



**RECREATIONAL AND TOURISM PRECINCT  
78-88 TENCH AVENUE, JAMISONTOWN NSW**

Prepared for:

**MORSON GROUP PTY LTD**

**Reference: P1136\_01**

**18 August 2016**

**Morrow Geotechnics Pty Ltd | ABN 42 605 892 126**  
PO Box 4069, Carlton NSW 2218  
P: 0405 843 933 | E: [info@morrowgeo.com.au](mailto:info@morrowgeo.com.au)

# 1 INTRODUCTION

Morrow Geotechnics Pty Ltd has undertaken a Geotechnical Investigation to provide geotechnical advice and recommendations for the proposed development at 78-88 Tench Avenue, Jamisontown NSW (the site).

## 1.1 Proposed Development

Architectural drawings for the proposed development have been prepared by Morson Group Pty Ltd dated 1 December 2015. From the drawings provided, Morrow Geotechnics understands that the proposed development involves the construction of a new restaurant precinct at or near existing grade along with associated parking areas.

## 1.2 Purpose of the Investigation

The purpose of the investigation is to provide geotechnical advice and recommendations for:

- Building foundation options, including design parameters.
- Lateral earth pressures and pile design parameters.
- Lot classification in accordance with AS2870.
- Earthquake site classification in accordance with AS1170.4.
- Advice on groundwater level if encountered within the depth of investigation.
- Advice on geotechnical construction constraints.
- Salinity assessment and salinity management plan.
- Pavement design parameters (subgrade CBR, MDD, OMC and modulus of subgrade reaction).

## 1.3 Investigation Methods

Fieldwork was undertaken by Morrow Geotechnics on 3 August 2016. Work carried out as part of this investigation includes:

- Review of publicly available information from previous reports in the project area, published geological and soil mapping and government agency websites;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features, condition of surrounding structures and site conditions;
- Dial Before You Dig (DBYD) services search and services scan of proposed borehole locations;
- Drilling of four boreholes (BH1 to BH4) by a ute mounted drill rig using solid flight augers. Borehole locations are shown on **Figure 1** and borehole logs are presented in **Appendix A**;
- Dynamic Cone Penetrometer (DCP) tests were undertaken adjacent to the borehole locations (DCP1 to DCP4). DCP test results were used to assess soil consistency/density and to infer top of rock and are presented on the corresponding borehole log; and
- Groundwater observations within boreholes during drilling and within open holes following completion of drilling.

Soil samples were collected from the boreholes for testing at NATA accredited laboratories.

## 2 DESKTOP REVIEW OF SITE CONDITIONS

The site comprises a large level lot on the eastern side of the Nepean River. The level topography is indicative of floodplains and sediment deposits associated with a long site history of flooding. The site is currently occupied by a single storey brick café structure along with paved car parking areas and compacted road base overflow parking. The majority of the site comprises undeveloped, grassed open space which was previously used for market garden purposes.

### 2.1 Published Geological Mapping

The Department of Mineral Resources Geological Map Penrith 1:100,000 Geological Series Sheet 9129 (DMR 1991) indicates the site to be underlain by Quaternary Pleistocene Alluvial Deposits of the Cranebrook Formation, which typically comprise gravel, sand, silt and clay.

The Soil Conservation Service of NSW Penrith 1:100,000 Soil Landscapes Series Sheet 9129 (2nd Edition) indicates that the residual landscape at the site likely comprises the Freemans Reach Alluvial Landscape. This landscape type typically comprises the present active floodplain of the Nepean River with minor relief, levees and back swamps. Typically deep brown sands and loams. These soils are noted to be present a high streambank erosion hazard, flood hazard, permanently high watertables and localised non-cohesive soil.

## 3 OBSERVATIONS

### 3.1 Subsurface Conditions

The stratigraphy at the site is characterised by topsoil over deep alluvial sediments. For the development of a site-specific geotechnical model, the observed stratigraphy has been divided into two geotechnical units with Unit 2 further subdivided into three sub-units. A summary of the subsurface conditions at the investigation locations is presented in **Table 1**. More detailed descriptions of subsurface conditions at the test locations are available in the borehole logs presented in **Appendix A**.

**TABLE 1 SUMMARY OF INFERRED SUBSURFACE CONDITIONS**

| Unit | Material                         | Approx. Depth Range of Unit <sup>1</sup> |            |            |           | Comments                                                                                                                                                                |
|------|----------------------------------|------------------------------------------|------------|------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                  | BH1                                      | BH2        | BH3        | BH4       |                                                                                                                                                                         |
| 1    | Topsoil                          | 0.0 - 0.6                                | 0.0 - 0.45 | 0.0 - 0.25 | 0.0 - 0.5 | Topsoil comprising low plasticity silt with some fine grained sand. Unit 1 soils were generally firm consistency.                                                       |
| 2    | A Loose Alluvium                 | 0.6 - 1.3                                | 0.45 - 1.5 | 0.25 - 1.4 | 0.5 - 1.3 | Interbedded alluvial sediment deposits comprising mixtures of sand silt and clay. Unit 2 was observed to grade from loose to very dense consistency/density with depth. |
|      | B Medium Dense to Dense Alluvium | 1.3 - 3.8                                | 1.5 - 2.8  | 1.4 - 3.3  | 1.3 - 2.6 |                                                                                                                                                                         |
|      | C Very Dense Alluvium            | 3.8 +                                    | 2.8+       | 3.3 +      | 2.6 +     |                                                                                                                                                                         |

**Notes:**

1 Depths shown are based on material observed within test locations and will vary across the site.

### 3.2 Groundwater Observations

Groundwater inflow was not observed during the drilling of boreholes as part of the investigation to a depth of 5 mBGL at each borehole location. Unit 2B material within BH2 was encountered as wet between 1.2 and 2.6 mBGL. Given the absence of a standing water level in the underlying sands it is inferred that the water encountered at this level is the result of saturation of cohesive material following heavy rainfall over the preceding fortnight rather than a permanent water table.

### 3.3 Laboratory Test Results

Ten soil samples were selected for salinity, aggressivity and earthworks testing. A summary of test results is provided in **Table 2**. Laboratory test certificates are presented in **Appendix B**.

**TABLE 2** SUMMARY OF LABORATORY TEST RESULTS

| Sample ID                                  | BH1                                         | BH1  | BH1  | BH1  | BH2  | BH3  | BH4  | BH4  | BH4  |      |    |
|--------------------------------------------|---------------------------------------------|------|------|------|------|------|------|------|------|------|----|
|                                            | DS1                                         | DS2  | DS3  | DS4  | BDS1 | DS2  | BDS1 | DS1  | DS2  | DS3  |    |
|                                            | 0.6-                                        | 1.2- | 2.6- | 3.4- | 0.5- | 2.5- | 0.5- | 0.5- | 2.3- | 3.5- |    |
|                                            | 0.8m                                        | 1.4m | 2.8m | 3.6m | 1.0m | 2.7m | 1.0m | 0.7m | 2.5m | 3.7m |    |
| <b>Unit</b>                                | 2A                                          | 2B   | 2B   | 2B   | 2A   | 2B   | 2A   | 2A   | 2B   | 2C   |    |
| pH                                         | -                                           | 6.3  | 7.3  | 7.2  | -    | 7.1  | -    | 6.9  | -    | 7.0  |    |
| Aggressivity                               | Conductivity<br>( $\mu\text{S}/\text{cm}$ ) | -    | 38   | 19   | 20   | -    | 90   | -    | 16   | -    | 16 |
| Sulfate $\text{SO}_4$<br>(mg/kg)           | -                                           | 13   | -    | -    | -    | 17   | -    | -    | -    | -    |    |
| Chloride Cl<br>(mg/kg)                     | -                                           | 8.8  | -    | -    | -    | 4.3  | -    | -    | -    | -    |    |
| Exchangeable Sodium<br>Percentage (%)      | 1.9                                         | -    | -    | -    | -    | -    | -    | -    | 2.6  | -    |    |
| Cation Exchange<br>Capacity (meq/100g)     | 3.2                                         | -    | -    | -    | -    | -    | -    | -    | 4.4  | -    |    |
| Maximum Dry Density<br>(t/m <sup>3</sup> ) | -                                           | -    | -    | -    | 1.94 | -    | 1.93 | -    | -    | -    |    |
| Optimum Moisture<br>Content (%)            | -                                           | -    | -    | -    | 11.4 | -    | 12.1 | -    | -    | -    |    |
| Swell (%)                                  | -                                           | -    | -    | -    | 0.1  | -    | 0.1  | -    | -    | -    |    |
| California Bearing<br>Ratio (%)            | -                                           | -    | -    | -    | 19.0 | -    | 10.0 | -    | -    | -    |    |
| Emerson Class                              |                                             |      |      |      | 5    |      | 5    |      |      |      |    |
| Moisture (%)                               | 15                                          | 14   | 8.3  | 16   | -    | 14   | -    | 14   | 13   | 11   |    |

## 4 GEOTECHNICAL RECOMMENDATIONS FOR DESIGN

### 4.1 Foundation Design

Because of the loose, unconsolidated nature of Unit 1 material it is recommended that no footings are founded within Unit 1.

Given the ground conditions encountered during the investigation there may be economic and timing advantages to the use of deep piled foundation at the site. If deep foundations are used for the support of building loads it should be noted that traditional bored piles are likely to collapse during excavation. The use of steel liners or grout-injection methods should be considered to allow construction to a suitable founding depth. Alternatively, screw piles would provide a fast and easily installable option for transferring structural loads to the Unit 2C strata. Screw pile contractors should make their own assessment of the allowable bearing pressures of the soil strata presented in this report based on their knowledge of the performance of their proprietary systems.

The parameters given in **Table 3** may be used for the design of pad footings and bored piles. Morrow Geotechnics recommends that a Preliminary Geotechnical Strength Reduction Factor (GSRF) of 0.4 is used for the design of piles in accordance with AS 2159:2009 if no allowance is made for pile testing during construction. Should pile testing be nominated, the GSRF may be reviewed and a value of 0.55 to 0.6 may be expected.

Ultimate geotechnical strengths are provided for use in limit state design. Allowable bearing pressures are provided for serviceability checks. These values have been determined to limit settlements to an acceptable level for conventional building structures, typically less than 1% of the minimum footing dimension.

**TABLE 3** PAD FOOTING AND PILE DESIGN PARAMETERS

| Material                                            | Unit 1<br>Topsoil            | Unit 2A<br>Loose Alluvium | Unit 2B<br>Medium Dense to<br>Dense Alluvium | Unit 2C<br>Very Dense<br>Alluvium |
|-----------------------------------------------------|------------------------------|---------------------------|----------------------------------------------|-----------------------------------|
| Allowable Bearing Pressure (kPa)                    | 0                            | 50                        | 160                                          | 500                               |
| Ultimate Vertical End Bearing Pressure (kPa)        | 0                            | 150                       | 480                                          | 1500                              |
| Elastic Modulus (MPa)                               | 4                            | 10                        | 30                                           | 50                                |
| Ultimate Shaft Adhesion (kPa)                       | In Compression<br>In Tension | 0                         | 10                                           | 12                                |
| Susceptibility to Liquefaction during an Earthquake |                              | Medium                    | Medium                                       | Low                               |

**Notes:**

- 1 Side adhesion values given assume there is intimate contact between the pile and foundation material. Design engineer to check both 'piston' pull-out and 'cone' pull-out mechanics in accordance with AS4678-2002 Earth Retaining Structures.

2 Susceptibility to liquefaction during an earthquake is based on the following definition:

|        |   |                                                                                             |
|--------|---|---------------------------------------------------------------------------------------------|
| Low    | - | Medium to very dense sands, stiff to hard clays, and rock                                   |
| Medium | - | Loose to medium dense sands, soft to firm clays, or uncontrolled fill below the water table |
| High   | - | Very loose sands or very soft clays below the water table                                   |

To adopt these parameters we have assumed that the bases of all pile excavations are cleaned of loose debris and water and inspected by a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used.

Selection of footing types and founding depth will need to consider the risk of adverse differential ground movements within the foundation footprint and between high level and deeper footings. Unless an allowance for such movement is included in the design of the proposed development we recommend that all new structures founded on natural materials with comparable end bearing capacities and elastic moduli.

## 4.2 AS2870 Residential Slabs and Footings Site Classification

Shallow footings and slabs on Unit 2A, 2B or 2C material should be designed in accordance with AS2870:2011 based on a Site Classification of 'M.' The site classification has been provided on the basis that the performance expectations set out in Appendix B of AS2870–2011 are acceptable and that future site maintenance will be undertaken in accordance with CSIRO BTF 18.

## 4.3 Soil Aggressivity

Analysis of the pH, chloride & sulfate content and electrical conductivity of the soil against the guidelines provided in AS2159-2009 indicates:

- 'non-aggressive' to buried concrete structural elements; and
- 'non-aggressive' to buried steel structural elements.

## 4.4 Excavations

If minor excavations up to 1.5 m depth are required for the development temporary batter slopes of 1.5H:1V will be possible for Unit 1 and Unit 2 material provided that surface water is diverted away from the batter faces. Permanent batters of 2.5H:1V may be employed for all material encountered during the investigation. Permanent batters will require surface protection or revegetation to prevent erosion and slaking

Where excavations extend beneath the zone of influence of nearby structures, services or pavements, or where site constraints such as site boundaries do not allow the construction of temporary batters, excavation retention will be required. For design of cantilevered shoring systems a triangular pressure distribution may be employed using the parameters presented in **Table 4**. For design of rigid anchored or braced walls such as top-down construction, a trapezoidal earth pressure distribution should be used with a maximum pressure of  $0.65.K_a.y.H$  (kPa), where 'H' is the effective vertical height of the wall in metres.

**TABLE 4 EARTH PRESSURE PARAMETERS**

| Material                       | Unit 1<br>Topsoil                        | Unit 2A<br>Loose Alluvium | Unit 2B<br>Medium Dense to<br>Dense Alluvium | Unit 2C<br>Very Dense<br>Alluvium |
|--------------------------------|------------------------------------------|---------------------------|----------------------------------------------|-----------------------------------|
| Earth Pressure<br>Coefficients | Bulk Unit Weight<br>(kN/m <sup>3</sup> ) | 16                        | 17                                           | 18                                |
|                                | At rest,<br>K <sub>o</sub>               | 0.58                      | 0.52                                         | 0.46                              |
|                                | Passive,<br>K <sub>p</sub>               | 2.46                      | 2.88                                         | 3.39                              |
|                                | Active,<br>K <sub>a</sub>                | 0.41                      | 0.35                                         | 0.29                              |

**Notes:**

- 1 Unit Weight is based on visual assessment only, order of accuracy is approximately ±10%.
- 2 Earth pressures are provided on the assumption that the ground behind the retaining wall is flat and drained.

## 4.5 AS1170 Earthquake Site Risk Classification

Assessment of the material encountered during the investigation in accordance with the guidelines provided in AS1170.4-2007 indicates an earthquake subsoil class of Class C<sub>e</sub> – Shallow Soil for the site.

## 4.6 Pavement Subgrade and On-Ground Slabs

The results of soaked CBR testing conducted on two subgrade samples indicated CBR values of between 10% and 19%. Based on the moderately variable condition of the encountered material at subgrade level across the borehole locations at the site, Morrow Geotechnics recommends a design subgrade CBR of 8 % and a design modulus of subgrade reaction of 12 kPa/mm is adopted.

For controlled filling depths of less than or equal to 1m, the Japan Road Association method of assessing a weighted subgrade strength can be used, as follows:

$$CBR_w = (D_F \times CBR_F^{0.33} + (1-D_F) \times CBR_s^{0.33})^3$$

where: CBR<sub>w</sub> = weighted subgrade CBR (%)

D<sub>F</sub> = depth of filling (m)

CBR<sub>F</sub> = CBR of filling material (%)

CBR<sub>s</sub> = CBR of subgrade (%)

For example, if a 0.3m deep layer of controlled filling using CBR50% material is placed over a subgrade with a CBR value of 8%, then a weighted subgrade CBR of 15% can be adopted for design.

## 4.7 Soil Salinity

A soil salinity assessment in accordance with the recommendations of Department of Land and Water Conservation, *Site Investigations for Urban Salinity*, 2002 has been carried out at the site. The laboratory Electrical Conductivity (EC) has multiplied by a factor varying from 14, based on the texture of the soil samples obtained, to obtain Corrected Electrical Conductivity designated as ECe as presented in **Table 5** below. In addition to this Exchangeable Sodium Percentage and Cation Exchange Capacity results have been compared with criteria within the guidelines.

**TABLE 5** SOIL SALINITY / SODICITY INTERPRETATION

| Sample ID                                   | BH1                   | BH1                    | BH1                    | BH1                    | BH3                    | BH4                    | BH4                   | BH4                    |
|---------------------------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|
|                                             | DS1                   | DS2                    | DS3                    | DS4                    | DS2                    | DS1                    | DS2                   | DS3                    |
|                                             | 0.6-                  | 1.2-                   | 2.6-                   | 3.4-                   | 2.5-                   | 0.5-                   | 2.3-                  | 3.5-                   |
|                                             | 0.8m                  | 1.4m                   | 2.8m                   | 3.6m                   | 2.7m                   | 0.7m                   | 2.5m                  | 3.7m                   |
| <b>Unit</b>                                 | 2A                    | 2B                     | 2B                     | 2B                     | 2B                     | 2A                     | 2B                    | 2C                     |
| Conductivity<br>( $\mu\text{S}/\text{cm}$ ) | -                     | 38                     | 19                     | 20                     | 90                     | 16                     | -                     | 16                     |
| Corrected Electrical<br>Conductivity (dS/m) | -                     | 0.53                   | 0.27                   | 0.8                    | 1.26                   | 0.22                   | -                     | 0.22                   |
| Exchangeable<br>Sodium Percentage<br>(%)    | 1.9                   | -                      | -                      | -                      | -                      | -                      | 2.6                   | -                      |
| Cation Exchange<br>Capacity (meq/100g)      | 3.2                   | -                      | -                      | -                      | -                      | -                      | 4.4                   | -                      |
| Moisture (%)                                | 15                    | 14                     | 8.3                    | 16                     | 14                     | 14                     | 13                    | 11                     |
| <b>Assessed Sodicity /<br/>Salinity</b>     | <b>Non-<br/>Sodic</b> | <b>Non-<br/>Saline</b> | <b>Non-<br/>Saline</b> | <b>Non-<br/>Saline</b> | <b>Non-<br/>Saline</b> | <b>Non-<br/>Saline</b> | <b>Non-<br/>Sodic</b> | <b>Non-<br/>Saline</b> |

On the basis of laboratory testing undertaken as part of this investigation the site is assessed to be non-sodic and non-saline.

## 5 RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES

Further geotechnical inspections should be carried out during construction to confirm the geotechnical and hydrogeological model. These should include:

- All excavated material transported off site should be classified in accordance with NSW EPA 2014 - Waste Classification Guideline Part 1; Classifying Waste.
- A suitably qualified geotechnical engineer is to assess the condition of exposed material at foundation or subgrade level to assess the ability of the prepared surface to act as a foundation or as a subgrade.
- Regular inspections of battered and unsupported excavations, where proposed, to confirm geotechnical conditions and to assess the suitability of design assumptions and to provide further advice with regards to excavation retention/ support and proposed construction methodologies, if required.

## 6 STATEMENT OF LIMITATIONS

The adopted investigation scope was limited by the investigation intent. Further geotechnical inspections should be carried out during construction to confirm both the geotechnical model and the design parameters provided in this report.

Your attention is drawn to the document “Important Information”, which is included in **Appendix C** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Morrow Geotechnics, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

## 7 REFERENCES

AS1726:1993, *Geotechnical Site Investigations*, Standards Australia.

AS2159:2009, *Piling – Design and Installation*, Standards Australia.

AS2870:2011, *Residential Slabs and Footings*, Standards Australia.

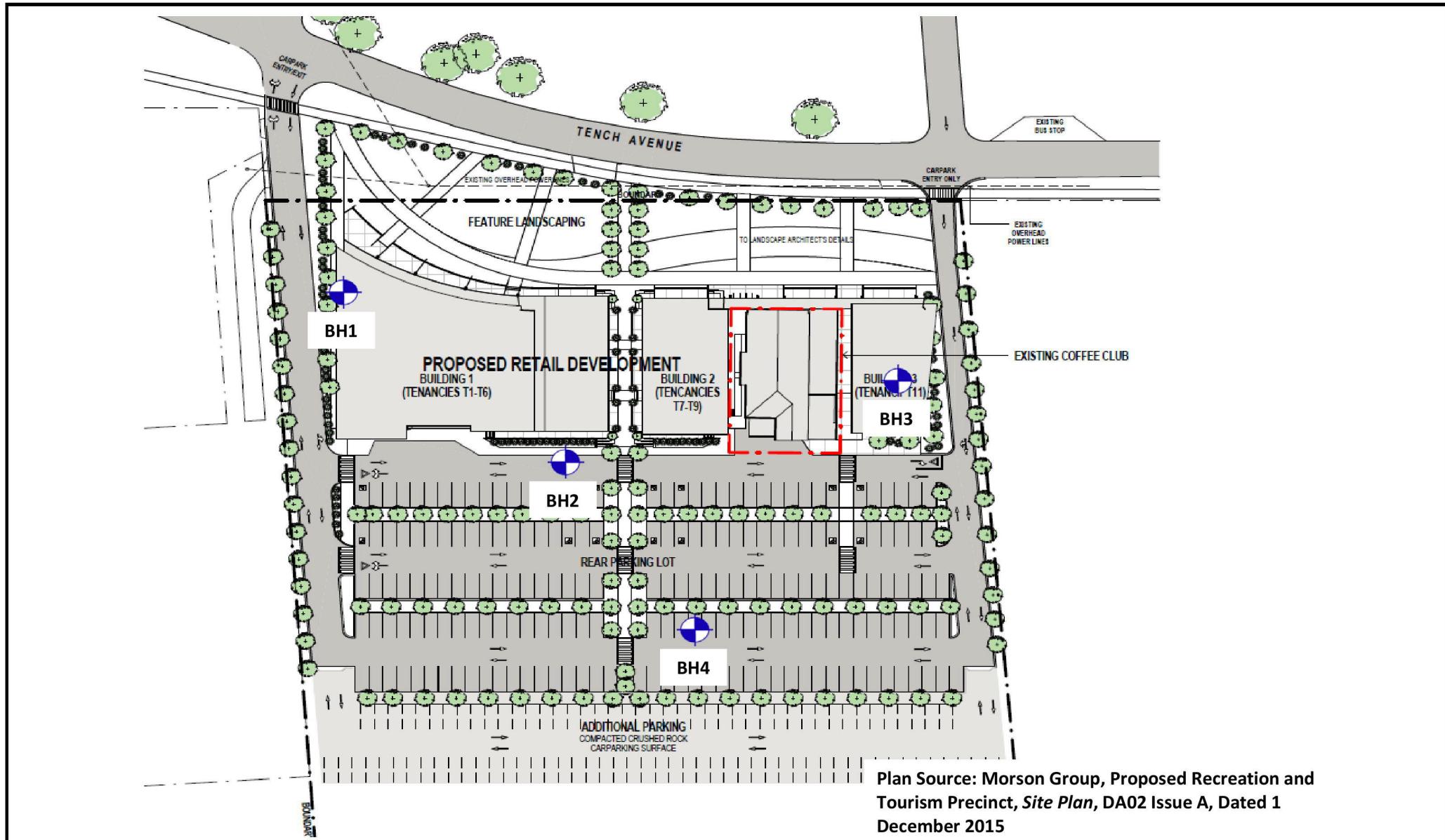
AS3798:2007, *Guidelines on Earthworks for Commercial and Residential Developments*, Standards Australia.

Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of the Penrith 1:100000 sheet. Soil Conservation Services of NSW, Sydney.

NSW Department of Finance and Service, Spatial Information Viewer, [maps.six.nsw.gov.au](http://maps.six.nsw.gov.au).

NSW Department of Mineral Resources (1985) Penrith 1:100,000 Geological Series Sheet 9129 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

Pells (2004) Substance and Mass Properties for the Design of Engineering Structures in the Hawkesbury Sandstone, Australian Geomechanics Journal, Vol 39 No 3


## 8 CLOSURE

Please do not hesitate to contact Morrow Geotechnics if you have any questions about the contents of this report.

For and on behalf of Morrow Geotechnics Pty Ltd,

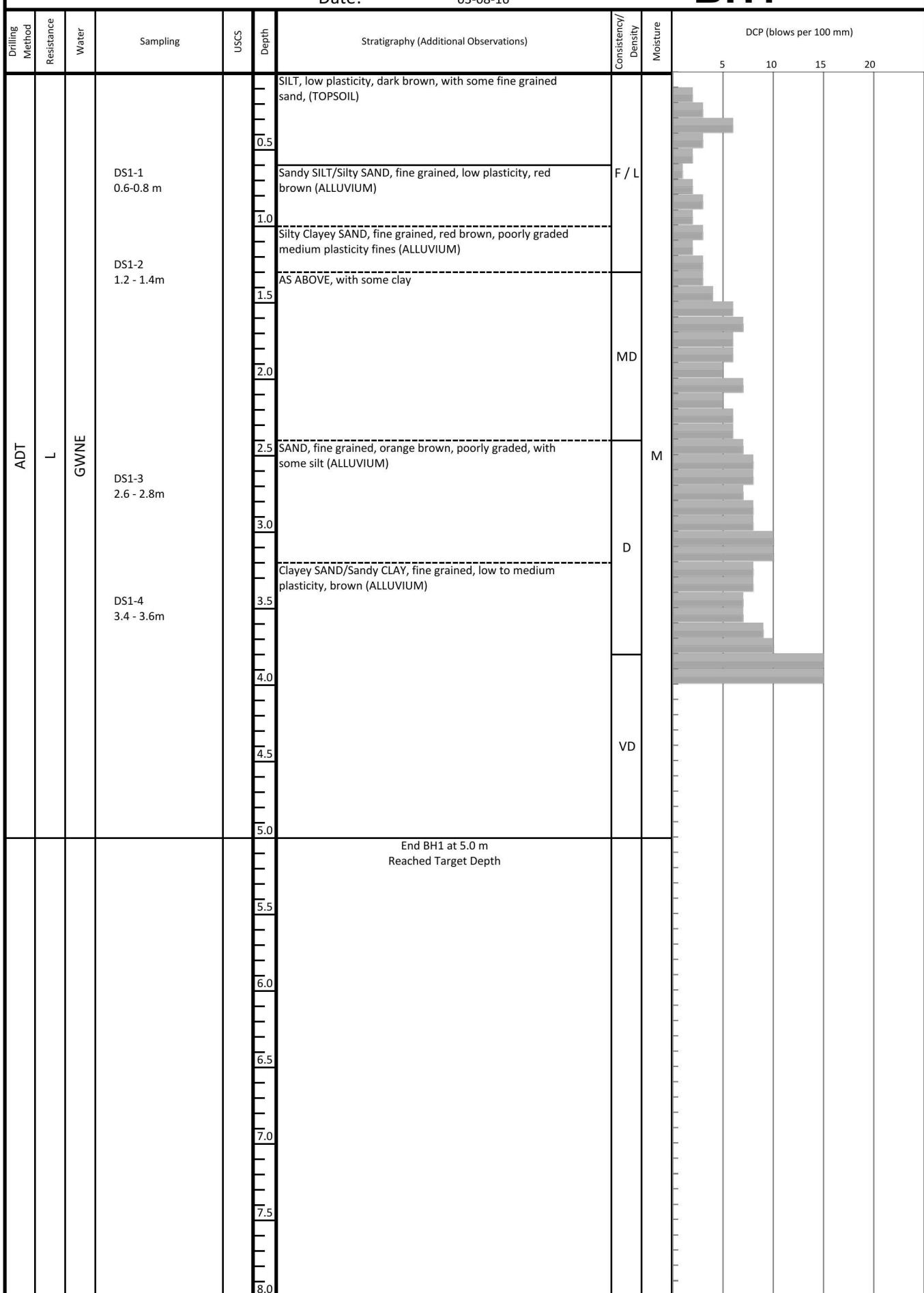
A handwritten signature in black ink, appearing to read "Alan Morrow".

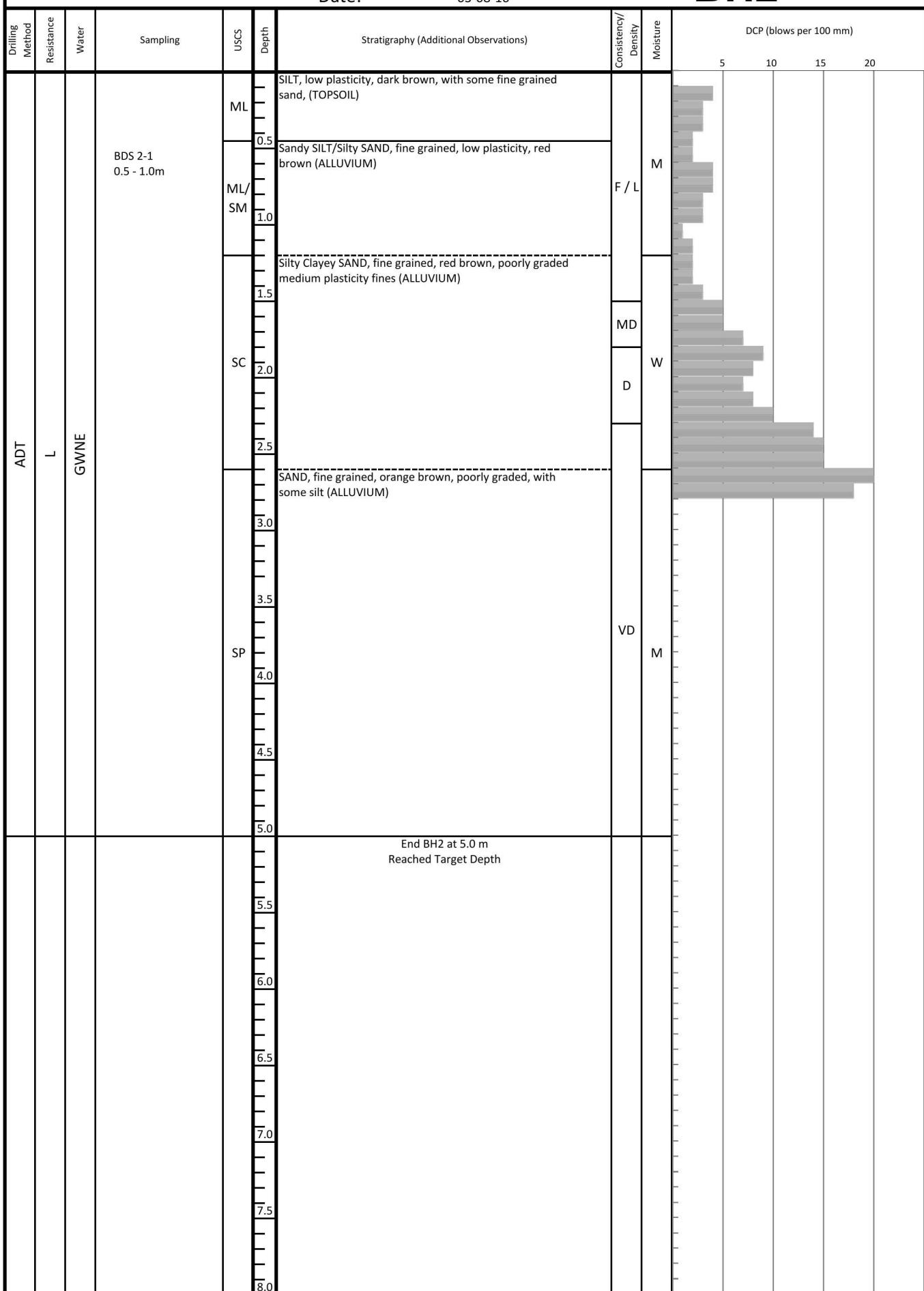
Alan Morrow  
Senior Geotechnical Engineer

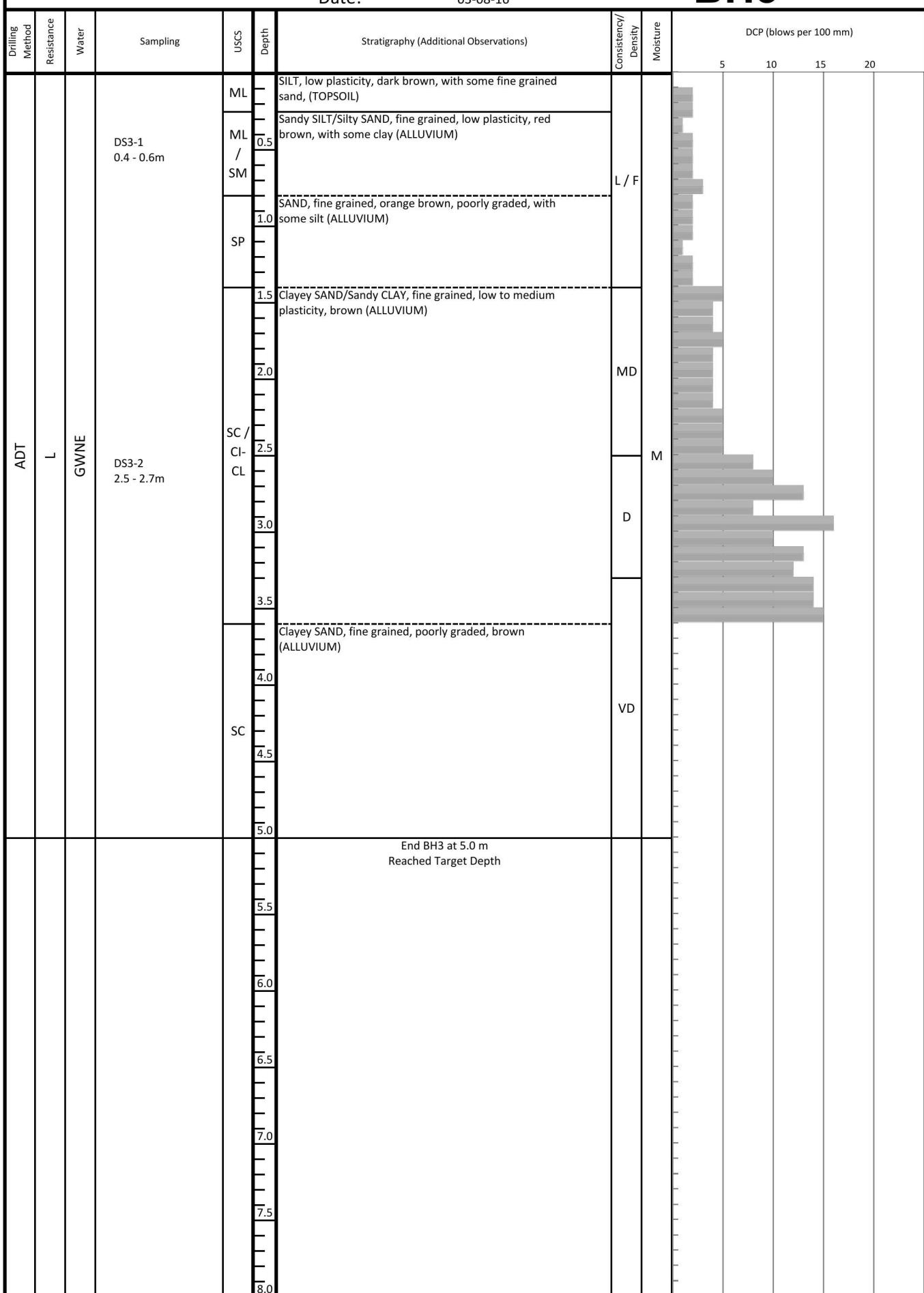


Plan Source: Morson Group, Proposed Recreation and  
Tourism Precinct, Site Plan, DA02 Issue A, Dated 1  
December 2015

**morrow**  
PO Box 4069, Carlton NSW 2218  
P: 0405 843 933 | E: info@morrowgeo.com.au


|          |          |
|----------|----------|
| Drawn    | AM       |
| Approved | AM       |
| Date     | 18-08-16 |
| Scale    | NTS      |


Morson Group Pty Ltd  
78-88 Tench Avenue, Jamisontown NSW  
Geotechnical Investigation  
Borehole Location Plan


|          |       |
|----------|-------|
| Figure:  | 1     |
| Project: | P1136 |

# Appendix A

## BOREHOLE LOGS AND EXPLANATORY NOTES









### DRILLING/EXCAVATION METHOD

|     |                         |     |                          |      |                             |
|-----|-------------------------|-----|--------------------------|------|-----------------------------|
| HA  | Hand Auger              | RD  | Rotary blade or drag bit | NQ   | Diamond Core - 47 mm        |
| DTC | Diatube Coring          | RT  | Rotary Tricone bit       | NMLC | Diamond Core - 52 mm        |
| NDD | Non-destructive digging | RAB | Rotary Air Blast         | HQ   | Diamond Core - 63 mm        |
| AS* | Auger Screwing          | RC  | Reverse Circulation      | HMLC | Diamond Core - 63mm         |
| AD* | Auger Drilling          | PT  | Push Tube                | BH   | Tractor Mounted Backhoe     |
| *V  | V-Bit                   | CT  | Cable Tool Rig           | EX   | Tracked Hydraulic Excavator |
| *T  | TC-Bit, e.g. ADT        | JET | Jetting                  | EE   | Existing Excavation         |
| ADH | Hollow Auger            | WB  | Washbore or Bailer       | HAND | Excavated by Hand Methods   |

### PENETRATION/EXCAVATION RESISTANCE

**L** **Low resistance.** Rapid penetration/ excavation possible with little effort from equipment used.

**M** **Medium resistance.** Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used.

**H** **High resistance.** Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used.

**R** **Refusal/ Practical Refusal.** No further progress possible without risk of damage or unacceptable wear to equipment used.

These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator.

### WATER



Water level at date shown



Water inflow



Partial water loss



Complete water loss

### GROUNDWATER NOT OBSERVED

Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit.

### GROUNDWATER NOT ENCOUNTERED

Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period.

### SAMPLING AND TESTING

#### SPT

4,7,11 N=18 Standard Penetration Test to AS1289.6.3.1-2004  
seating 30/80mm 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following 150mm  
Where practical refusal occurs, the blows and penetration for that interval are reported  
RW Penetration occurred under the rod weight only  
HW Penetration occurred under the hammer and rod weight only  
HB Hammer double bouncing on anvil

#### Sampling

DS Disturbed Sample  
BDS Bulk disturbed Sample  
GS Gas Sample  
WS Water Sample  
U63 Thin walled tube sample - number indicates nominal sample diameter in millimetres

#### Testing

FP Field Permeability test over section noted  
FVS Field Vane Shear test expressed as uncorrected shear strength (sv = peak value, sr = residual value)  
PID Photoionisation Detector reading in ppm  
PM Pressuremeter test over section noted  
PP Pocket Penetrometer test expressed as instrument reading in kPa  
WPT Water Pressure tests  
DCP Dynamic Cone Penetrometer test  
CPT Static Cone Penetration test  
CPTu Static Cone Penetration test with pore pressure (u) measurement

### RANKING OF VISUALLY OBSERVABLE CONTAMINATION AND ODOUR (for specific soil contamination assessment

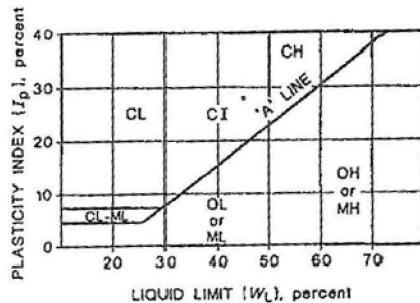
|       |                                          |       |                                        |
|-------|------------------------------------------|-------|----------------------------------------|
| R = 0 | No visible evidence of contamination     | R = A | No non-natural odours identified       |
| R = 1 | Slight evidence of visible contamination | R = B | Slight non-natural odours identified   |
| R = 2 | Visible contamination                    | R = C | Moderate non-natural odours identified |
| R = 3 | Significant visible contamination        | R = D | Strong non-natural odours identified   |

### ROCK CORE RECOVERY

$$\text{TCR} = \text{Total Core Recovery (\%)} = \frac{\text{Length of core received}}{\text{Length of core run}} \times 100$$

$$\text{SCR} = \text{Solid Core Recovery (\%)} = \frac{\sum \text{Length of cylindrical core received}}{\text{Length of core run}} \times 100$$

$$\text{RQD} = \text{Rock Quality Designation (\%)} = \frac{\sum \text{Axial Lengths of core} > 100\text{mm}}{\text{Length of core run}} \times 100$$


### MATERIAL BOUNDARIES

— = inferred boundary      - - - - = probable boundary      — ?— ?— ?— ? = possible boundary

### CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/tactile methods.

| PARTICLE SIZE CHARACTERISTICS |              |                   | USCS SYMBOLS                                                                             |                                          |        |                                                                                             |
|-------------------------------|--------------|-------------------|------------------------------------------------------------------------------------------|------------------------------------------|--------|---------------------------------------------------------------------------------------------|
| Major Division                | Sub Division | Particle Size     | Major Divisions                                                                          |                                          | Symbol | Description                                                                                 |
| BOULDERS                      |              | >200 mm           | COARSE GRAINED SOILS<br>More than 50% by dry mass less than 63mm is greater than 0.075mm |                                          | GW     | Well graded gravel and gravel-sand mixtures, little or no fines.                            |
| COBBLES                       |              | 63 to 200 mm      |                                                                                          |                                          | GP     | Poorly graded gravel and gravel-sand mixtures, little or no fines.                          |
| GRAVEL                        | Coarse       | 20 to 63 mm       |                                                                                          |                                          | GM     | Silty gravel, gravel-sand-silt mixtures.                                                    |
|                               | Medium       | 6 to 20 mm        |                                                                                          |                                          | GC     | Clayey gravel, gravel-sand-clay mixtures.                                                   |
|                               | Fine         | 2 to 6 mm         |                                                                                          |                                          | SW     | Well graded sand and gravelly sand, little or no fines.                                     |
| SAND                          | Coarse       | 0.6 to 2 mm       | More than 50% of coarse grains are <2 mm                                                 | More than 50% of coarse grains are <2 mm | SP     | Poorly graded sand and gravelly sand, little or no fines.                                   |
|                               | Medium       | 0.2 to 0.6 mm     |                                                                                          |                                          | SM     | Silty sand, sand-silt mixtures.                                                             |
|                               | Fine         | 0.075 to 0.2mm    |                                                                                          |                                          | SC     | Clayey sand, sandy-clay mixtures.                                                           |
| SILT                          |              | 0.002 to 0.075 mm | FINE GRAINED SOILS<br>More than 50% by dry mass less than 63mm is less than 0.075mm      | Liquid Limit less than 50%               | ML     | Inorganic silts of low plasticity, very fine sands, rock flour, silty or clayey fine sands. |
| CLAY                          |              | <0.002 mm         |                                                                                          |                                          | CL     | Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.      |
| PLASTICITY PROPERTIES         |              |                   |                                                                                          |                                          | OL     | Organic silts and organic silty clays of low plasticity.                                    |
|                               |              |                   |                                                                                          |                                          | MH     | Inorganic silts of high plasticity.                                                         |
|                               |              |                   |                                                                                          |                                          | CH     | Inorganic clays of high plasticity.                                                         |
|                               |              |                   |                                                                                          |                                          | OH     | Organic clays of medium to high plasticity.                                                 |
|                               |              |                   |                                                                                          |                                          | PT     | Peat muck and other highly organic soils.                                                   |



### MOISTURE CONDITION

| Symbol | Term  | Description                                                                                   |
|--------|-------|-----------------------------------------------------------------------------------------------|
| D      | Dry   | Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery.      |
| M      | Moist | Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere. |
| W      | Wet   | Soils exude free water. Sands and gravels tend to cohere.                                     |

Moisture content of cohesive soils may also be described in relation to plastic limit (WP) or liquid limit (WL) [» much greater than, > greater than, < less than, « much less than].

| CONSISTENCY |            |                          | DENSITY |                |                 |           |
|-------------|------------|--------------------------|---------|----------------|-----------------|-----------|
| Symbol      | Term       | Undrained Shear Strength | Symbol  | Term           | Density Index % | SPT "N" # |
| VS          | Very Soft  | 0. to 12 kPa             | VL      | Very Loose     | < 15            | 0 to 4    |
| S           | Soft       | 12 to 25 kPa             | L       | Loose          | 15 to 35        | 4 to 10   |
| F           | Firm       | 25 to 50 kPa             | MD      | Medium Density | 35 to 65        | 10 to 30  |
| St          | Stiff      | 50 to 100 kPa            | D       | Dense          | 65 to 85        | 30 to 50  |
| VSt         | Very Stiff | 100 to 200 kPa           | VD      | Very Dense     | Above 85        | Above 50  |
| H           | Hard       | Above 200 kPa            |         |                |                 |           |

In the absence of test results, consistency and density may be assessed from correlations with the observed behaviour of the material.  
# SPT correlations are not stated in AS1726 – 1993, and may be subject to corrections for overburden pressure and equipment type.

### MINOR COMPONENTS

| Term  | Assessment Guide                                                                                                                | Proportion by Mass                                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Trace | Presence just detectable by feel or eye but soil properties little or no different to general properties of primary component   | Coarse grained soils: ≤ 5%<br>Fine grained soil: ≤15%        |
| Some  | Presence easily detectable by feel or eye but soil properties little or no different to general properties of primary component | Coarse grained soils: 5 - 12%<br>Fine grained soil: 15 - 30% |

### CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

### STRENGTH

| Symbol | Term           | Point Load Index, $Is_{(50)}$ (MPa) <sup>#</sup> | Field Guide                                                                                                                                                                                                                                                               |
|--------|----------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EL     | Extremely Low  | < 0.03                                           | Easily remoulded by hand to a material with soil properties.                                                                                                                                                                                                              |
| VL     | Very Low       | 0.03 to 0.1                                      | Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.                                                                                      |
| L      | Low            | 0.1 to 0.3                                       | Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling. |
| M      | Medium         | 0.3 to 1                                         | Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.                                                                                                                                                         |
| H      | High           | 1 to 3                                           | A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.                                                                                                                      |
| VH     | Very High      | 3 to 10                                          | Hand specimen breaks with pick after more than one blow; rock rings under hammer.                                                                                                                                                                                         |
| EH     | Extremely High | >10                                              | Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.                                                                                                                                                              |

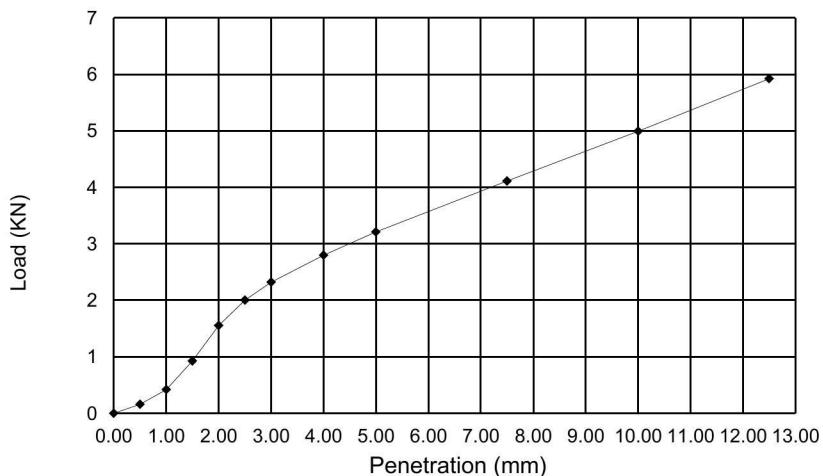
#### # Rock Strength Test Results

▼ Point Load Strength Index,  $Is_{(50)}$ , Axial test (MPa)

◀ Point Load Strength Index,  $Is_{(50)}$ , Diametral test (MPa)

Relationship between rock strength test result ( $Is_{(50)}$ ) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x  $Is_{(50)}$ , but can be as low as 5 MPa.

### ROCK MATERIAL WEATHERING


| Symbol | Term                | Field Guide                                                                                                                                                                                                                                                                                                                                                                      |
|--------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RS     | Residual Soil       | Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.                                                                                                                                                                                |
| EW     | Extremely Weathered | Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.                                                                                                                                                                                                                                                    |
| DW     | HW                  | Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW. |
|        | MW                  |                                                                                                                                                                                                                                                                                                                                                                                  |
| SW     | Slightly Weathered  | Rock slightly discoloured but shows little or no change of strength relative to fresh rock.                                                                                                                                                                                                                                                                                      |
| FR     | Fresh               | Rock shows no sign of decomposition or staining.                                                                                                                                                                                                                                                                                                                                 |

# Appendix B

## LABORATORY CERTIFICATES

# CALIFORNIA BEARING RATIO REPORT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                            |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|--------------|
| <b>Client:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Morrow Geotechnics                          | <b>Source:</b>             | BH2 BDS1     |
| <b>Address:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO Box 4069, Carlton, NSW, 2218             | <b>Sample Description:</b> | Refer to Log |
| <b>Project:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P1136 Jamisontown                           | <b>Report No.:</b>         | S15491-CBR   |
| <b>Job No.:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S16328                                      | <b>Lab No.:</b>            | S15491       |
| <b>Test Procedure:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                            |              |
| <input checked="" type="checkbox"/> AS1289 6.1.1 Soil strength and consolidation tests - Determination of the California Bearing Ratio of a soil - Standard laboratory method for a remoulded specimen<br><input checked="" type="checkbox"/> AS1289 5.1.1 Soil compaction and density tests - Determination of the dry density/moisture content relationship of a soil using standard compactive effort<br><input checked="" type="checkbox"/> AS1289 2.1.1 Soil moisture content tests - Determination of the moisture content of a soil - Oven drying method (standard method) |                                             |                            |              |
| <b>Sampling:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampled by Client                           | <b>Date Sampled:</b>       | Unknown      |
| <b>Preparation:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prepared in accordance with the test method |                            |              |



## Compaction and Placement Data

|                                      |          |                                  |                       |              |     |
|--------------------------------------|----------|----------------------------------|-----------------------|--------------|-----|
| Compaction Used                      | Standard | Dry Density                      |                       |              |     |
| Maximum Dry Density t/m <sup>3</sup> | 1.94     | At Compaction                    | 1.92 t/m <sup>3</sup> | 99.0 % Comp. |     |
| Optimum Moisture Content %           | 11.4     | After Soaking                    | 1.91 t/m <sup>3</sup> | 98.0 % Comp. |     |
| No. of Layers                        | 3        | Moisture Content                 |                       |              |     |
| Blows per Layer                      | 53       | At Compaction                    | %                     | 11.1         | 98  |
| Drop of Rammer mm                    | 300      | After Soaking                    | %                     | 12.9         | 113 |
| Mass of Rammer kg                    | 2.7      | After Penetration (Top 30mm)     | %                     | 13.7         | 120 |
| Surcharge Used kg                    | 4.5      | After Penetration (Entire Depth) | %                     | 12.1         | 106 |
| % Ret. 19mm Sieve                    | 7560     | Swell After 4 Days Soaking       | %                     | 0.1          |     |

Note: material coarser than +19mm Sieve was discarded (as per test method)

## California Bearing Ratio

CBR (4-day Soaked) = 19.0 % at 2.5 mm Penetration

Notes:



The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Authorised Signatory:

16/08/2016

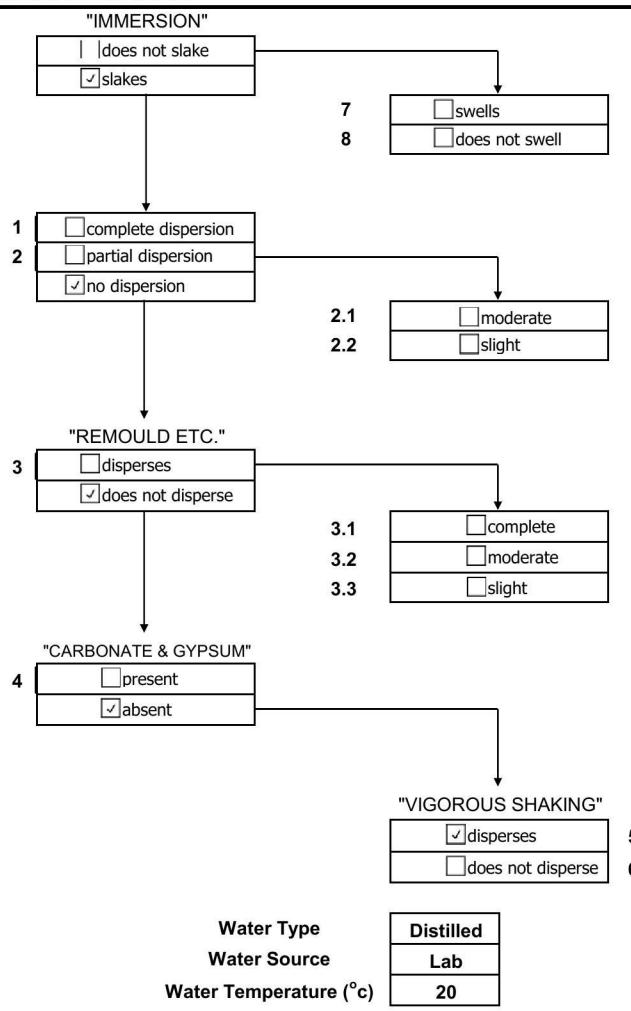
NATA Accredited Laboratory Number: 14874

Chris Lloyd

Date:



Macquarie Geotechnical  
Unit 8/10  
Bradford Street  
Alexandria NSW 2015


# EMERSON CLASS REPORT

|                 |                                 |                            |              |
|-----------------|---------------------------------|----------------------------|--------------|
| <b>Client:</b>  | Morrow Geotechnics              | <b>Source:</b>             | BH2 BDS1     |
| <b>Address:</b> | PO Box 4069, Carlton, NSW, 2218 | <b>Sample Description:</b> | Refer to Log |
| <b>Project:</b> | P1136 Jamisontown               | <b>Report No:</b>          | S15491-ECT   |
| <b>Job No:</b>  | S16328                          | <b>Lab No:</b>             | S15491       |

**Test Procedure:**  AS1289 3.8.1 Soil classification tests - Dispersion - Determination of Emerson class number of a soil

**Sampling:** Sampled by Client **Date Sampled:** Unknown

**Preparation:** Prepared in accordance with the test method



**RESULT:**

Emerson Class No.



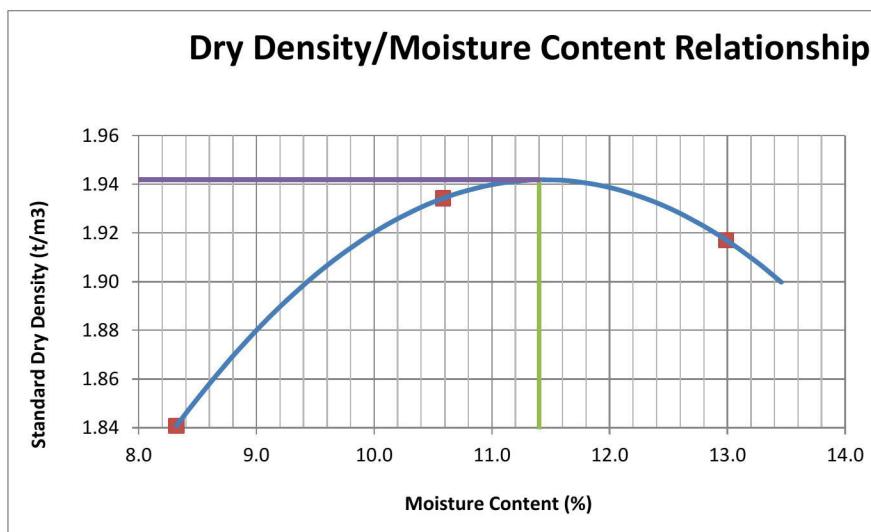
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

NATA Accredited Laboratory Number: 14874

Authorised Signatory:

16/08/2016

Chris Lloyd


Date:

**MACQUARIE  
GEO TECH**

Macquarie Geotechnical  
Unit 8/10  
Bradford Street  
Alexandria NSW 2015

# DRY DENSITY / OPTIMUM MOISTURE CONTENT REPORT

|                                                                                                                                                                                                                                                                                                                          |                                             |                     |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|--------------|
| Client:                                                                                                                                                                                                                                                                                                                  | Morrow Geotechnics                          | Source:             | BH2 BDS1     |
| Address:                                                                                                                                                                                                                                                                                                                 | PO Box 4069, Carlton, NSW, 2218             | Sample Description: | Refer to Log |
| Project:                                                                                                                                                                                                                                                                                                                 | P1136 Jamisontown                           | Report No:          | S15491-MDD   |
| Job No:                                                                                                                                                                                                                                                                                                                  | S16328                                      | Lab No:             | S15491       |
| <b>Test Procedure:</b> <input checked="" type="checkbox"/> AS1289.5.1.1 Determination of the dry density/moisture content relation of a soil using standard compactive effort<br><input checked="" type="checkbox"/> AS1289.2.1.1 Determination of the moisture content of a soil - Oven drying method (Standard method) |                                             |                     |              |
| Sampling:                                                                                                                                                                                                                                                                                                                | Sampled by Client                           | Date Sampled:       | Unknown      |
| Preparation:                                                                                                                                                                                                                                                                                                             | Prepared in accordance with the test method |                     |              |



|                                         |       |
|-----------------------------------------|-------|
| Maximum Dry Density (t/m <sup>3</sup> ) | 1.942 |
| Optimum Moisture Content (%)            | 11.4  |
| Percentage Oversize on 19mm sieve (%)   | 0     |
| Percentage Oversize on 37.5mm sieve (%) | 0     |



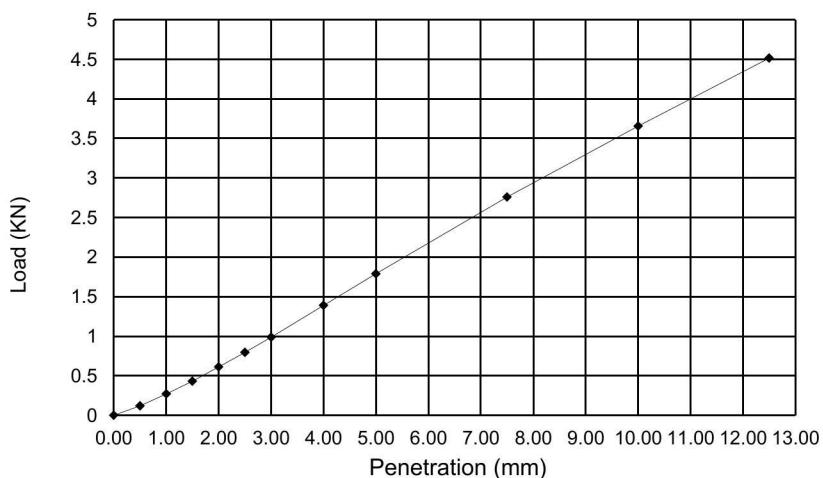
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

NATA Accredited Laboratory Number: 14874

Authorised Signatory:

16/08/2016

Chris Lloyd


Date:



Macquarie Geotechnical  
Unit 8/10  
Bradford Street  
Alexandria NSW 2015

# CALIFORNIA BEARING RATIO REPORT

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |              |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
| <b>Client:</b>         | Morrow Geotechnics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Source:</b>             | BH4 BDS1     |
| <b>Address:</b>        | PO Box 4069, Carlton, NSW, 2218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Sample Description:</b> | Refer to Log |
| <b>Project:</b>        | P1136 Jamisontown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Report No.:</b>         | S15492-CBR   |
| <b>Job No.:</b>        | S16328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Lab No.:</b>            | S15492       |
| <b>Test Procedure:</b> | <input checked="" type="checkbox"/> AS1289 6.1.1 Soil strength and consolidation tests - Determination of the California Bearing Ratio of a soil - Standard laboratory method for a remoulded specimen<br><input checked="" type="checkbox"/> AS1289 5.1.1 Soil compaction and density tests - Determination of the dry density/moisture content relationship of a soil using standard compactive effort<br><input checked="" type="checkbox"/> AS1289 2.1.1 Soil moisture content tests - Determination of the moisture content of a soil - Oven drying method (standard method) |                            |              |
| <b>Sampling:</b>       | Sampled by Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Date Sampled:</b>       | Unknown      |
| <b>Preparation:</b>    | Prepared in accordance with the test method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |              |



## Compaction and Placement Data

|                                      |          |                                  |                       |              |                    |
|--------------------------------------|----------|----------------------------------|-----------------------|--------------|--------------------|
| Compaction Used                      | Standard | Dry Density                      |                       |              |                    |
| Maximum Dry Density t/m <sup>3</sup> | 1.93     | At Compaction                    | 1.92 t/m <sup>3</sup> | 99.0 % Comp. |                    |
| Optimum Moisture Content %           | 12.1     | After Soaking                    | 1.92 t/m <sup>3</sup> | 99.0 % Comp. |                    |
| No. of Layers                        | 3        | Moisture Content                 |                       |              |                    |
| Blows per Layer                      | 53       | At Compaction                    | %                     | 12.0         | Moisture Ratio (%) |
| Drop of Rammer                       | mm       | After Soaking                    | %                     | 13.4         | 99                 |
| Mass of Rammer                       | kg       | After Penetration (Top 30mm)     | %                     | 14.3         | 110                |
| Surcharge Used                       | kg       | After Penetration (Entire Depth) | %                     | 12.2         | 118                |
| % Ret. 19mm Sieve                    | 0        | Swell After 4 Days Soaking       | %                     | 0.1          | 101                |

Note: material coarser than +19mm Sieve was discarded (as per test method)

## California Bearing Ratio

$$\text{CBR (4-day Soaked)} = 10.0 \% \text{ at } 5.0 \text{ mm Penetration}$$

Notes:



The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Authorised Signatory:

16/08/2016

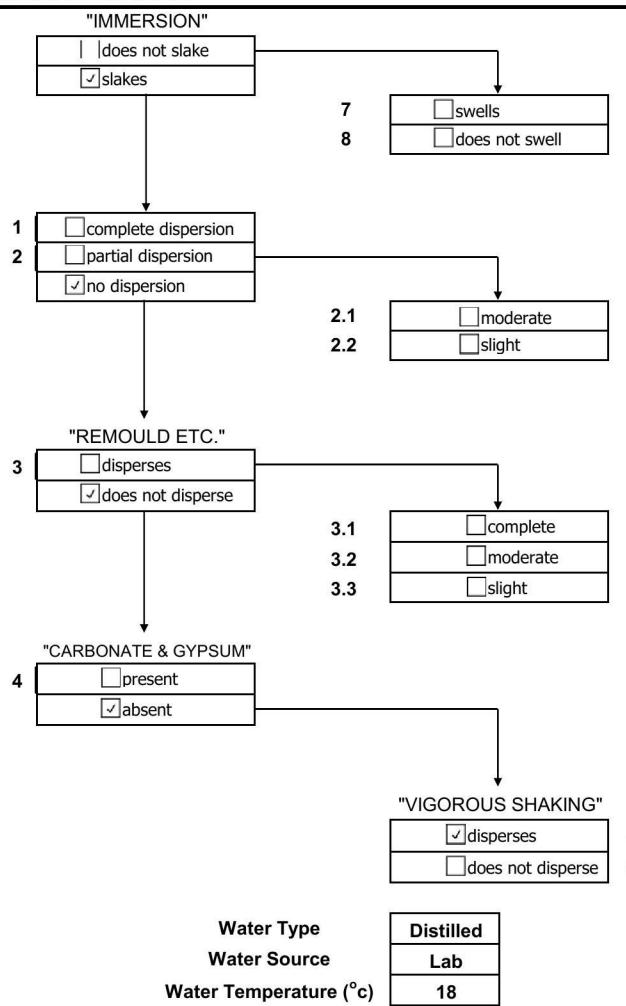
NATA Accredited Laboratory Number: 14874

Chris Lloyd

Date:



Macquarie Geotechnical  
Unit 8/10  
Bradford Street  
Alexandria NSW 2015


# EMERSON CLASS REPORT

|                 |                                 |                            |              |
|-----------------|---------------------------------|----------------------------|--------------|
| <b>Client:</b>  | Morrow Geotechnics              | <b>Source:</b>             | BH4 BDS1     |
| <b>Address:</b> | PO Box 4069, Carlton, NSW, 2218 | <b>Sample Description:</b> | Refer to Log |
| <b>Project:</b> | P1136 Jamisontown               | <b>Report No:</b>          | S15492-ECT   |
| <b>Job No:</b>  | S16328                          | <b>Lab No:</b>             | S15492       |

**Test Procedure:**  AS1289 3.8.1 Soil classification tests - Dispersion - Determination of Emerson class number of a soil

**Sampling:** Sampled by Client **Date Sampled:** Unknown

**Preparation:** Prepared in accordance with the test method



## RESULT:

Emerson Class No.

5



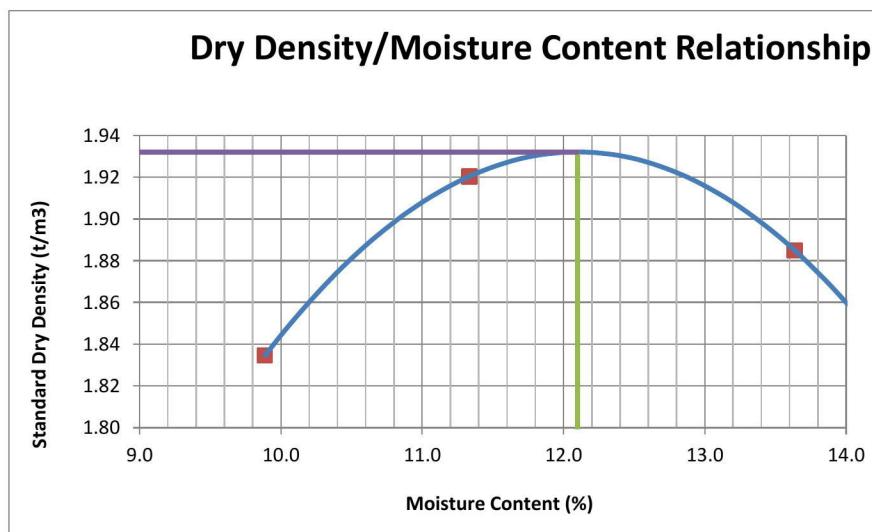
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

NATA Accredited Laboratory Number: 14874

Authorised Signatory:

16/08/2016

Chris Lloyd


Date:

MACQUARIE  
GEO TECH

Macquarie Geotechnical  
Unit 8/10  
Bradford Street  
Alexandria NSW 2015

# DRY DENSITY / OPTIMUM MOISTURE CONTENT REPORT

|                                                                                                                                                                                                                                                                                                                          |                                             |                     |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|--------------|
| Client:                                                                                                                                                                                                                                                                                                                  | Morrow Geotechnics                          | Source:             | BH4 BDS1     |
| Address:                                                                                                                                                                                                                                                                                                                 | PO Box 4069, Carlton, NSW, 2218             | Sample Description: | Refer to Log |
| Project:                                                                                                                                                                                                                                                                                                                 | P1136 Jamisontown                           | Report No:          | S15492-MDD   |
| Job No:                                                                                                                                                                                                                                                                                                                  | S16328                                      | Lab No:             | S15492       |
| <b>Test Procedure:</b> <input checked="" type="checkbox"/> AS1289.5.1.1 Determination of the dry density/moisture content relation of a soil using standard compactive effort<br><input checked="" type="checkbox"/> AS1289.2.1.1 Determination of the moisture content of a soil - Oven drying method (Standard method) |                                             |                     |              |
| Sampling:                                                                                                                                                                                                                                                                                                                | Sampled by Client                           | Date Sampled:       | Unknown      |
| Preparation:                                                                                                                                                                                                                                                                                                             | Prepared in accordance with the test method |                     |              |



|                                         |       |
|-----------------------------------------|-------|
| Maximum Dry Density (t/m <sup>3</sup> ) | 1.932 |
| Optimum Moisture Content (%)            | 12.1  |
| Percentage Oversize on 19mm sieve (%)   | 0     |
| Percentage Oversize on 37.5mm sieve (%) | 0     |



The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

NATA Accredited Laboratory Number: 14874

Authorised Signatory:

16/08/2016

Chris Lloyd

Date:



Macquarie Geotechnical  
Unit 8/10  
Bradford Street  
Alexandria NSW 2015



## ANALYTICAL REPORT



Accreditation No. 2562

### CLIENT DETAILS

Contact Alan Morrow  
Client MORROW GEOTECHNICS PTY LTD  
Address UNIT 5  
12 WINCHESTER STREET  
CARLTON NSW 2218  
  
Telephone (Not specified)  
Facsimile (Not specified)  
Email alan@morrowgeo.com.au  
  
Project P1136  
Order Number (Not specified)  
Samples 8

### LABORATORY DETAILS

Manager Huong Crawford  
Laboratory SGS Alexandria Environmental  
Address Unit 16, 33 Maddox St  
Alexandria NSW 2015  
  
Telephone +61 2 8594 0400  
Facsimile +61 2 8594 0499  
Email au.environmental.sydney@sgs.com  
  
SGS Reference **SE155504 R0**  
Date Received 04 Aug 2016  
Date Reported 11 Aug 2016

### COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

### SIGNATORIES

Andy Sutton  
Senior Organic Chemist

Dong Liang  
Metals/Inorganics Team Leader



# ANALYTICAL REPORT

SE155504 R0

| Sample Number | SE155504.001 | Sample Matrix | Soil | Sample Date | 03 Aug 2016 | Sample Name | BH4-DS1 | SE155504.002 | Soil | 03 Aug 2016 | SE155504.003 | Soil | 03 Aug 2016 | SE155504.004 | Soil | 03 Aug 2016 |
|---------------|--------------|---------------|------|-------------|-------------|-------------|---------|--------------|------|-------------|--------------|------|-------------|--------------|------|-------------|
|---------------|--------------|---------------|------|-------------|-------------|-------------|---------|--------------|------|-------------|--------------|------|-------------|--------------|------|-------------|

Parameter Units LOR

**pH in soil (1:5) Method: AN101 Tested: 11/8/2016**

|    |          |   |     |   |     |   |
|----|----------|---|-----|---|-----|---|
| pH | pH Units | - | 6.9 | - | 7.0 | - |
|----|----------|---|-----|---|-----|---|

**Conductivity and TDS by Calculation - Soil Method: AN106 Tested: 11/8/2016**

|                                                |       |   |    |   |    |   |
|------------------------------------------------|-------|---|----|---|----|---|
| Conductivity of Extract (1:5 dry sample basis) | µS/cm | 1 | 16 | - | 16 | - |
|------------------------------------------------|-------|---|----|---|----|---|

**Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: AN122 Tested: 11/8/2016**

|                                    |          |      |   |      |   |      |
|------------------------------------|----------|------|---|------|---|------|
| Exchangeable Sodium, Na            | mg/kg    | 2    | - | 26   | - | 14   |
| Exchangeable Sodium, Na            | meq/100g | 0.01 | - | 0.12 | - | 0.06 |
| Exchangeable Sodium Percentage*    | %        | 0.1  | - | 2.6  | - | 1.9  |
| Exchangeable Potassium, K          | mg/kg    | 2    | - | 60   | - | 40   |
| Exchangeable Potassium, K          | meq/100g | 0.01 | - | 0.15 | - | 0.10 |
| Exchangeable Potassium Percentage* | %        | 0.1  | - | 3.5  | - | 3.1  |
| Exchangeable Calcium, Ca           | mg/kg    | 2    | - | 530  | - | 520  |
| Exchangeable Calcium, Ca           | meq/100g | 0.01 | - | 2.6  | - | 2.6  |
| Exchangeable Calcium Percentage*   | %        | 0.1  | - | 60.2 | - | 79.8 |
| Exchangeable Magnesium, Mg         | mg/kg    | 2    | - | 180  | - | 60   |
| Exchangeable Magnesium, Mg         | meq/100g | 0.02 | - | 1.5  | - | 0.49 |
| Exchangeable Magnesium Percentage* | %        | 0.1  | - | 33.7 | - | 15.2 |
| Cation Exchange Capacity           | meq/100g | 0.02 | - | 4.4  | - | 3.2  |

**pH in soil (1:2) Method: AN101 Tested: 11/8/2016**

|          |          |   |   |   |   |   |
|----------|----------|---|---|---|---|---|
| pH (1:2) | pH Units | - | - | - | - | - |
|----------|----------|---|---|---|---|---|

**Conductivity (1:2) in soil Method: AN106 Tested: 11/8/2016**

|                           |        |   |   |   |   |   |
|---------------------------|--------|---|---|---|---|---|
| Conductivity (1:2) @25 C* | µS/cm  | 1 | - | - | - | - |
| Resistivity (1:2)*        | ohm cm | - | - | - | - | - |

**Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: AN245 Tested: 11/8/2016**

|          |       |      |   |   |   |   |
|----------|-------|------|---|---|---|---|
| Chloride | mg/kg | 0.25 | - | - | - | - |
| Sulphate | mg/kg | 0.5  | - | - | - | - |



# ANALYTICAL REPORT

SE155504 R0

|               |              |              |              |              |
|---------------|--------------|--------------|--------------|--------------|
| Sample Number | SE155504.001 | SE155504.002 | SE155504.003 | SE155504.004 |
| Sample Matrix | Soil         | Soil         | Soil         | Soil         |
| Sample Date   | 03 Aug 2016  | 03 Aug 2016  | 03 Aug 2016  | 03 Aug 2016  |
| Sample Name   | BH4-DS1      | BH4-DS2      | BH4-DS3      | BH1-DS1      |

Parameter

Units

LOR

Moisture Content   Method: AN002   Tested: 8/8/2016

|            |      |     |    |    |    |    |
|------------|------|-----|----|----|----|----|
| % Moisture | %w/w | 0.5 | 14 | 13 | 11 | 15 |
|------------|------|-----|----|----|----|----|



# ANALYTICAL REPORT

SE155504 R0

| Sample Number | SE155504.005 | Sample Matrix | Soil | Sample Date | 03 Aug 2016 | Sample Name | BH1-DS2 | SE155504.006 | Soil | 03 Aug 2016 | SE155504.007 | Soil | 03 Aug 2016 | SE155504.008 | Soil | 03 Aug 2016 | BH3-DS2 |
|---------------|--------------|---------------|------|-------------|-------------|-------------|---------|--------------|------|-------------|--------------|------|-------------|--------------|------|-------------|---------|
|---------------|--------------|---------------|------|-------------|-------------|-------------|---------|--------------|------|-------------|--------------|------|-------------|--------------|------|-------------|---------|

| Parameter | Units | LOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|-------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|-----------|-------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

**pH in soil (1:5) Method: AN101 Tested: 11/8/2016**

|    |          |   |   |   |     |     |   |   |   |   |   |   |   |   |   |   |   |
|----|----------|---|---|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| pH | pH Units | - | - | - | 7.3 | 7.2 | - | - | - | - | - | - | - | - | - | - | - |
|----|----------|---|---|---|-----|-----|---|---|---|---|---|---|---|---|---|---|---|

**Conductivity and TDS by Calculation - Soil Method: AN106 Tested: 11/8/2016**

|                                                |       |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |   |
|------------------------------------------------|-------|---|---|---|----|----|---|---|---|---|---|---|---|---|---|---|---|
| Conductivity of Extract (1:5 dry sample basis) | µS/cm | 1 | - | - | 19 | 20 | - | - | - | - | - | - | - | - | - | - | - |
|------------------------------------------------|-------|---|---|---|----|----|---|---|---|---|---|---|---|---|---|---|---|

**Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: AN122 Tested: 11/8/2016**

|                                    |          |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|------------------------------------|----------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Exchangeable Sodium, Na            | mg/kg    | 2    | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Sodium, Na            | meq/100g | 0.01 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Sodium Percentage*    | %        | 0.1  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Potassium, K          | mg/kg    | 2    | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Potassium, K          | meq/100g | 0.01 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Potassium Percentage* | %        | 0.1  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Calcium, Ca           | mg/kg    | 2    | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Calcium, Ca           | meq/100g | 0.01 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Calcium Percentage*   | %        | 0.1  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Magnesium, Mg         | mg/kg    | 2    | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Magnesium, Mg         | meq/100g | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Exchangeable Magnesium Percentage* | %        | 0.1  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Cation Exchange Capacity           | meq/100g | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

**pH in soil (1:2) Method: AN101 Tested: 11/8/2016**

|          |          |   |     |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
|----------|----------|---|-----|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|
| pH (1:2) | pH Units | - | 6.3 | - | - | - | 7.1 | - | - | - | - | - | - | - | - | - | - |
|----------|----------|---|-----|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|

**Conductivity (1:2) in soil Method: AN106 Tested: 11/8/2016**

|                           |        |   |       |   |   |   |       |   |   |   |   |   |   |   |   |   |   |
|---------------------------|--------|---|-------|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|
| Conductivity (1:2) @25 C* | µS/cm  | 1 | 38    | - | - | - | 90    | - | - | - | - | - | - | - | - | - | - |
| Resistivity (1:2)*        | ohm cm | - | 26000 | - | - | - | 11000 | - | - | - | - | - | - | - | - | - | - |

**Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: AN245 Tested: 11/8/2016**

|          |       |      |     |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
|----------|-------|------|-----|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|
| Chloride | mg/kg | 0.25 | 8.8 | - | - | - | 4.3 | - | - | - | - | - | - | - | - | - | - |
| Sulphate | mg/kg | 0.5  | 13  | - | - | - | 17  | - | - | - | - | - | - | - | - | - | - |



# ANALYTICAL REPORT

SE155504 R0

|               |              |              |              |              |
|---------------|--------------|--------------|--------------|--------------|
| Sample Number | SE155504.005 | SE155504.006 | SE155504.007 | SE155504.008 |
| Sample Matrix | Soil         | Soil         | Soil         | Soil         |
| Sample Date   | 03 Aug 2016  | 03 Aug 2016  | 03 Aug 2016  | 03 Aug 2016  |
| Sample Name   | BH1-DS2      | BH1-DS3      | BH1-DS4      | BH3-DS2      |

Parameter      Units      LOR

Moisture Content    Method: AN002    Tested: 8/8/2016

|            |      |     |    |     |    |    |
|------------|------|-----|----|-----|----|----|
| % Moisture | %w/w | 0.5 | 14 | 8.3 | 16 | 14 |
|------------|------|-----|----|-----|----|----|

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared to the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

**Conductivity (1:2) in soil Method: ME-(AU)-[ENV]AN106**

| Parameter                 | QC Reference | Units  | LOR | MB | DUP %RPD | LCS %Recovery |
|---------------------------|--------------|--------|-----|----|----------|---------------|
| Conductivity (1:2) @25 C* | LB107309     | µS/cm  | 1   | <1 | 1%       | 101%          |
| Resistivity (1:2)*        | LB107309     | ohm cm | -   |    | 1%       | NA            |

**Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106**

| Parameter                                      | QC Reference | Units | LOR | DUP %RPD | LCS %Recovery |
|------------------------------------------------|--------------|-------|-----|----------|---------------|
| Conductivity of Extract (1:5 dry sample basis) | LB107363     | µS/cm | 1   | 6%       | 95%           |

**Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[ENV]AN122**

| Parameter                          | QC Reference | Units    | LOR  | MB    | LCS %Recovery |
|------------------------------------|--------------|----------|------|-------|---------------|
| Exchangeable Sodium, Na            | LB107420     | mg/kg    | 2    |       | 91%           |
| Exchangeable Sodium, Na            | LB107420     | meq/100g | 0.01 | <0.01 | NA            |
| Exchangeable Sodium Percentage*    | LB107420     | %        | 0.1  |       | NA            |
| Exchangeable Potassium, K          | LB107420     | mg/kg    | 2    |       | 87%           |
| Exchangeable Potassium, K          | LB107420     | meq/100g | 0.01 | <0.01 | NA            |
| Exchangeable Potassium Percentage* | LB107420     | %        | 0.1  |       | NA            |
| Exchangeable Calcium, Ca           | LB107420     | mg/kg    | 2    |       | 87%           |
| Exchangeable Calcium, Ca           | LB107420     | meq/100g | 0.01 | <0.01 | NA            |
| Exchangeable Calcium Percentage*   | LB107420     | %        | 0.1  |       | NA            |
| Exchangeable Magnesium, Mg         | LB107420     | mg/kg    | 2    |       | 89%           |
| Exchangeable Magnesium, Mg         | LB107420     | meq/100g | 0.02 | <0.02 | NA            |
| Exchangeable Magnesium Percentage* | LB107420     | %        | 0.1  |       | NA            |
| Cation Exchange Capacity           | LB107420     | meq/100g | 0.02 | <0.02 | NA            |

**Moisture Content Method: ME-(AU)-[ENV]AN002**

| Parameter  | QC Reference | Units | LOR | DUP %RPD |
|------------|--------------|-------|-----|----------|
| % Moisture | LB107086     | %w/w  | 0.5 | 0 - 3%   |

**pH in soil (1:2) Method: ME-(AU)-[ENV]AN101**

| Parameter | QC Reference | Units    | LOR | DUP %RPD | LCS %Recovery |
|-----------|--------------|----------|-----|----------|---------------|
| pH (1:2)  | LB107309     | pH Units | -   | 1%       | 99%           |

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared to the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

**pH in soil (1:5) Method: ME-(AU)-[ENV]AN101**

| Parameter | QC Reference | Units    | LOR | DUP %RPD | LCS %Recovery |
|-----------|--------------|----------|-----|----------|---------------|
| pH        | LB107363     | pH Units | -   | 1%       | 100%          |

**Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: ME-(AU)-[ENV]AN245**

| Parameter | QC Reference | Units | LOR  | MB    | DUP %RPD | LCS %Recovery |
|-----------|--------------|-------|------|-------|----------|---------------|
| Chloride  | LB107204     | mg/kg | 0.25 | <0.25 | 1%       | 93%           |
| Sulphate  | LB107204     | mg/kg | 0.5  | <0.5  | 1%       | 97%           |

## METHOD

## METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl<sub>2</sub>) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H<sub>+</sub>.

AN106

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as  $\mu\text{mhos}/\text{cm}$  or  $\mu\text{S}/\text{cm}$  @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.

AN106

Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

|           |                |
|-----------|----------------|
| ESP < 6%  | non-sodic      |
| ESP 6-15% | sodic          |
| ESP >15%  | strongly sodic |

Method is referenced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

AN245

Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO<sub>2</sub>, NO<sub>3</sub> and SO<sub>4</sub> are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

## FOOTNOTES

|     |                                                                    |     |                                              |
|-----|--------------------------------------------------------------------|-----|----------------------------------------------|
| IS  | Insufficient sample for analysis.                                  | LOR | Limit of Reporting                           |
| LNR | Sample listed, but not received.                                   | ↑↓  | Raised or Lowered Limit of Reporting         |
| *   | NATA accreditation does not cover the performance of this service. | QFH | QC result is above the upper tolerance       |
| **  | Indicative data, theoretical holding time exceeded.                | QFL | QC result is below the lower tolerance       |
|     |                                                                    | -   | The sample was not analysed for this analyte |
|     |                                                                    | NVL | Not Validated                                |

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf>

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <http://www.sgs.com/en/terms-and-conditions>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

# Appendix C

## IMPORTANT INFORMATION

This Document has been provided by Morrow Geotechnics Pty Ltd subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Morrow Geotechnics' proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Morrow Geotechnics' Services are as described in Morrow Geotechnics' proposal, and are subject to restrictions and limitations. Morrow Geotechnics did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. The scope of services may have been limited by such factors as time, budget, site access or other site conditions. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Morrow Geotechnics in regards to it. Any advice given within this document is limited to geotechnical considerations only. Other constraints particular to the project, including but not limited to architectural, environment, heritage and planning matters may apply and should be assessed independently of this advice.

Conditions may exist which were undetectable given the limited nature of the enquiry Morrow Geotechnics was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required. No geotechnical investigation can provide a full understanding of all possible subsurface details and anomalies at a site.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Morrow Geotechnics' opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Morrow Geotechnics to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Morrow Geotechnics for incomplete or inaccurate data supplied by others.

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Morrow Geotechnics be notified of any variations and be provided with an opportunity to review the recommendations of this report.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Morrow Geotechnics accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.