth		0-0.1	0.1	0-0.1	0.1
DateSampled		17/09/2015	21/09/2015	17/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	0.2	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	85	88	83

Client Reference:	85085.01, Kingswood - Somerset Street
Chefit Reference.	osuos.ut, Kingswood - Somerset Street

PCBs in Soil					
Our Reference:	UNITS	134843-2	134843-4	134843-5	134843-8
Your Reference		BH2	BH3	BH4	BH6
Depth		0-0.1	0.1	0-0.1	0.1
Date Sampled		17/09/2015	21/09/2015	17/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.2	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.2	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.2	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.2	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.2	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.2	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.2	<0.1
Surrogate TCLMX	%	85	85	88	83

Misc Soil - Inorg					
Our Reference:	UNITS	134843-2	134843-4	134843-5	134843-8
Your Reference		BH2	BH3	BH4	BH6
Depth		0-0.1	0.1	0-0.1	0.1
Date Sampled		17/09/2015	21/09/2015	17/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

85085.01, Kingswood - Somerset Street

Acid Extractable metals in soil						
Our Reference:	UNITS	134843-1	134843-2	134843-3	134843-4	134843-
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0.1	0-0.1	0.4-0.5	0.1	0-0.1
Date Sampled		21/09/2015	17/09/2015	17/09/2015	21/09/2015	17/09/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/20
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/201
Arsenic	mg/kg	4	<4	11	6	<4
Cadmium	mg/kg	<0.4	<0.4	4	0.4	0.7
Chromium	mg/kg	12	93	29	24	18
Copper	mg/kg	22	31	21	18	38
Lead	mg/kg	26	13	25	66	110
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	78	11	8	10
Zinc	mg/kg	66	68	130	64	310
Acid Extractable metals in soil						
Our Reference:	UNITS	134843-6	134843-7	134843-8	134843-9	134843-
Your Reference		BH4	BH5	BH6	BH6	BD1/2109
Depth		0.4-0.5	0-0.1	0.1	0.5	0.1-0.2
Date Sampled		17/09/2015	17/09/2015	21/09/2015	21/09/2015	21/09/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/20
Date analysed	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/20
Arsenic	mg/kg	8	<4	9	5	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	11	27	10	9
Copper	mg/kg	18	16	16	14	12
Lead	mg/kg	15	26	22	8	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	12	6	3	2
Zinc	mg/kg	36	160	37	11	10
	ilig/kg	50	100	57	11	10
Acid Extractable metals in soil]			
Our Reference:	UNITS	134843-13				
Your Reference		BH2 -				
		TRIPLICATE				
Depth		0.1				
Date Sampled		17/09/2015				
Type of sample		Soil				
Date prepared	-	24/09/2015				
Date analysed	-	24/09/2015				
Arsenic	mg/kg	<4				
Cadmium	mg/kg	<0.4				
Chromium	mg/kg	62				
Copper	mg/kg	27				
Lead	mg/kg	24				
Mercury Nickel	mg/kg	<0.1				
Nickol	mg/kg	51	1			

Envirolab Reference: 134843 Revision No: R 00

Client Reference: 85085.01, Kingswood - Somerset Street

Acid Extractable metals in soil		
Our Reference:	UNITS	134843-13
Your Reference		BH2 - TRIPLICATE
Depth		0.1
Date Sampled Type of sample		17/09/2015 Soil
Zinc	mg/kg	94

Envirolab Reference: Revision No:

134843 R 00

Client Reference: 85085.01, Kingswood - Somerset Street

Moisture						
Our Reference:	UNITS	134843-1	134843-2	134843-3	134843-4	134843-5
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0.1	0-0.1	0.4-0.5	0.1	0-0.1
Date Sampled		21/09/2015	17/09/2015	17/09/2015	21/09/2015	17/09/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Moisture	%	9.2	9.3	26	9.4	17
[1					I
Moisture						
Our Reference:	UNITS	134843-6	134843-7	134843-8	134843-9	134843-10
Your Reference		BH4	BH5	BH6	BH6	BD1/210915
Depth		0.4-0.5	0-0.1	0.1	0.5	0.1-0.2
Date Sampled		17/09/2015	17/09/2015	21/09/2015	21/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Moisture	%	18	7.8	12	18	19

Asbestos ID - soils						
Our Reference:	UNITS	134843-1	134843-2	134843-3	134843-4	134843-5
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0.1	0-0.1	0.4-0.5	0.1	0-0.1
Date Sampled		21/09/2015	17/09/2015	17/09/2015	21/09/2015	17/09/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015	29/09/2015
Sample mass tested	g	Approx. 35g	Approx. 45g	Approx. 55g	Approx. 35g	Approx. 25g
Sample Description	-	Brown course grain soil & rocks	Brown course grain soil & rocks	Brown course grain soil & rocks	Brown course grain soil & rocks	Brown course grain soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Trace Analysis	-	detected No asbestos detected	detected No asbestos detected	detected No asbestos detected	detected No asbestos detected	detected No asbestos detected

Asbestos ID - soils			
Our Reference:	UNITS	134843-7	134843-8
Your Reference		BH5	BH6
Depth		0-0.1	0.1
Date Sampled		17/09/2015	21/09/2015
Type of sample		Soil	Soil
Date analysed	-	29/09/2015	29/09/2015
Sample mass tested	g	Approx. 40g	Approx. 30g
Sample Description	-	Brown course grain soil & rocks	Brown course grain soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

85085.01, Kingswood - Somerset Street

Misc Inorg - Soil				
Our Reference:	UNITS	134843-2	134843-6	134843-11
Your Reference		BH2	BH4	BH1
Depth		0-0.1	0.4-0.5	0.5
Date Sampled		17/09/2015	17/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil
Date prepared	-	25/09/2015	25/09/2015	25/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015
pH 1:5 soil:water	pH Units	8.2	6.1	6.3

Envirolab Reference: 134843 Revision No: R 00

Client Reference: 85085.01, Kingswood - Somerset Street

CEC				
Our Reference:	UNITS	134843-2	134843-6	134843-11
Your Reference		BH2	BH4	BH1
Depth		0-0.1	0.4-0.5	0.5
Date Sampled		17/09/2015	17/09/2015	21/09/2015
Type of sample		Soil	Soil	Soil
Date prepared	-	28/09/2015	28/09/2015	28/09/2015
Date analysed	-	28/09/2015	28/09/2015	28/09/2015
Exchangeable Ca	meq/100g	19	4.8	9.3
Exchangeable K	meq/100g	0.2	0.1	0.2
Exchangeable Mg	meq/100g	1.8	4.9	2.5
ExchangeableNa	meq/100g	0.12	0.55	<0.1
Cation Exchange Capacity	meq/100g	22	10	12

Asbestos ID - materials Our Reference: Your Reference	UNITS	134843-12 MS1
Depth Date Sampled Type of sample		- 21/09/2015 Material
Date analysed	-	29/09/2015 115x45x5mm
Mass / Dimension of Sample Sample Description	-	Brown
		compressed fibre cement material
Asbestos ID in materials	-	No asbestos detected Organic Fibre Detected

Envirolab Reference: 134843 Revision No: R 00

Document Set ID: 9379353 Version: 1, Version Date: 17/11/2020 Page 16 of 24

Client Reference: 85085.01, Kingswood - Somerset Street

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.

85085.01, Kingswood - Somerset Street

Client Reference: 85085.01, Kingswood - Somerset Street										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD				
Date extracted	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015		
Date analysed	-			26/09/2 015	134843-2	26/09/2015 26/09/2015	LCS-4	26/09/2015		
TRHC6 - C9	mg/kg	25	Org-016	<25	134843-2	<25 <25	LCS-4	102%		
TRHC6 - C10	mg/kg	25	Org-016	<25	134843-2	<25 <25	LCS-4	102%		
Benzene	mg/kg	0.2	Org-016	<0.2	134843-2	<0.2 <0.2	LCS-4	103%		
Toluene	mg/kg	0.5	Org-016	<0.5	134843-2	<0.5 <0.5	LCS-4	81%		
Ethylbenzene	mg/kg	1	Org-016	<1	134843-2	<1 <1	LCS-4	106%		
m+p-xylene	mg/kg	2	Org-016	<2	134843-2	<2 <2	LCS-4	110%		
o-Xylene	mg/kg	1	Org-016	<1	134843-2	<1 <1	LCS-4	108%		
naphthalene	mg/kg	1	Org-014	<1	134843-2	<1 <1	[NR]	[NR]		
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	87	134843-2	92 89 RPD:3	LCS-4	98%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD				
Date extracted	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015		
Date analysed	-			25/09/2 015	134843-2	26/09/2015 26/09/2015	LCS-4	25/09/2015		
TRHC 10 - C14	mg/kg	50	Org-003	[NT]	134843-2	<50 <50	LCS-4	99%		
TRHC 15 - C28	mg/kg	100	Org-003	[NT]	134843-2	<100 <100	LCS-4	77%		
TRHC29 - C36	mg/kg	100	Org-003	[NT]	134843-2	<100 <100	LCS-4	94%		
TRH>C10-C16	mg/kg	50	Org-003	[NT]	134843-2	<50 <50	LCS-4	99%		
TRH>C16-C34	mg/kg	100	Org-003	[NT]	134843-2	<100 <100	LCS-4	77%		
TRH>C34-C40	mg/kg	100	Org-003	[NT]	134843-2	<100 <100	LCS-4	94%		
Surrogate o-Terphenyl	%		Org-003	87	134843-2	86 86 RPD:0	LCS-4	115%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
PAHs in Soil						Base II Duplicate II % RPD				
Date extracted	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015		
Date analysed	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015		
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	LCS-4	99%		
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]		
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]		
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	LCS-4	106%		
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	LCS-4	105%		
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]		
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	LCS-4	105%		

Envirolab Reference: 134843 Revision No: R 00 Page 18 of 24

85085.01, Kingswood - Somerset Street

	1.0.1770		Int Reference			Iswood - Somerset Str		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		, , , , , , , , , , , , , , , , , , ,
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	LCS-4	114%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	LCS-4	99%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	134843-2	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	134843-2	<0.05 <0.05	LCS-4	117%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	92	134843-2	88 89 RPD: 1	LCS-4	116%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil					On m	Base II Duplicate II %RPD		Recovery
Date extracted	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015
Date analysed	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015
HCB	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	96%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	88%
Heptachlor	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	73%
delta-BHC	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	93%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	92%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Endosulfanl	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	94%
Dieldrin	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	127%
Endrin	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	103%
pp-DDD	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	101%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
-								
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	LCS-4	103%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	93	134843-2	85 84 RPD:1	LCS-4	108%

Envirolab Reference: 134843 Revision No:

R 00

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015
Date analysed	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	70%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	92%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	71%
Dimethoate	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	105%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	102%
Malathion	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	76%
Parathion	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	LCS-4	87%
Ronnel	mg/kg	0.1	Org-008	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-008	93	134843-2	85 84 RPD:1	LCS-4	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015
Date analysed	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	LCS-4	110%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	134843-2	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	93	134843-2	85 84 RPD:1	LCS-4	108%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Misc Soil - Inorg						Base II Duplicate II % RPD			
Date prepared	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-1	24/09/2015	
Date analysed	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-1	24/09/2015	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	134843-2	<5 <5	LCS-1	102%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil						Base II Duplicate II % RPD			
Date prepared	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015	
Date analysed	-			24/09/2 015	134843-2	24/09/2015 24/09/2015	LCS-4	24/09/2015	
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	134843-2	<4 <4	LCS-4	111%	
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	134843-2	<0.4 <0.4	LCS-4	103%	
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	134843-2	93 44 RPD:72	LCS-4	107%	
Copper	mg/kg	1	Metals-020 ICP-AES	<1	134843-2	31 27 RPD: 14	LCS-4	113%	
Lead	mg/kg	1	Metals-020 ICP-AES	<1	134843-2	13 32 RPD:84	LCS-4	LCS-4 103%	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	134843-2	<0.1 <0.1	LCS-4	97%	
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	134843-2	78 37 RPD:71	LCS-4	101%	
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	134843-2	68 110 RPD:47	LCS-4	102%	

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II %RPD		Recovery
Date prepared	-			25/09/2 015	[NT]	[NT]	LCS-1	25/09/2015
Date analysed	-			25/09/2 015	[NT]	[NT]	LCS-1	25/09/2015
pH 1:5 soil:water	pHUnits		Inorg-001	[NT]	[NT]	[NT]	LCS-1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II %RPD		
Date prepared	-			28/09/2 015	134843-11	28/09/2015 28/09/2015	LCS-2	28/09/2015
Date analysed	-			28/09/2 015	134843-11	28/09/2015 28/09/2015	LCS-2	28/09/2015
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	134843-11	9.3 9.5 RPD:2	LCS-2	98%
ExchangeableK	meq/100 g	0.1	Metals-009	<0.1	134843-11	0.2 0.2 RPD:0	LCS-2	112%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	134843-11	2.5 2.5 RPD:0	LCS-2	99%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	134843-11	<0.1 <0.1	LCS-2	93%
Cation Exchange Capacity	meq/100 g	1	Metals-009	[NT]	134843-11	12 12 RPD:0	[NR]	[NR]
QUALITYCONTROL	UNITS	S	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
Misc Soil - Inorg				Base + I	Duplicate+%RP	D		
Date prepared	-		[NT]		[NT]	134843-4	24/09/201	5
Date analysed	-		[NT]		[NT]	134843-4	24/09/201	5
Total Phenolics (as Pheno	l) mg/k	g	[NT]		[NT]	134843-4	101%	

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 134843-2 for Cr, Pb, Ni. Therefore a triplicate result has been issued as laboratory sample number 134843-13.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 134843-1,2,3,4,5,7,8 were sub-sampled from bags provided by the client.

Asbestos ID was analysed by Approved Identifier:	Lulu Scott
Asbestos ID was authorised by Approved Signatory:	Lulu Scott

INS: Insufficient sample for this test
NA: Test not required
<: Less than

PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

CHAIN OF CUSTODY

Douglas Partners Geotechnics | Environment | Groundwater

1000	en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de					-						C		The second second			r Groundwater		
Client: Dou	iglas Partners					Project Nun	nber 85085.0	1					То:	Envirolab S	ervices				
Contact Pe	rson: David Holden					Project Nan	ne: Kingswoo	d - Somerse	t Street				Contact Person:	Contact Person: Aileen Hie					
Project Mg	r: David Holden					PO No.:							Address:	12 Ashley S	treet				
						lab Quote N							a line	Chatswood	NSW 2068				
Address:	96 Hermitage Road					Date results	required:		Standard				Phone:	02 9910 62	00				
	West Ryde NSW 2114					Or choose:							Fax:	02 9910 62	01		the second second		
	and the second second					Note: Inform	lab in advanc	e if urgent tur	rnaround is req	uired - surch	arges apply		Email:	ahie@envirol	ab.com.au				
Phone:	9809 0666	Mob:	0401 907 492			Report form	at: esdat / F	DF / Excel				10 Jan 10	Laboratory Report	rt No:					
Email:	david.holdsen		@douglaspartners	s.com.au		Comments:	Samples aire	ady held by	Envirolab				Lab Comments:			inter a			
	A CONTRACTOR	Sample informa	ation			1.11					T	ests Required					Comments		
Lab Sample ID	Field Sample ID	Depth	Date sampled	Container Type	Type of sample	Combo 8a	Combo 3a	Combo 3	pH & CEC	PAH	НМ	asbestos				Combo	Provide as much information about the sample as you can		
(BH1	0.1	21/09/2015	G	S		Х							5	- S				
2	BH2	0-0.1	17/09/2015	G	S	Х			X								· · · · · · · · · · · · · · · · · · ·		
3	BH2	0.4-0.5	17/09/2015	G	S		Х									K			
4	BH3	0.1	21/09/2015	G	S	Х								12			b Services		
5	BH4	0-0.1	17/09/2015	G	S	Х								ENVIR	DLHB		Ashley St		
6	BH4	0.4-0.5	17/09/2015	G	S			Х	X		3 9	100 B 11 See		0	P	Db. (02)	NSW 2067		
7	BH5	0-0.1	17/09/2015	G	S		Х							Job	10. 10	+ (Fic	9910 6200		
8	BH6	0.1	21/09/2015	G	S	Х						N. The Arts	1 1 1 1 1 1 1	000	(Prot	>		
9	BH6	0.5	21/09/2015	G	S			Х				and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			23	915		
10	BD1/210915	0.1 - 0.2	21/09/2015	G	S					Х	Х			Date	Received		1111		
11	BH1	0.5	21/09/2015	В	S	100			X	-				Time	Received	: 10	00		
12	MS1	-	21/09/2015			_						Х	land	Rece	ived by:	D.F			
												1.00		Temp	CoolAn	bient			
								1 A						Cooli	ng: lce/lc	nark			
					-		1. A							Saou	ity: Intag	Broken	000		
														0000	inty. Integ	DIOKCIM	10110		
												1.00							
Dellasui	d has Desurbed Dest					Coursels D							Lab un ant-						
	ered Courier (by whom		-0			Sample Rec		(2)	1				Lab use only:	L C. J. Markley I	ingle and				
							(Company):			N.				d: Cool or Ambient (
	of Sample at dispatch Co	oi or Ambient (circle	e)			Print Name:		Darpa					Temperature Rec		applicable)				
Temperatu Print Name	re (if Applicable):	-1	-			Date & Time Signature:		23 A	LA -	18:00)		ransported by:	Hand delivered / cou	iner				
Date & Tim	itch	~		_		signature:		(m)											
Signature:	1																Pageof		

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Holden

Sample Login Details	
Your Reference	85085.01, Kingswood - Somerset Street
Envirolab Reference	134843
Date Sample Received	23/09/2015
Date Instructions Received	23/09/2015
Date Results Expected to be Reported	30/09/2015

Sample Condition							
Samples received in appropriate condition for analysis	YES						
No. of Samples Provided	12 Soils						
Turnaround Time Requested	Standard						
Temperature on receipt (°C)	13.4						
Cooling Method	Ice Pack						
Sampling Date Provided	YES						

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Misc Soil - Inorg	Acid Extractable metals in soil	Asbestos ID - soils	pH 1:5 soil:water	CEC	Asbestos ID - materials
BH1-0.1	~	~	~					~	~			
BH2-0-0.1	✓	<	<	1	<	<	~	<	<	<	<	
BH2-0.4-0.5	1	1	1					1	1			
BH3-0.1	✓	~	~	~	~	<	~	<	~			
BH4-0-0.1	1	1	1	1	1	1	1	1	1			
BH4-0.4-0.5	✓	~	~					<		~	~	
BH5-0-0.1	1	1	1					1	1			
BH6-0.1	✓	1	1	1	~	~	~	<	✓			
BH6-0.5	✓	✓	<					<				
			./					~				
BD1/210915-			•									
0.1-0.2			v									
			•							1	1	

CERTIFICATE OF ANALYSIS

134843-A

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: David Holden

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

85085.01, Kingswood - Somerset Street

Additional testing on 2 soils 23/09/2015 / 29/09/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 6/10/15
 /
 1/10/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

134843-A R 00

Metals in TCLP USEPA1311			
Our Reference:	UNITS	134843-A-2	134843-A-5
Your Reference		BH2	BH4
Depth		0-0.1	0-0.1
Date Sampled		17/09/2015	17/09/2015
Type of sample		Soil	Soil
Date extracted	-	30/09/2015	30/09/2015
Date analysed	-	30/09/2015	30/09/2015
pH of soil for fluid# determ.	pH units	6.8	6.4
pH of soil for fluid # determ. (acid)	pH units	1.5	1.6
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.3	5.0
Lead in TCLP	mg/L	[NA]	<0.03
Nickel in TCLP	mg/L	0.03	[NA]

Client Reference: 85085.01, Kingswood - Somerset Street

MethodID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) based upon AS 4439 and USEPA 1311. Additional information as required in AS4439.3 section 11 can be provided on request.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

Envirolab Reference: Revision No:

Client Reference: 85085.01, Kingswood - Somerset Street								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base II Duplicate II % RPD		
Date extracted	-			30/09/2 015	[NT]	[NT]	LCS-W1	30/09/2015
Date analysed	-			30/09/2 015	[NT]	[NT]	LCS-W1	30/09/2015
LeadinTCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]	[NT]	LCS-W1	97%
Nickel in TCLP	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	97%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Aileen Hie		л.
From: Sent: To: Subject:	David Holden <david.holden@douglaspartne Tuesday, 29 September 2015 5:15 PM Aileen Hie 134843 85085.01, Kingswood - Somerset Stree</david.holden@douglaspartne 	
Hi Aileen,		
Could you please undertak	e additional TCLP testing for 134843 85085.01, Kings	
	0.1) – TCLP analysis for nickel 0.1) – TCLP analysis for lead	134843 A std T/A dre 7/10
Thanks S		Std T(A
Dave	• \$	dre 7/10
This email is confidential. If you a or use of the contents of this infor by fax or letter.	09 4095 M: 0414 768 997 E: David.Holden@dougla are not the intended recipient, please notify us immediately and be mation is prohibited. Please note that the company does not make	aware that any disclosure, copying, distribution
Sent: Tuesday, 29 Septem To: David Holden	to:NZhang@envirolab.com.au] hber 2015 4:44 PM stration 134843 85085.01, Kingswood - Somerset Stre	et
Please refer to attached a copy of the Certificate a copy of the Invoice a copy of the COC an excel file containing t	of Analysis	
Please note that a hard o	copy will not be posted.	
or David Springer on <u>dsprin</u> or Tania Notaras on <u>tnotar</u>	de directly to: <u>Denvirolabservices.com.au</u> <u>nger@envirolabservices.com.au</u> <u>as@envirolabservices.com.au</u>	
Regards		

1