

ABN 64 002 841 063

Job No: 14947/1 Our Ref: 14947/1-AA 24 August 2021

Legacy Property Pty Ltd MLC Centre, Level 45, 25 Martin Place SYDNEY NSW 2000

Attention: Mr T Kent

Dear Sir

re: Proposed Residential Development 89-115 O'Connell Street, Caddens Geotechnical Investigation

This report provides the results of a geotechnical investigation carried out at 89-115 O'Connell Street, Caddens, hereafter referred to as the site. This investigation was carried out in general accordance with Australian Standard AS1726 (Reference 1).

We understand that Legacy Property has entered into a contract to purchase the above site and the site is proposed to be subdivided for residential development. The details on the proposed subdivision were not provided, but earthworks for construction of building platforms and internal roads for the subdivision are anticipated to involve up to about 2.0m deep excavation and some fill placement.

A geotechnical investigation is required to assess subsurface profile across the site in order to provide geotechnical recommendations on earthworks and preliminary design of future dwellings and internal road pavements.

Review of Available Information

Reference to the Geological Map of Penrith (scale 1:100,000) indicates that the bedrock at the site is Bringelly Shale, belonging to the Wianamatta Group of rocks and comprising shale, carbonaceous claystone, laminite, fine to medium grained lithic sandstone, and rare coal.

Reference to the Soil Landscape Map of Penrith (scale 1:100,000) indicates that the landscape at the site belongs to Luddenham Group, which is characterised by undulating to rolling low hills on Wianamatta Group shale, often associated with Minchinbury sandstone, with local relief of 50m to 80m, ground surface slopes of 5% to 20%, narrow ridges, hillcrests and valley. Soil in this group is likely to be up to 1.5m deep, highly plastic, moderately reactive, locally impermeable and susceptible to high erosion hazards.

Reference to Map showing Salinity Potential in Western Sydney (Scale Approximate 1:143,000) prepared by Department of Infrastructures, Planning and Natural Resources (2002) indicates moderate salinity potential at the site.

Field Work

Field works for the geotechnical investigation were carried out on 6 and 10 August 2021 and consisted of the following:

- Reviewing geological map, soil landscape map and salinity potential map relevant to the site.
- Reviewing services plans obtained from "Dial Before You Dig" to locate existing services across the site.
- Carrying out a walkover survey to assess existing site conditions and nominate test pit locations.
- Scanning proposed test pit locations with aim of avoiding damages to existing underground services during test pit excavation. We engaged a specialist services locator for this purpose.
- Excavating 16 test pits (designated as TP1 to TP16) using a backhoe. Test pits were uniformly distributed across the site and terminated at backhoe refusal in bedrock at depths of about 2.5m from existing ground surface. Approximate locations of test pits are indicated on the attached Drawing No 14947/1-AA1. Excavation logs are also attached.
- Conducting Dynamic Cone Penetrometer (DCP) tests adjacent to test pits to assess strength characteristics of subsurface soils. DCP tests were terminated due to refusal at depths of about 0.5m to 1.0m. DCP test results are included in appropriate excavation logs.
- Measuring depths to groundwater level or seepage in test pits, where encountered.
- Collecting representative soil samples for visual assessment and laboratory testing.
- Backfilling the test pits with excavated materials after logging and sampling.

Field work was supervised by a Field Engineer from this company, responsible for nominating the test locations, conducting DCP tests, sampling, and preparation of field logs.

Site Conditions

The site is of approximately of rectangular shape, measuring about 290.0m by 275.0m in plan. The following observations were made during field works:

- This site is bound by O'Connell Street, Caddens to the north, O'Connell Lane to the west and existing residential developments in two remaining sides.
- There is an existing dwelling and a commercial building with associated driveway, shed etc in the north eastern portion of the site. Vacant portions of the site are grass covered.
- In general, ground surface across the site dips gently towards west and south from the north eastern portion of the site.
- There is a drainage depression originated in the south eastern portion of the site and dipping in about north westerly direction.

Sub-surface profiles encountered in thirteen test pits are detailed in the attached excavation logs, and summarised below in Table 1.

Test Pit	Termination	Depth Range for	Depth Range for	Depth to Bedrock
No	Depth* (m)	Topsoil (m)	Residual Soil (m)	(m)
	,	,	. ,	. ,
TP1	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP2	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP3	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP4	1.8	0.0-0.4	0.4-1.8	1.8
TP5	2.0	0.0-0.3	0.3-2.0	2.0
TP6	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP7	2.5	0.0-0.3	0.2->2.5	Not Encountered
TP8	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP9	2.5	0.0-0.3	0.2->2.5	Not Encountered
TP10	2.5	0.0-0.3	0.2->2.5	Not Encountered
TP11	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP12	2.5	0.0-0.2	0.2->2.5	Not Encountered
TP13	2.5	0.0-0.4	0.2->2.5	Not Encountered
TP14	2.5	0.0-0.4	0.2->2.5	Not Encountered
TP15	2.5	0.0-0.3	0.2->2.5	Not Encountered
TP16	2.5	0.0-0.3	0.2->2.5	Not Encountered

* Approximate only

Based on information presented in Table 1, we anticipate that the subsurface profile across the site comprises a sequence of topsoil and residual soils underlain by bedrock. Bedrock was encountered in only two test pits at depths of 1.8m to 2.0m but remaining test pits did not encounter bedrock up to their termination depth of about 2.5m from existing ground surface.

Topsoil is sandy silty clay of low plasticity with some grass roots. Residual soils include localised silty sandy clay of low plasticity and widespread silty clay of medium to high plasticity at moisture content lower than plastic limit with some ironstone and siltstone gravels. Residual soils are assessed to be stiff to hard. Bedrock encountered in two test pits is extremely weathered siltstone/sandstone of very low to low strength.

Groundwater was not encountered to test pit termination depths of 1.8m to 2.0m from existing ground surface. Therefore, it is anticipated that the depth to groundwater level across the site is more than 2.5m under normal conditions. It should however be noted that the groundwater levels might vary due to rainfall and other factors not evident during field work.

Laboratory Testing

Representative soil samples recovered from the test pits were tested in the NATA accredited laboratory of SGS Environmental Services and Geotech Testing Pty Ltd, in accordance with relevant Australian Standards, to determine the following properties:

- Chemical properties including Exchangeable Sodium Percentage (ESP), Electrical Conductivity (EC), pH and Sulphate.
- Physical properties including shrink swell index, Atterberg Limits, maximum dry density, optimum moisture content, and California Bearing Ratio (CBR).

Test Pit	Sample Depth (m)	EC (μS/cm)	pH	Chloride (ppm)	cal Propertie Sulphate (ppm)	Resistivity (ohm-cm)	Exchangeable Sodium Percentage (%)
TP1	0.5-0.6	520	6.8	710	8.5	970	19.5
TP1	1.5-1.6	720	9.1	410	38	1000	18.0
TP2	0.8-0.9	400	-	-	-	-	-
TP2	1.6-1.7	760	-	-	-	-	-
TP3	1.0-1.1	25	-	-	-	-	-
TP3	2.0-2.1	19	-	-	-	-	-
TP4	0.5-0.6	58	6.6	4.2	44	10000	5.1
TP4	1.5-1.6	21	5.6	9.0	16	24000	10.1
TP5	0.9-1.0	960	-	-	-	-	-
TP5	1.4-1.5	240	-	-	-	-	-
TP6	1.0-1.0	1300	-	-	-	-	-
TP6	2.0-2.1	1200	-	-	-	-	-
TP7	0.9-1.0	41	6.5	12	26	12000	5.8
TP7	2.0-2.1	94	7.7	12	44	5200	10.0
TP8	1.0-1.1	770	-	-	-	-	-
TP8	1.9-2.0	1100	-	-	-	-	-
TP9	0.5-0.6	190	-	-	-	-	-
TP9	1.5-1.6	98	-	-	-	-	-
TP10	1.0-1.1	1000	4.3	1500	130	500	50.3
TP10	202.1	1000	4.3	950	110	470	49.1
TP11	1.0-1.1	340	-	-	-	-	-
TP11	2.0-2.1	110	-	-	-	-	-
TP12	1.0-1.1	180	-	-	-	-	-
TP12	2.0-2.1	210	-	-	-	-	-
TP13	1.5-1.6	210	7.8	100	41	2800	5.0
TP13	2.0-2.1	550	8.7	460	30	1000	12.8
TP14	0.5-0.6	400	-	-	-	-	-
TP14	1.5-1.6	1500	-	-	-	-	-
TP15	1.0-1.1	390	-	-	-	-	-
TP15	2.0-2.1	760	-	-	-	-	-
TP16	1.0-1.1	760	8.5	150	65	1900	8.3
TP16	2.0-2.1	970	8.0	1300	100	540	26.3

Detailed laboratory test results are attached, and summaries are presented in Tables 2, 3 and 4.

Table 2 – Results of Chemical Properties Tests

	Comula	الما الما الم	Disatia	Disatistu	Lincor	Charles Coursell
Test Pit	Sample	Liquid	Plastic	Plasticity	Linear	Shrink Swell
rootrik	Depth (m)	Limit (%)	Limit (%)	Index (%)	Shrinkage (%)	Index (%/pF)
TP1	2.0 - 2.1	42.0	17.0	25.0	15.0	
TP2	0.3 - 0.6	-	-	-	-	2.6
TP4	1.0 - 1.1	41.0	21.0	20.0	8.5	
TP4	0.4 - 0.7	-	-	-	-	3.0
TP5	0.4 - 0.7	-	-	-	-	0.9
TP6	0.5 - 0.6	69.0	22.0	47.0	15.5	
TP7	0.4-0.7	-	-	-	-	1.0
TP8	0.3 - 0.4	73.0	25.0	48.0	18.0	
TP9	0.4 - 0.7	-	-	-	-	4.1
TP10	0.3 - 0.4	67.0	23.0	44.0	17.5	
TP11	0.3 - 0.5	49.0	17.0	32.0	14.0	
TP12	0.3 - 0.4	65.0	22.0	43.0	17.0	
TP13	0.4 - 0.5	52.0	21.0	31.0	17.5	
TP13	0.4 - 0.7	-	-	-	-	2.7
TP15	0.5 - 0.6	63.0	23.0	40.0	15.0	
TP16	0.3 - 0.6	-	-	-	-	3.9

Table 3 – Results of Physical Shrink Swell and Atterberg Limits Tests

Table 4 – Results of Compaction and California Bearing Ratio Tests

Test Pit	Sample Depth (m)	Natural Moisture Content (%)	Maximum Dry Density (t/m ³)	Optimum Moisture Content (%)	California Bearing Ratio (%)
TP3	0.3-0.6	24.5	1.57	22.8	6
TP7	0.4-0.7	22.3	1.70	19.5	6
TP12	0.3-0.6	14.2	1.75	16.3	4
TP15	0.3-0.6	20.8	1.7	18.5	2

DISCUSSION AND RECOMMENDATIONS

Soil Erodibility

Erosion is the detachment and movement of soil materials. Soil erodibility (or dispersivity) is generally assessed by conducting chemical tests such as Exchangeable Sodium Percentage (ESP) and Sodium Absorption Ratio (SAR), and physical tests such as Emerson Class and Dispersion Percentage. It should however be noted that assessment of soil dispersibility based on these methods might differ from each other.

For the proposed investigation, ESP values for representative soil samples were determined. Soils with ESP values of 10% or more are considered sodic, and susceptible to excessive erosion (Reference 2). However, soils with ESP of more than 5% are potentially dispersive.

ESP values for 12 representative soil samples presented in Table 2 indicate that the ESP values vary from 5.0% to 50.3%. All samples have ESP of more than 5.0% and 8 out of 12 samples show ESP value of more than 10.0%. Therefore, it is our assessment that most of the soils likely to be disturbed or excavated during proposed development works are likely to be dispersive and susceptible to excessive erosion.

Therefore, we recommend that the earthworks for the proposed development works should be carried out in accordance with an appropriate Soil Management Plan to manage the impacts from the erosive soils. We recommend that the Soil Management Plan be developed in accordance with Department of Housing Guidelines (Reference 3).

Soil Salinity

Soil salinity is generally assessed by measuring EC of a soil sample made up of 1:5 soil water suspension. Thus, determined EC is multiplied by a factor varying from 6 to 23, based on the texture of the soil sample, to obtain Corrected Electrical Conductivity designated as ECe (Reference 4). Alternatively, ECe may be directly measured in soil saturation extracts. Soils are classified as saline if ECe of the saturated extracts exceed 4.0dS/m. The criteria for assessment of soil salinity classes are shown in the following Table 5 (Reference 4).

Classification	EC _e (dS/m)	Comments		
Non-saline	<2	Salinity effects mostly negligible		
Slightly saline	2 – 4	Yields of very sensitive crops may be affected		
Moderately saline	4 – 8	Yields of many crops affected		
Very saline	8 – 16	Only tolerant crops yield satisfactorily		
Highly saline	>16	Only a few tolerant crops yield satisfactorily		

Electrical conductivity (EC) values for 32 representative soil samples are summarised in Table 2. For clayey soils encountered across the site, appropriate multiplying factor is assumed to vary from 9 to 10. For these factors, ECe for representative soil samples are estimated to vary from about 2.0dS/m to 15.0dS/m. Soils with ECe of less than 4.0dS/m are assessed to be localised and minor. Therefore, it is our assessment that the soils likely to be disturbed or excavated during proposed development works should be considered saline. Therefore earthworks for the proposed development works may be carried out in accordance with a Saline Soils Management Plan (SSMP). Recommended SSMP is presented below in this report.

Exposure Classification

Australian Standard AS2870 (Reference 5) provides guidelines to assess Exposure Classification for saline and sulphate soils. Table 6 below provides salinity and Exposure Classifications based on EC_e , and Table 7 provides Exposure Classification for sulphate soils.

Electrical Conductivity,	Exposure	Salinity Classification
EC _e (dS/m)	Classification	
<2	A1	Non-saline
2-4	A1	Slightly saline
4 – 8	A2	Moderately saline
8 – 16	B1	Very saline
>16	B2	Highly saline

Table 6 – Exposure Classifications for Saline Soils

Sulphate	expressed as SO ₃	54	Exposure Classification*			
In Soil (ppm)	In Groundwater (ppm)	рН	Soil Condition A	Soil Condition B		
<5000	<1000	>5.5	A2	A1		
5000-10000	1000-3000	4.5-5.5	B1	A2		
10000-20000	3000-10000	4.0-4.5	B2	B1		
>20000	>10000	<4.0	C2	B2		

Table 7 – Exposure Classifications for Sulphate Soils

Approximately 100ppm of $SO_4 = 80ppm$ of SO_3

*Soil Condition A = high permeability soils (e.g. sands and gravels) which are below groundwater

*Soil Condition B = low permeability soils (e.g. silts and clays) and all soils above groundwater

Soils across the site are clayey and therefore appropriate Soil Condition is "Condition B". Therefore, based on laboratory test results presented in Tables 2 and guidelines on Exposure Classifications presented in Tables 6 and 7, the following are our assessments:

- Based on ECe, the Exposure Classifications for soils across site belong to Class A1 to A2.
- Based on pH, the Exposure Classifications for soils across site belong to Class A1 to B1.
- Based on sulphate, the Exposure Classifications for soils across site belong to Class A1.

Therefore, we recommend that the proposed subdivision development use construction materials (such as concrete, bricks) and construction methods appropriate for Exposure Class B1. However, Exposure Classification for individual lot should be reassessed after post earthworks salinity assessment.

Aggressivity Classification

Australian Standard AS2159 (Reference 6) provides guidelines to assess Aggressivity Classification for soils and groundwater. Table 8 below provides Aggressivity Classifications applicable to iron and steel and Table 8 provides Aggressivity Classifications applicable to concrete.

Chlo	oride	Hq	Resistivity	Soil Condition	Soil Condition
In Soil (ppm)	In Water (ppm)	рп	(ohm cm)	A*	B#
<5000	<1000	>5.0	>5000	Non-aggressive	Non-aggressive
5000-20000	1000-10000	4.0-5.0	2000-5000	Mild	Non-aggressive
20000-50000	10000-20000	3.0-4.0	1000-2000	Moderate	Mild
>50000	>20000	<3.0	<1000	Severe	Moderate

Table 8 – Aggressivity Classification for Steel/Iron

*Soil Condition A = high permeability soils (e.g. sands and gravels) which are below groundwater #Soil Condition B = low permeability soils (e.g. silts and clays) and all soils above groundwater

Sulphate expressed as SO ₄			Chloride in	Soil Condition	Soil Condition	
In Soil	In Groundwater	рН	Water		B	
(ppm)	(ppm)		(ppm)	~	Б	
<5000	<1000	>5.5	<6000	Mild	Non-aggressive	
5000-10000	1000-3000	4.5-5.5	6000-12000	Moderate	Mild	
10000-20000	3000-1000	4.0-4.5	12000-30000	Severe	Moderate	
>20000	>10000	<4.0	>30000	Very Severe	Severe	

Table 9 – Aggressivity Classification for Concrete

Approximately 100ppm of $SO_4 = 80ppm$ of SO_3

As indicated above, appropriate Soil Condition is "Condition B". Therefore, based on laboratory test results presented in Tables 2 and guidelines on Aggressivity Classifications presented in Tables 8 and 9, the following are our assessments:

- Based on pH, soils across site are assessed to be Non-aggressive to steel/iron but Non to Moderately Aggressive to concrete.
- Based on chloride content, soils across site are assessed to be Non-aggressive to steel/iron as well as concrete.
- Based on sulphate content, soils across site are assessed to be Non-aggressive to concrete.
- Based on resistivity, soils across site are assessed to be Non-aggressive to Moderately Aggressive to steel/iron as well as concrete.

Therefore, we recommend that the proposed subdivision development use construction materials (such as concrete, bricks) and construction methods appropriate Moderately Aggressive site.

Soil Reactivity

Test pits indicate that the residual soils are predominantly silty clay and silty sandy clay, visually assessed to be of low to medium plasticity at moisture content lower than plastic limit with some ironstone and siltstone gravels. Laboratory tests in representative soil samples to assess reactivity of soils indicate the following:

Liquid Limit	= 41.0% to 73.0%
Plastic Limit	= 17.0% to 25.0%
Plasticity Index	= 2.0% to 48.0%
Linear Shrinkage	= 9.0% to 18.0%
Shrink Swell Index	= 0.9%/pF to 4.1%/pF

Therefore, it is our assessment that the soils likely to be disturbed and excavated during proposed development works are predominantly medium to high plasticity clay.

Excavation Conditions

The details on the proposed subdivision were not provided, but earthworks for construction of building platforms and internal roads for the subdivision are anticipated to involve up to about 2.0m deep excavation and some fill placement. Therefore, the materials to be excavated are anticipated to comprise topsoil, residual soils and bedrock (siltstone/sandstone). However, bedrock encountered to depth of about 2.0m is anticipated to be localised and of very low to low strength.

It is our assessment that the excavation of topsoil, residual soils and bedrocks of very low to low strength can be achieved using conventional earthmoving equipment such as excavators and dozers. Therefore, we anticipate that the excavation works for the proposed subdivision development can be completed with conventional earthmoving equipment provided slow production rate is acceptable while excavating into bedrock.

Ground vibration during excavation works is generally represented by maximum peak particle velocity. Houses and buildings, similar to those currently existing in the vicinity of the site, are anticipated to tolerate ground vibration of about 5.0mm/s to 10.0mm/s. We anticipate that excavations into soils and very low to low strength bedrock will result in ground vibrations that are likely to be within tolerable limits for stability of existing structures in the vicinity of the site.

Based on site observation during field works, we do not anticipate significant groundwater inflow during excavations to about 2.0m. Minor groundwater inflow, if any, could be managed by a conventional sump and pump method. However, trafficability problems could arise locally during wet weather or if water is allowed to pond at the site.

However, if depth of excavation exceeds 3.0m, bedrocks of medium to high strength sandstone may be encountered necessitating use of larger equipment (such as a rock saw, Caterpillar D9 or equivalent). Selection of rock cutting equipment is based on site access, desired smoothness of the excavated rock surface and acceptable ground vibration during rock excavation.

Fill Placement

Proposed subdivision development is anticipated to involve placement of fill during construction of building platforms and preparation of subgrades for internal road constructions. The fill should be placed in a controlled manner and we recommend the following procedures for placement of controlled fill.

- Strip existing topsoil and stockpile separately for possible future uses or dispose off the site. Topsoil may be used in landscaping.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed residual soils to detect potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about 300mm and replace with granular fill, compacted as described below.
- Undertake proof rolling of soft spots backfilled with granular fill, as described above. If the backfilled area shows movement during further proof rolling, this office should be contacted for additional recommendations, which may include stripping additional soft soils and replacing with granular materials with or without geogrid reinforcement.
- Place suitable fill materials on proof rolled surface of residual soil in horizontal layers of 200mm to 250mm maximum loose thickness, and compact to a Minimum Dry Density Ratio (MDDR) of 95% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). However, the upper 500mm of controlled fill forming subgrade for internal roads should be compacted to a MDDR of 100% Standard, at moisture content within 2% of OMC. Controlled fill should preferably comprise non-reactive fill (e.g. crushed sandstone), with a maximum particle size not exceeding 75mm, or low plasticity clay. The residual soils and bedrock obtained from excavations within the site may also be selectively used in controlled fill, after crushing to sizes finer than 75mm, moisture conditioning, and removal of unsuitable materials.
- Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 2" or better supervision, in accordance with AS3798 (Reference 7). It should be noted that a Geotechnical Inspection and Testing Authority will generally provide certification on quality of entire compacted fill only if Level 1 supervision and testing is carried out.

Batter Slopes and Retaining Structures

As described above, site preparation for the proposed subdivision development involves cut and fill operations. Cuts are anticipated to be limited in residual soil. No significant rock excavation is anticipated. The cut and fill slopes should be battered for stability or retained by engineered retaining structures.

If cut and fill slopes are to be battered for stability, we recommend the following batter slopes:

- For short-term stability in controlled fill and residual soils = 1 vertical to 1 horizontal
- For long-term stability in controlled fill and residual soils = 1 vertical to 2.5 horizontal

It is also recommended that batter slopes are provided with adequate surface and sub-surface drainage, and the crest of the batter slope is at least 1.0m away from the property boundary.

However, if cut and fill slopes steeper than those recommended above are required for whatever reason, these slopes should be retained by engineered retaining structures. Appropriate retaining structures for the proposed subdivision are anticipated to include gravity walls and cantilever walls. The pressure distribution on such walls is assumed to be triangular in shape and estimated as follows:

 $p_h = \gamma k H$

Where,

ph = Horizontal pressure (kN/m²)

- γ = Total unit weights of retained materials (kN/m³)
- k = Coefficient of earth pressure (ka or ko)

H = Retained height (m)

For design of flexible retaining structures where some lateral movement is acceptable, an active earth pressure coefficient (k_a) is recommended. However, if it is critical to limit the horizontal deformation, use of an earth pressure coefficient at rest (k_0) is recommended. Recommended earth pressure coefficients for the design of retaining structures are presented in the following Table 10.

Retained Material	Unit Weight (kN/m³)	Active Earth Pressure Coefficient, Ka	At Rest Earth Pressure Coefficient, K₀	Ultimate Passive Earth Pressure (kPa)
Controlled Fill	18.5	0.35	0.55	Ignore
Residual Soil	18.0	0.30	0.50	200.0

Table 10 - Recommended earth pressure coefficients

The above coefficients are based on the assumption that ground level behind the retaining structure is horizontal and the retained material is effectively drained. Additional earth pressures resulting from surcharge load (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any should also be allowed for in design of retaining structures. The design of any retaining structure should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

Site Classification

Australian Standard AS2870 (Reference 4) recommends building sites are classified based on thickness of clayey foundation soils and reactivity (shrink swell movements) of foundation soils. Site preparation for the proposed subdivision development involves cut and fill operations. Therefore, the thickness of clayey foundation soils, including thickness and nature of controlled fill, in each building lot at the completion of earthworks is not known at this stage. Therefore, this report provides only preliminary site classifications.

At completion of cut and fill operations, when building platforms are ready for construction of residences, sub-surface profiles within the residential lots are anticipated to belong to one of two types listed below:

- Type 1 Profile comprising residual soil underlain by bedrock
- Type 2 Profile comprising a sequence of control fill and residual soil underlain by bedrock

It is anticipated that all unsuitable materials will be removed and replaced with controlled fill placed in accordance with recommendations provided in this report. Controlled fill is anticipated to comprise residual soil and/or crushed bedrock obtained from excavations within the site. That means reactivity of fill material is anticipated to be similar or better than that of residual soils.

Therefore, based on the nature and thickness of residual soil and controlled fill likely to be encountered across the site, future residential lots are anticipated to belong to Class "A" or "S" or "M" or "H1", in accordance with Australian Standard AS2870 (Reference 4). Thickness of soil (residual soil and controlled fill combined) may vary across the site, which might indicate two or more site classes for a single residential lot. Under such circumstances, we suggest that the worst site class should be considered appropriate for that lot. The general definitions of site classes provided in Australian Standard AS2870 (Reference 4) are reproduced below in Table 11.

Site Classification	Soils Thickness* (m)	Foundation Conditions	Ground Movement (mm)
Class A	Bedrock Exposed	Most sand and rock sites with little or no ground movement from moisture changes	Not Applicable
Class S	Less than 0.6	Slightly reactive sites, which might experience only slight ground movement from moisture changes	Less than 20
Class M	0.6-1.8	Moderately reactive clay or silt sites, which might experience moderate ground movement from moisture changes	20.0 to 40.0
Class H1	More than 1.8	Highly reactive clay sites, which might experience extreme ground movement from moisture changes	40.0 to 60.0

Table 11	 Definitions of Sit 	e Classifications
----------	--	-------------------

* Total thickness of controlled fill and residual soil combined

The above classifications should be considered preliminary only and site classification for individual lot for final design should be confirmed by sampling and testing of foundation soils after construction of building platforms is completed.

Floor Slabs and Footings

We anticipate foundation materials at ground floor levels of future residences will include controlled fill or residual soils or bedrock. Under such circumstances, ground floor slabs for the future residences may be designed and constructed as ground bearing slabs, or suspended slabs supported by footings designed in accordance with recommendations provided in this report.

Ground bearing floor slabs may be designed for assessed site classifications in accordance with Australian Standard AS2870 (Reference 4. Alternatively, we recommend a Modulus of Subgrade Reaction value of 20kPa/mm, 25kPa/mm and 35.0kPa for design of ground-bearing slabs on controlled fill, residual soils and bedrock respectively.

Loading conditions for the future residences are not known at this stage. However, depending on whether construction of building platforms involves cut or fill, we consider that appropriate footings would comprise shallow footings (pad and strip footings) founded on controlled fill, residual soils or bedrock or deep footings (bored piers or screw piles) founded on bedrock. Deep footings would also be preferable where footings are required to withstand significant lateral and uplift pressures. The recommended allowable bearing pressures for design of shallow and deep footings are presented in the following Table 12.

Founding Material	Founding Depth *(m)	Allowable Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)
Controlled Fill/Residual Soil	0.0-1.0	125.0	Ignore
Bedrock	2.0->2.5	700.0	50.0

Table 12 – Recommended Allowable Bearing Pressures

* Approximate from existing ground surface

Allowable shaft adhesion value presented in Table 12 is for compressive load. Recommended shaft adhesion value for uplift pressure is half that presented in Table 12.

As depths to residual soils and bedrock with the recommended allowable bearing pressures could vary across the site (especially due to cut and fill operations) the founding depths of footings to be constructed will also vary. The founding depths presented in Table 12 are measured at test pit locations during geotechnical investigation and should be considered as indicative only. Therefore, an experienced Geotechnical Engineer should confirm founding levels during construction, on the basis of assessment made during footing excavation or pier hole drilling. The engineer should ensure that the design strength of bedrock is achieved.

For footings founded in controlled fill and residual soils, the total settlements of footings under the recommended allowable bearing pressures are estimated to be about 2.0% of the minimum dimension of footings. However, for footings founded in bedrock, total settlements under the recommended allowable bearing pressures are estimated to be 1.0% of footing width or pier diameter. The differential settlements are estimated to be about half the estimated total settlements.

Pavement Design

Design of road pavement depends on strength of subgrade, which is usually represented by CBR value and traffic load.

Results of CBR tests presented in Table 4 indicate CBR values of residual soils across the site vary from 2.0% to 6.0%. It is noted, subsurface materials with CBR value of less than 3.0% is likely to be localised.

Subgrade with CBR values of less than 3.0% are considered to be weak and generally not acceptable as subgrade for construction of road pavement. If road pavements are to be constructed on subgrade with CBR of less than 3.0%, we recommend that the subgrade is improved using one of the following options.

• Replace upper 300mm of natural clay with crushed sandstone compacted to Minimum Dry Density Ratio (MDDR) of 100% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). The crushed sandstone will have to be placed and compacted in two layers to achieve desired compaction level.

• Stabilise upper 300mm of natural soil with lime and compact to MDDR of 100% Standard, at moisture content within 2% of OMC. Although exact proportion of lime may have to be determined after conducting laboratory tests on lime stabilised subgrade materials, we suggest 4.0% by weight for preliminary budgeting purposes. It is preferable that the mixing of lime with excavated natural soil is carried out using a rotary hoe or similar equipment outside the road reserve and lime stabilised natural soil is placed and compacted in two layers.

Subgrade improvement is required in only those sections of road where subgrade CBR is assessed to be less than 3.0%. It is reiterated that the subgrade with CBR of less than 3.0% is anticipated to be localised and therefore roads may not pass through subgrade requiring improvement.

Once section of subgrade with CBR values of less than 3.0% is improved using one of the abovementioned method (if required), entire internal road pavement for proposed subdivision may be designed for an indicative subgrade CBR value of 3.0%.

Penrith City Council (Reference 8) recommends a design traffic load of 5.0x10⁵ Equivalent Standard Axle (ESA) for design of streets with likely bus routes and this traffic is deemed appropriate for internal road in the proposed subdivision development.

For recommended indicative design subgrade CBR value and design traffic loading, the recommended flexible pavement designs for internal roads in the proposed subdivision, in accordance with Penrith City Council and Austroads (References 8 and 9) is presented in the following Table 13.

	avennenit Design
Pavement Materials	Internal Roads
Asphaltic Concrete	50mm
Basecourse Material (DGB20)	150mm
Sub-base Material (DGS40)	275mm

Table 13 – Recommended Pavement Design

Recommended pavement thicknesses presented in Table 13 are valid only if the subgrade and pavement materials are compacted to the following Minimum Dry Density Ratios.

Basecourse	98% Modified
Sub-basecourse	98% Modified
Subgrade	100% Standard

The pavement design assumes provision of adequate surface and sub-surface drainage of the pavement and adjacent areas.

It should be noted that the pavement design may change if subgrade conditions and actual traffic load differs from those assumed in preparation of this report. Therefore, we recommend that the subgrade testing is carried out to confirm subgrade CBR value after completion of subgrade conditions.

Saline Soil Management Plan (SSMP)

Soils encountered across the site are anticipated to be saline as well as dispersive and therefore susceptible to excessive erosion. Therefore, earthworks for the proposed subdivision development should be carried out in accordance with a Saline Soil Management Plan (SSMP). The objective of this SSMP is to minimise the impact of saline and dispersive soils on the proposed development and minimise the impact of the proposed development on the existing salinity and hydrology. More specifically, this SSMP aims to address the following:

- Minimise the disruption to natural surface water drainage
- Minimise the potential for waterlogging or surface water pooling
- Minimise the potential for raising the water table beneath the site
- Minimise the potential for cyclic wetting and drying areas
- Minimise the potential for excessive soil erosion
- Minimise the degradation of building products (masonry, concrete, steel) in the presence of aggressive and/or saline soils

The following are recommended for adoption as part of SSMP during the earthworks for the proposed subdivision development:

- Erosion and Sediment Control Plans must be developed and implemented in accordance with the NSW Department of Housing document "Managing Urban Stormwater: Soils and Construction" (Reference 3). All sediment and erosion controls proposed by the Erosion and Sediment Control Plan are to be installed prior to commencement of any earthwork.
- Utilise native and deep-rooted plants (salt tolerant) in order to minimise soil erosion. Western Sydney soils are generally prone to dispersion and erosion, therefore where vegetation cover is not adequate to control erosion, improve soil resistance to erosion by stabilising dispersive soils with hydrated lime and gypsum.
- Cut and fill batters are provided with secured turf overlay to guard against erosion. Construction of a V-drain behind the crest of any slope, to divert water away from the slope, is also recommended.
- Map the current primary drainage lines and incorporate these into the surface water drainage system for the subdivision. Do not fill in or block these drainage lines unless appropriate alternative drainage is provided.
- Develop the best use of the existing topography in order to minimise cut and fill operations. Excavation depths of less than 1.0m are preferable, if possible.
- Where the creation of individual building platforms would require substantial cut and/or fill (i.e. on relatively steep slopes) consider the use of tiered housing and/or house slabs suspended on piers. This will minimise the obstruction of the natural surface water flow.
- Minimise the use of retaining structures; use safely inclined slopes, with grass and plant cover as an alternative. Gabion walls are also a better alternative as they are free draining.
- Reduce groundwater recharge through appropriate land use and land management practices including the following;
 - Minimising deep infiltration and by maximising vegetation cover, planting deep-rooted trees and the use of salt tolerant plants
 - Preventing water ponding against the walls of any new structures

- Providing appropriate slope to surrounding paths to drain water away from any external walls
- Providing appropriate downpipes to divert water away from structures and prevent cyclic wetting and drying
- Preventing use of unlined on-site water detention basins. Lined basins, relying solely on evaporation should be used as an alternative
- Ensuring finished ground surface in each lot after completion of earthworks are provided with adequate fall to the street or stormwater manholes to allow run-off of water and prevent water ponding, waterlogging and infiltration of rainwater
- Monitor water pipes for leaks and repair any damaged pipes as soon as possible after detection
- Ensure that earthworks and construction activities do not affect the natural flow of groundwater. Where groundwater is intercepted during development works/excavation, the flow should be diverted to stormwater drains or creeks by providing appropriate surface and sub-surface drainage. We do not anticipate that the proposed earthworks will affect the natural flow of groundwater.
- For slab on ground construction, a layer of bedding sand of at least 30mm thickness under the slab should be provided. This will permit free drainage of water beneath the slab, minimising the possibility of pooling or trapping water that might potentially carry salts.
- A high impact waterproof membrane, not just a vapour proof membrane, must be laid under any ground-bearing slab. For masonry building construction, the damp proof course must consist of polyethylene or polyethylene coated metal.
- Ground levels immediately adjacent to masonry walls must be kept below the damp-proof course.
- Use construction materials (concrete, steel, brick, mortar etc) and methods suitable for Exposure Class B1 and Moderately Aggressive site (References 5 and 6).
- Ensure all underground services are provided with adequate corrosion protection, including sheaths to power and telecommunication cables.

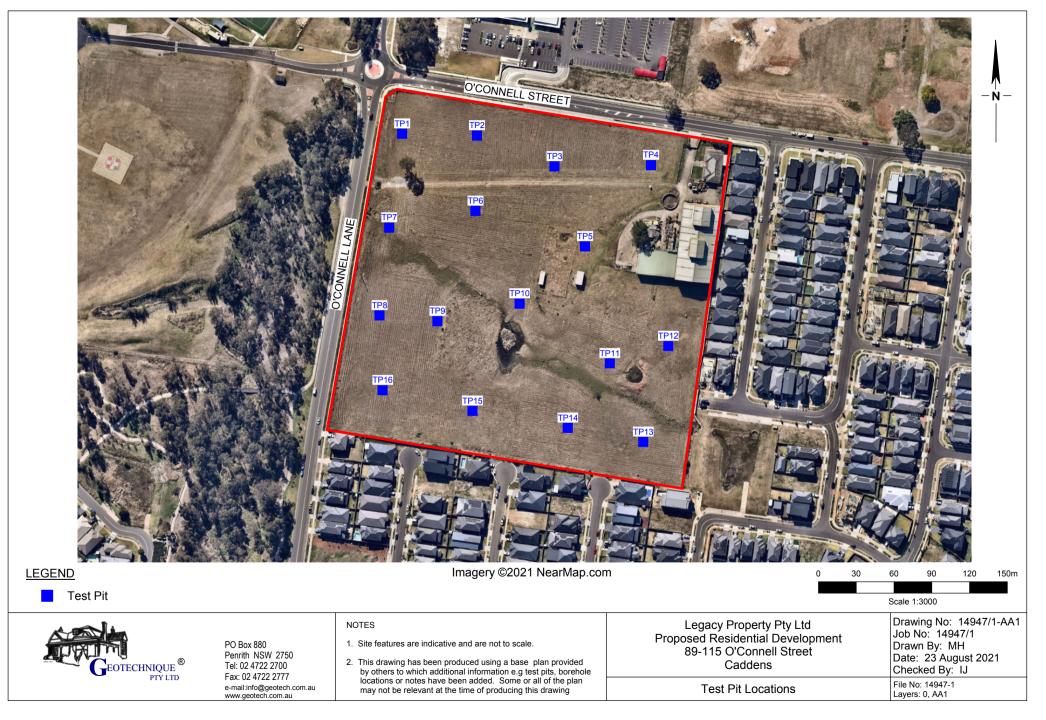
Limitations

Based on anticipated surface and subsurface conditions as well as properties of subsurface soils likely to be disturbed or excavated during the proposed subdivision development, it is our assessment that geotechnical conditions will not impose any constraints on the proposed development. Therefore, it is also our assessment that the site is suitable for proposed subdivision development provided earthworks and design of future residences and roads are carried out in accordance with recommendation provided in this report.

The assessments and recommendations presented in this report are based on site observations and information from a limited number of test pits. Although we believe that the sub-surface profiles encountered in the test pits and presented in this report are indicative of the general nature of soils and bedrock across the site, it is possible that the soils across the site could differ from those encountered in the test pits. We recommend that this company is contacted for further advice if subsurface conditions encountered during earthworks differ from those presented in this report. Furthermore, it should be noted that the recommendations on site classifications and design of footings and pavements provided in this report are preliminary in nature and should be confirmed after completion of earthworks and subgrade preparation works, which may alter the existing site conditions.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully **GEOTECHNIQUE PTY LTD**


in

INDRA JWORCHAN MIEAust CPEng NER APEC Engineer IntPE(Aust) **Principal Geotechnical Engineer**

Drawing No 14947/1-AA1 - Test Pit Locations Attached Excavation Logs Laboratory Test Results

References

- Australian Standard AS1726-2017, Geotechnical Site Investigation 2017. 1.
- 2. Fell, R., MacGregor, P, Stapledon, D., Bell, G. and Foster, M., Geotechnical Engineering of Embankment Dams, Second Edition, 2017.
- 3. NSW Department of Housing, Managing Urban Stormwater, Soils and Construction, 1998.
- 4. Lillicrap, A and McGhie, S., Site Investigation for Urban Salinity, Department of Land and Water Conservation, 2002.
- 5. Australian Standard AS2870-2011, Residential Slabs and Footings, 2011.
- 6. Australian Standard AS2159-2009, Piling - Design and Installation, 2009.
- Australian Standard AS3798-2007, Guidelines on Earthworks for Commercial and Residential Developments, 2007. Penrith City Council, Design Guidelines for Engineering Works for Subdivisions and Developments, 2013. 7.
- 8.
- 9. Austroads, Guide to Pavement Technology, Pavement Structural Design, February 2010.

		ation			nd mo					necked	by: Ni Irface	
	-	-	-	-	na mo sions			.0 m long 0.4 m wide		k.∟. su datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L.	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	n	consistency density index	hand penetrometer kPa	Remarks and additional observations
gr	en	<u></u>	ge		o de in	ß	cla	TOPSOIL: Silty Sandy Clay. low plasticity, dark		<u> </u>	на кре	
				C 9 O 8 E 6 4	_		СН	brown, with grass roots Silty CLAY, high plasticity, brown	M <pl< td=""><td>F-St</td><td></td><td>Residual</td></pl<>	F-St		Residual
				4	_							
			DS	3	0.5 —							
				4	_							
				5	_							
				4	1		CI-CH	Silty CLAY, medium to high plasticity, brown	M <pl< td=""><td>St</td><td></td><td></td></pl<>	St		
				5	_							
				4								
			DS	6	1.5 —							
					_							
				-	2							
			DS				СН	Silty CLAY, high plasticity, red-brown mottled grey, with ironstone gravel	M <pl< td=""><td>VSt-H</td><td></td><td></td></pl<>	VSt-H		
					_							
Dry								Test Pit TP1 terminated at 2.5m				
					_							
					3 ——							
					3.5 —							
					_							
					4							
		81940										
					4.5							

F	-	nt : ect : ation	:	Prop		Res	sidenti	al Subdivision Pit reet, Caddens Dat	No: No: e: 06 ged/Ch	TP2 5/08/20		K/IJ
	-	-	-	-	nd mo			5 Tonne Excavator	I	R.L. sı	Irface	50.537
E	xca	avatio	on d	imen	sions	:		.0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 8 0 7	0 _			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
			U ₅₀	E 5 4 3 5	 0.5		СН	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	4 4 5 5 6 9			СН	Silty CLAY, high plasticity, grey	M <pl< td=""><td>St</td><td></td><td>_</td></pl<>	St		_
			DS	8	 1.5 		CI	Silty CLAY, medium plasticity, grey, with siltstone gravel	M <pl< td=""><td>VSt</td><td></td><td>-</td></pl<>	VSt		-
Dry					2		CL-CI	Silty CLAY, low to medium plasticity, grey and brown, with siltstone gravel	M <pl< td=""><td>н</td><td></td><td>_</td></pl<>	н		_
						-		Test Pit TP2 terminated at 2.5m				_
					 3.5	-						-
					 							_
		981940 Date:										_
t Se	ID: 9	981940	9	0004		-						

		ation						Log	ged/Ch		by: Nł	
	-	-	-	-	nd moo			5 Tonne Excavator			irface :	
t		avatio		Imen	sions :	-		.0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 7 0 6	0			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
				E 5		Ň	СН	Silty CLAY, high plasticity, red-brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DB	3	0.5							
				3	0.5 —							
				4								
				5	1							
			DS	6	· _		CI	Silty Sandy CLAY, medium plasticity, brown	M <pl< td=""><td>St-VSt</td><td></td><td></td></pl<>	St-VSt		
				6								
				7								
					_							
				-	2		0.0			1/01		
			DS	-			CL-CI	Silty Sandy CLAY, low to medium plasticity, brown	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
					_							
Dry								Test Pit TP3 terminated at 2.5m				
					_							
					_							
					3 —							
					_							
					3.5 —							
					_							
					4							
		381940 Date:										
					_							
					4.5							
	1	1	1	1		1		1	1	1		

Proje	nt : ect : ation :		Prop		Res	identi	al Subdivision Pit reet, Caddens Dat	No: No: e: 06 ged/Ch	TP4 6/08/20		K/IJ
Equi	ipmen	t typ	pe ai	nd mo	del		5 Tonne Excavator	F	R.L. su	irface	62.982
Exca	avatio	n di	men	sions	:	2	0 m long 0.4 m wide		datum		AHD
groundwater env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		1	C 8 O N 6 E 4 4	0			TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
	U ₅₀	DS	5 4 4 5 6	0.5		СН	Silty CLAY, high plasticity, red-brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
		DS	7 8 9 9 11	1 — — — —		CI	Silty Sandy CLAY, medium plasticity, brown, with ironstained sandstone gravel	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
Dry		DS		1.5 — — —		CL-CI	Silty Sandy CLAY, low to medium plasticity, brown mottled grey, with sandstone and siltstone gravel Test Pit TP4 terminated at 1.8m due to refusal	M <pl< td=""><td>VSt</td><td></td><td>Bedrock</td></pl<>	VSt		Bedrock
	9819409 Date: 2			2 2.5 3 3.5 4 4			on sandstone/siltstone bedrock				

F		nt : ect : ation	:	Pro		Res	identi	al Subdivision Pit reet, Caddens Dat	No: :e: 06	6/08/20		
E	Equi	ipme	nt ty	pe a	nd mo	del		5 Tonne Excavator	I	R.L. sı	Irface	55.963
E	Exca	avatio	on di	imen	sions	:		0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 7 0 7 E 47	0			TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
			U ₅₀	5	0.5		СН	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	4			CH	Silty CLAY, high plasticity, orange-brown mottled grey	M <pl< td=""><td>St</td><td></td><td></td></pl<>	St		
			DS	6 5 6 7 6	 1.5		CI	Silty Sandy CLAY, medium plasticity, brown	M <pl< td=""><td>St-VSt</td><td></td><td></td></pl<>	St-VSt		
Dry					-		CI	Silty Sandy CLAY, medium plasticity, brown, with siltstone and sandstone gravel	M <pl< td=""><td>Н</td><td></td><td></td></pl<>	Н		
					2 2.5 			Test Pit TP5 terminated at 2.0m due to refusal on sandstone/siltstone bedrock				Bedrock
					3	-						
					3.5 — — — —	-						
					4 — 	-						
		981940 Date:			 4.5 	-						

	ation						Log	ged/Ch		by: Nł	
-	-	-	-								
	avatio		imen		:		.0 m long 0.4 m wide I				AHD
env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classificatior symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetromete kPa	Remarks and additional observations
			C 10 N 8	0			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
			E 5	 0.5		СН	Silty CLAY, high plasticity, pale brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
		DS	5								
		DS	3 5 4 5	1 — — —		СН	Silty CLAY, high plasticity, grey	M <pl< td=""><td>St</td><td></td><td></td></pl<>	St		
			5	 1.5							
						CI	Silty CLAY, medium plasticity, grey mottled brown, with ironstained siltstone gravel	M <pl< td=""><td>VSt-H</td><td></td><td></td></pl<>	VSt-H		
		DS		2							
				-			Test Fit TF0 terminated at 2.5m				
				3							
				 3.5							
				-							
				4 — — —							
	env samples	Excavation env samples PID reading	Excavation di euv samples BID reading (ppm) DS DS	Excavation dimen Excavation dimen eux samples a di di b di b di c di d di c di d di	Excavation dimensions Saduration dimensions Image: state states	Excavation dimensions : Same share a state of the state	soldmex via solution (udol) billion (udol) billion (udol) billion (udol) billion (udol) billion (udol) billion (udol) billion (billion (bil	Equipment type and model: 5 Tonne Excavator Excavation dimensions : 2.0 m long 0.4 m wide Status MATERIAL DESCRIPTION Soil type, plasticity or particle characteristic, clour, secondary and minor components. Column Secondary and minor components. DB Image: Status of the secondary and minor components. CH Silty CLAY, high plasticity, pale brown DB Image: Status of the secondary and minor components. CH Silty CLAY, high plasticity, grey DB Image: Status of the secondary and minor components. CH Silty CLAY, high plasticity, grey DB Image: Status of the secondary and minor components. CH Silty CLAY, high plasticity, grey DB Image: Status of the secondary and minor components. CH Silty CLAY, high plasticity, grey DB Image: Status of the secondary and minor components. CH Silty CLAY, medium plasticity, grey motified brown DB Image: Status of the secondary and the se	Equipment type and model: 5 Tonne Excavator I Excavation dimensions: 2.0 m long 0.4 m wide or Support Support <ths< td=""><td>Equipment type and model: 5 Tonne Excavator R.L. su Excavation dimensions : 2.0 m long 0.4 m wide datum Suppose Tops Tops Tops Tops Suppose Su</td><td>Excavation dimensions: 2.0 m long 0.4 m wide datum : and an analysis and analysis ananalysis analysis ananalys</td></ths<>	Equipment type and model: 5 Tonne Excavator R.L. su Excavation dimensions : 2.0 m long 0.4 m wide datum Suppose Tops Tops Tops Tops Suppose Su	Excavation dimensions: 2.0 m long 0.4 m wide datum : and an analysis and analysis ananalysis analysis ananalys

	-002	ect : ation	:	89-1	15 O'(Coni	nell St	reet, Caddens Dat Log		6/08/20 1ecked	by: Nł	
					nd mo			5 Tonne Excavator	I	R.L. sı	irface :	48.044
E	Exca	avatio	on di	imen	sions	:	2	0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 8 N 6 E 4	0			TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
		DB	U ₅₀	4	0.5		СН	Silty CLAY, high plasticity, brown mottled grey	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			- 50	3								
			DS	4								
				5	_							
				5	1.5		CI-CH	Silty CLAY, medium to high plasticity, red- brown	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
					_							
			DS		2							
Dry												
					_			Test Pit TP7 terminated at 2.5m				
					3							
					 3.5							
					-							
					4							
					4.5							

<u> </u>											by: Nł	
					nd moo sions :			5 Tonne Excavator .0 m long 0.4 m wide		R.L. su datum	irface :	: 48.537 AHD
				Imen				MATERIAL DESCRIPTION				
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 0 8 6	0			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
			DS	E 5 4 4 5	 0.5		СН	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	6 7 8	 1		СН	Silty CLAY, high plasticity, brown, with ironstone gravel	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
				8 7 11 10	 1.5							
			DS		 2		СН	Silty CLAY, high plasticity, grey mottled brown,	M <pl< td=""><td>VSt-H</td><td></td><td></td></pl<>	VSt-H		
Dry								with gravel				
					- <u>2.3</u> 			Test Pit TP8 terminated at 2.5m				
					3							
					 3.5 							
					 4							
		81940			 4.5							

F		nt : ect : ation	:	Prop		Res	identi	al Subdivision Pit reet, Caddens Dat	D NO : NO : te : 06 ged/Ch	TP9 5/08/20		
E	Iqui	pme	nt ty	pe a	nd mo	del		5 Tonne Excavator		R.L. sı	Irface	49.750
E	xca	avatio	on d	imen	sions	:		.0 m long 0.4 m wide	• •	datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 8 N 6 E 5	0			TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
		U ₅₀	DS	4	0.5		CH	Silty CLAY, high plasticity, red-brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
				4 5 3 4 5 6			СН	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>_</td></pl<>	St		_
			DS	7 7 7								_
					2		CI-CH	Silty CLAY, medium to high plasticity, brown, with ironstone gravel	M <pl< td=""><td>VSt</td><td></td><td>_</td></pl<>	VSt		_
Dry												
					-	-		Test Pit TP9 terminated at 2.5m				
					3	-						_
					 3.5 	-						_
					 4							_
		81940										_
: Set	ID: 9	81940	9	10001								· · · · · · · · · · · · · · · · · · ·

F		nt : ect : ation	:	Prop		Res	identi	al Subdivision Pit treet, Caddens Dat	D No : No : te : 00 ged/Ch	TP10 6/08/20)21	
	-	-	-	-	nd mo			5 Tonne Excavator			irface	
E	Exca	avatio	on d	imen	sions	:		.0 m long 0.4 m wide) (datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 0 8 6 4	0			TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
			DS	5 4 4 3 3	0.5 — 		CH	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	3 4 5 4 5			CH	Silty CLAY, high plasticity, grey and red-brown	M <pl< td=""><td>St-VSt</td><td></td><td></td></pl<>	St-VSt		
				6	 1.5 							_
			DS		2 							_
Dry								Test Pit TP10 terminated at 2.5m				
						-						
					3	-						_
					3.5	-						_
					4	-						-
		381940 Date:			 4.5	-						
t Set	ID: 9	81940	9	(2024								-

		ation						Log	ged/Cl	6/08/20 necked	by: Nł	
	-	-	-	-	nd mo sions			5 Tonne Excavator .0 m long 0.4 m wide		R.L. su		
			1	imen		:		.0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 9 0 N 7	0			TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
			U ₅₀	E65445555 _	 0.5		CI-CH	Silty CLAY, medium to high plasticity, red- brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	4 3 3 4 4 5			СН	Silty CLAY, high plasticity, red-brown	M <pl< td=""><td>St</td><td></td><td></td></pl<>	St		
				5	 1.5 							
Dry			DS		2 — — — —		CI	Silty Sandy CLAY, medium plasticity, brown mottled grey	M <pl< td=""><td>St-VSt</td><td></td><td></td></pl<>	St-VSt		
					2.5 — — 3—			Test Pit TP11 terminated at 2.5m				
					 3.5							
					 4							
		381940 Date:			 4.5							

	Equi	ipmei	nt tv	pe a	nd mo	del:	1	5 Tonne Excavator		necked R.L. su		
	-	-	-	-	sions			.0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks ar additional observatior
				C 8 0 8 N 6	0			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
		DS	DB	E 3 4 4 5 5 5 5 6 6 6 6 7 7	0.5		CI-CH	Silty Sandy CLAY, medium to high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
				8	1.5 — — — —		CI-CH	Silty Sandy CLAY, medium to high plasticity, red-brown, with ironstone gravel	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
Dry			DS		2		CH	Silty CLAY, high plasticity, red-brown mottled grey	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
t Se					2.5 3.5 3.5 4.5 -			Test Pit TP12 terminated at 2.5m				

	ient : oject : cation		Prop		Res	identi	al Subdivision Pit reet, Caddens Dat	No: te: 06	6/08/20		
Eq	luipme	ent ty	vpe ai	nd mo	del:		5 Tonne Excavator	I	R.L. sı	Irface	56.105
Ex	cavati	on d	imen	sions	:		.0 m long 0.4 m wide		datum		AHD
groundwater	env samples PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	U ₅₀	DS	C 8 N 6 E 5 4 3 3 4	0		СН	TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
		DS	3 4 3 3 4 4 4 5	1 — 1.5 —							
٥		DS	5	 2 		CI-CH	Silty CLAY, medium to high plasticity, brown grey, with siltstone gravel	M <pl< td=""><td>St-VSt</td><td></td><td></td></pl<>	St-VSt		
Dry	D: 98194			2.5 			Test Pit TP13 terminated at 2.5m				

F	-	nt : ect : ation	:	Prop		Res	identi	al Subdivision Pit reet, Caddens Dat	No: :e: 00	6/08/20		۲/IJ
E	qui	pme	nt ty	vpe al	nd mo	del:	1	5 Tonne Excavator			irface :	
E	xca	avatio	on d	imen	sions	:		0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 7 O N 6 E 5 4	0	*****		TOPSOIL: Silty Sandy Clay, low to medium plasticity, dark brown, with grass roots				
			DS	3 3 3 4 4 5	0.5		СН	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	4 5 6 5 5	1 — — — 1.5 — —		СН	Silty CLAY, high plasticity, brown and grey	M <pl< td=""><td>St</td><td></td><td></td></pl<>	St		
Dry					2 2 		СН	Silty CLAY, high plasticity, grey	M <pl< td=""><td>St-VSt</td><td></td><td>- </td></pl<>	St-VSt		-
		981940			- 2.5 3 3.5 4 			Test Pit TP14 terminated at 2.5m				
t Set	ID: §	81940	9		-	-						-

F		nt : ect : ation		Prop		Res	identi	al Subdivision Pit rreet, Caddens Dat	No: e: 06	6/08/20		
					nd mo			5 Tonne Excavator	I	R.L. sı	irface :	53.211
E	Exca	vatio	on d	imen	sions	:		.0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 9 N 6 E 5	0			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
		DS	DB	3 4 4 5	 0.5		СН	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	3 4 4 5								
				7 7 9 8			СН	Silty CLAY, high plasticity, brown mottled grey, with ironstone gravel	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
					-							
			DS	-	2		CI	Silty CLAY, medium plasticity, grey-brown, with siltstone gravel	M <pl< td=""><td>VSt-H</td><td></td><td></td></pl<>	VSt-H		
Dry								Test Pit TP15 terminated at 2.5m				
					_							
					3							
					-							
					4							
					4.5							
Set	t ID: 9	81940 Dete	9 94/44	12024								

F		nt : ect : ation	:	Prop		Res	identi	al Subdivision Pit reet, Caddens Dat	No: :e: 06	6/08/20		
E	Iqui	pme	nt ty	pe a	nd mo	del		5 Tonne Excavator		R.L. sı	irface	50.036
E	xca	avatio	on d	imen	sions	:		0 m long 0.4 m wide		datum		AHD
groundwater	env samples	PID reading (ppm)	geo samples	field tests	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				C 7 N 5 E 4	0			TOPSOIL: Silty Sandy Clay, low plasticity, dark brown, with grass roots				
			U ₅₀	3 3 4 4 8 9	 0.5 		CH	Silty CLAY, high plasticity, brown	M <pl< td=""><td>St</td><td></td><td>Residual</td></pl<>	St		Residual
			DS	9 9 13/R	1 — — — 1.5 —		СН	Silty CLAY, high plasticity, brown and grey, with ironstone gravel	M <pl< td=""><td>VSt-H</td><td></td><td></td></pl<>	VSt-H		
_			DS	-	2 		CI	Silty CLAY, medium plasticity, grey and brown, with siltstone gravel	M <pl< td=""><td>VSt-H</td><td></td><td>- - - - - -</td></pl<>	VSt-H		- - - - - -
Dry					-2.5 3 3.5 			Test Pit TP16 terminated at 2.5m				
t Se	ID: 9	81940	9		 4.5 	-						- - - - - - - -

Log Column	Symbol/Value	Description
Drilling Method	V-bit TC-bit RR DB	Hardened steel 'V' shaped bit attached to auger Tungsten Carbide bit attached to auger Tricone (Rock Roller) bit Drag bit
Groundwater	BB Dry	Blade bit Groundwater not encountered to the drilled or auger refusal depth
		Groundwater level at depths shown on log
	—	Groundwater seepage at depths shown on log
Environment Sample	GP G P	Glass bottle and plastic bag sample over depths shown on log Glass bottle sample over depths shown on log Plastic bag sample over depths shown on log
PID Reading	100	PID reading in ppm
Geotechnical Sample	DS DB U ₅₀	Disturbed Small bag sample over depths shown on log Disturbed Bulk sample over depths shown on log Undisturbed 50mm tube sample over depths shown on log
Field Test	N=10 3,5,5	Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per 150mm penetration.
	N=R 10,15/100	'R' represents refusal to penetration in hard/very dense soils or in cobbles or boulders. The first number represents10 blows for 150mm penetration whereas the second number represents 15 blows for 100mm penetration where SPT met refusal
	DCP/PSP 5 6 R/10	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each number represents blows per 100mm penetration. 'R/10' represents refusal after 10mm penetration in hard/very dense soils or in gravels or boulders.
Classification Moisture Condition	GP GW GM GC SP SW SM SC ML MI MH CL CL CI CH	Poorly Graded GRAVEL Well graded GRAVEL Silty GRAVEL Clayey GRAVEL Poorly graded SAND Well graded SAND Silty SAND Clayey SAND SILT / Sandy SILT / clayey SILT, low plasticity SILT / Sandy SILT / clayey SILT, medium plasticity SILT / Sandy SILT / clayey SILT, medium plasticity SILT / Sandy SILT / clayey SILT, high plasticity CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity
Cohesive soils	M <pl M=PL M>PL</pl 	Moisture content less than Plastic Limit Moisture content equal to Plastic Limit Moisture content to be greater than Plastic Limit
Cohesionless soils	D M W	Dry - Runs freely through hand Moist - Tends to cohere Wet - Tends to cohere
Consistency Cohesive soils	VS S F St VSt H	$\begin{tabular}{ c c c c c c } \hline Term & Undrained shear strength, & Hand Penetrometer \\ \hline C_u (kPa) & (Qu) \\ \hline Very Soft & \le12 & $<$25$ \\ Soft & $>$12 & \le25$ & $25 - 50 \\ Firm & $>$25 & \le50$ & $50 - 100 \\ Stiff & $>$50 & \le100$ & $100 - 200 \\ Very Stiff & $>$100 & \le200$ & $200 - 400 \\ Hard & $>$200$ & $>$400$ \\ \hline \end{tabular}$
Density Index Cohesionless soils	VL L M D VD	$\begin{array}{ c c c c c c } \hline Term & Density Index, I_D (\%) & SPT 'N' (blows/300mm) \\ \hline Very Loose & \le 15 & \le 5 \\ Loose & >15 & \le 35 & >5 & \le 10 \\ Medium Dense & >35 & \le 65 & >10 & \le 30 \\ Dense & >65 & \le 85 & >30 & \le 50 \\ Very Dense & >85 & >50 \\ \hline \end{array}$
Hand Penetrometer	100	Unconfined compressive strength (q _u) in kPa determined using pocket
Remarks	200 Residual Alluvium Colluvial Aeolian Marine	penetrometer, at depths shown on log Geological origin of soils Residual soils above bedrock River deposited Alluvial soils Gravity deposited Colluvial soils Wind deposited Aeolian soils Marine Soils

AS1726 : 2017– Unit	fied Soil Classificat	ion System
---------------------	-----------------------	------------

Major D	ivisions	Particle size (mm)	Group Symbol	Typical Names	Field Ident	ifications Sand a	nd Gravels				Laboratory classifica	ition	
OVERSIZE	BOULDERS	>200							% Fines (2)	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
OVERSIZE	COBBLES	63						ns'					
COARSE GRAINED SOIL (more than 65% of soil excluding oversize fraction is greater than 0.075mm)	GRAVEL (more than half of coarse fraction is larger than 2.36mm)	Coarse 19	GW	Well-graded gravels, gravel-sand mixtures, little or no fines		rain size and subs ite sizes, not enou io dry strength		or Divisions'	≤5	-	>4	between 1 and 3	1. Identify lines by the method given for fine grained soils 2. Borderline classifications occur when the percentage of fines (fraction smaller than 0.075mm size) is greater than 5% and less than 12%. Borderline classifications
			GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	some intermedia	one size or range o ate sizes missing, arse grains, no dry	not enough	n in 'Majo	≤5	-	Fails to cor	nply with above	
		M K 07	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	teria give	≥12	Below 'A' line or I _p <4	-	-	
		Medium 6.7	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	istic fines,	to the cri	≥12	Above 'A' line or I _p >7		-	
	SAND (more than half of coarse fraction is smaller than 2.36mm)	Fine 2.36 Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines		rain size and subs ite sizes, not enou io dry strength		classification of fractions according to the criteria given in 'Major	≤5	-	>6	between 1 and 3	
		Medium 0.21	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength			f fractions	≤5	-	of du		require the use of dual symbols e.g. SP-SM, GV GC
		Moduli 0.2 I	SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification c	≥12	Below 'A' line or <i>I_p</i> <4		-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	istic fines,		≥12	Above 'A' line of I _p >7	-	-	
FINE GRAINED SOIL (more than 35% of soil excluding oversize fraction is less than 0.075mm)	SILT (0.075mm to 0.002mm) & CLAY (<0.002mm) Liquid Limit<50%		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Slow to	Toughness Low	ନ୍ଥି Below 'A'		1		1	
			CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	rapid None to very slow	Medium	material passing 63mm for	E	line Above 'A' line	60 <u>7////////////////////////////////////</u>		
			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	More than 35% passing 0.075mm	Below 'A' line	50 - 50 -		
	SILT (0.075mm to 0.002mm) & CLAY (<0.002mm) Liquid Limit>50%		MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	None to slow	Low to medium	Use the gradation of	35% pass	Below 'A' line	- 00 NDEX	Cl or Ol	5 0 13 \
			СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	More than	Above 'A' line		r OL	DH
			OH (1)	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium			Below 'A' line		ML or OL 30 40 50 60 7 LIQUID LIMIT W _L , %	0 80 90 1
	HIGHLY ORGANIC SOILS		Pt (1)	Peat and highly organic soils	Identified by col generally by fibr	our, odour, spong ous texture	y feel and		Effervesce	es with H ₂ O ₂	1		

Log Symbols & Abbreviations (Cored Borehole Log)

No.LC 47 52 Water Loss Complete water loss Water Loss RS Read/uall Gold Material is weathered to such an extent that it has soll properties. Mains structure and material leaders leaders in the loss been significantly transported. Under some the such and state in the loss been significantly transported. Under some the loss of the complexity transported to such an extent that it has soll properties. Mains structure and material is discolured, usually by international to the complexity transported to such an extent that it has soll properties. Mains structure and material is discolured, usually by international to the column and the column of the colum of	Log Column	Symbol / Abbreviation	Description					
Water Loss Complete water loss Veratie water loss Partial water loss Weathering (AS1726:2017) RS Residual Gol Metrical is weathered to such an extent that it has soll or original rock are no longer visible, but the soil has not been significantly transported XW Extremely Weathered Material is weathered to such an extent that it has soil properties. Meas structures and material facture and fabric original rock are not expany and material table colour of the original rock are not expany and material table colour of the original rock is not recomprised. Rock strength as minimaria have weathered to tauch an extent that it has soil properties. Meas structures and material table colour of the original rock is not recognizable. Rock strength as minimaria have weathered to tau originable. The whole of the rock nomenal is discoloured, usually by iron staining or bleaching in the colour of the originable. But shows into o rock hange in sterngth from table properties. News into or not have decreased due to deposition of weathering in oducts in processition of individual minimaria. Parallally discoloured, usually by iron staining or bleaching and decomposition of individual minimaria. The colour during in a sterngth from table processition is provided with staining or bleaching and processition or out and and the colour during in any be decreased by leaching. or may be decreased by extensity Weathered Discolour during in a staining or bleaching and processition or output and by iron staining. Processity may be increased by leaching. or may be decreased by extensity weathered or any be decreased by extensity weathered to a strength inter (up, MPa) very despite of the processity or output and by iron staining. Procesity may be increased by leaching any be decreased by leaching an	Core Size	NMLC	47 52					
Weathering (AS1726:2017) RS Residual Soil Material is weathered to such an extent halt has and properties. Mass structure and material texture and fabic of original rock are no longer visible, but the soil has not been applicably. Targotomic transported but that is has a soil or original rock are no longer visible, but the soil has not been applicably. The weathered to such an extent has that is a soil or original rock are all visible HW Highly Weathered Material is weathered to such an extent has that is a soil or original rock are all visible. All that soil the constraints of bleeching to the extend material table colour of the original rock is not rocespirable. Rock strength so materials have weathered to day miterials. Bores strength that he colour of the original rock is not rocespirable. Rock strength so materials is discoloured, usually by inn staining or bleaching to the extential is discoloured, usually by inn staining or bleaching in the soil has not that the colour of the origination color of the origination is not extend in extend in the colour of the original rock is not comparisable. Rock strength from trach rock. SW Silghtly Weathered Rock is parally discoloured, usually by inn staining or bleaching and or possible or disrogritable, but shows little or no change is strength from trach rock. FR Fresh Rock shows no sign of decomposition of individual minerata or soil and decomposition or individual minerata or soil and strength rock. VL L Work weathered to a springer strength from trach rock. FR Fresh Rock shows no sign of decomposition or individual minerata or soil andidened as Ro	Water Loss							
Standard Properties. Mass structure and makerial texture and fability of the onger visible, but the sol has not been significantly transported XW Extremely Weathered Ministry transported XW Extremely Weathered The whole of the rock material is disclosured, usually by the rock is not programmed to such an extent that it has sol properties. Mass structure and material lexture and fability of the rock material is disclosured, usually by the rock is not programmed to class structure and material lexture and fability of the rock material is disclosured, usually by the increased by leaching, or may be decreased due to deposition of weathered to clay minerais. Providy may be increased by leaching, or may be decreased due to other original rock is not recognizable, but shows little or on change of strength from fresh rock. MW Modernately Weathered Rock is partially disclosured, usually by the rock is not recognizable. but shows little or on change of strength from fresh rock. SW Slightly Weathered Rock is hown no sign of decomposition of individual minines or colour change. Note : Where it is not possible to distinguist horizon fresh rock. FR FR Fresh Rock shows no sign of decomposition of individual minines or colour change. Note : Where it is not possible to distinguist horizon fresh rock is not recognizable. Dist struct horizon fresh rock is not recognizable. Struct here horizon fresh rock is not recognizable. Strength (AS1726:2017) Very Vow 20.03 S0.1								
Properties. Mass structure and material texture and fabric of original rock are all visible HW Highly Weathered The whole of the rock material is disclosured, usually by increased by leading, or may be disclosured, usually by increased by leading, or may be disclosured. MW Moderately Weathered The whole of the rock material is disclosured, usually by increased by leading, or may be disclosured. MW Moderately Weathered Note material is disclosured, usually by increased by leading, or may be disclosured. SW Slightly Weathered Note is partially disclosured with staining or bleaching along joints but shows little or no change of strength from fresh rock FR Fresh Rock shows no sign of decomposition of individual minimerias or colour changes. Note: Where is not possible to distripuish between HPM and Mir rock the term Districtly Weathered (TW) may be used. DWN provisiting. Provisity may be increased by used by composition of individual minimerias or colour changes. Strength (AS1726:2017) VL Ver Low 20.3 5.1 VL Very Low 20.3 5.1 Defect Spacing Externetly High -3 5.1 VH Very Low 20.03 5.0.1 VH Very Low 20.03 5.0.1 VH Very Low 20.0.1 20.0 Very Weigh -3.3 5.0 M Hydow spaced 6.00 to 20.0	Weathering (AS1726:2017)	RS	Residual Soil	properties. Mass structure and of original rock are no longer v	material texture and fabric			
Image: Second		XW	Extremely Weathered	properties. Mass structure and				
SW Slightly Weathered the original rock is not recognizable, but shows little or no change of strength from fresh rock SW Slightly Weathered Rock is partially discoloured with staining or bleaching along joins but shows little or no change of strength from fresh rock FR Fresh Rock shows no sign of decomposition of individual minerais or colour robange in strength from fresh rock Note : Where it is not possible to distinguish between HW and MW rock the term Distinctly Weathered (DW) may be used. DW is defined as frack strength usually by inonstaining. Protein my be increased by description or any be decreased by deposition of weathering. The rock may be high discoloured, usually by inonstaining. Porosity may be increased by description. Strength (AS1726:2017) VL Very Low 20.03 50.1 VL Very Low 20.03 50.1 Low 0.03 51 1 Medium -0.3 51 High -1 53 VP (Very Low 20.03 50.1 Defect Spacing Pering bionspaced 20 20 VH Very High >10 50 Defect Description (AS1726:2017) Pit the origin spaced 20 50 VH Very High -3 51 Pit -5 -5 5 Defect Description (AS1726:2017) Pit the origin spaced 200 to 600 Very		HW	Highly Weathered	iron staining or bleaching to th the original rock is not recogn significantly changed by wea minerals have weathered to cla be increased by leaching, or n	e extent that the colour of nizable. Rock strength is athering. Some primary ay minerals. Porosity may may be decreased due to			
Press Press along joints but shows little or no change in strength from fresh rock FR Fresh Rock shows no sign of decomposition of individual minerals or colour changes Note :: Where it is not possible to distinguish between HW and MW rock the term Distincity Weathered (DW) may be used. DW is defined as 'Rock strength usually increasing. Porosity may be increased by deposition of weathering products in pores' Strength (A\$1726:2017) VL Very Low >20.03 Strength Index (Las, MPa) Very Low >20.01 \$0.1 \$0.33 Strength Index (Las, MPa) Very Low >20.01 \$0.3 \$1 H High >1 \$3 VH Very Low >20.03 \$1 H High >1 \$3 VH Very Low \$20.03 \$20.01 Defect Spacing Extremely High >10 Spacing (mm) Extremely obselv spaced \$20.00 \$20.00 \$20.00 Very Used Very Spaced \$20.00 \$20.00 \$20.00 Very Used Very Spaced \$20.00 \$20.00 \$20.00 Defect Description (AS1726:2017) Priting \$3 \$10 Type Pit Parting \$30 \$10 Jo Sh Sheared Seam \$20.00 \$20.00 \$20.00 <		MW	Moderately Weathered	iron staining or bleaching to th the original rock is not recogniz	e extent that the colour of cable, but shows little or no			
Macro-surface geometry St Macro-surface geometry St Coating or infilling Coating or infilling Macro-surface geometry St Strong or infilling Coating or infilling Coating or infilling Coating or infilling Coating or infilling Coating or infilling Coating or infilling Coating or infilling		SW	Slightly Weathered	along joints but shows little or r				
Distinctly Weathered (DW) may be used. DW is defined as: Rock strength usually by ionstaining. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores'. Strength (AS1726:2017) VL Term Point Load Strength Index (Las, MPe) VL Low 0.0.1 \$0.3 M Medium 0.0.3 \$1 H High >1 \$3 VH Very Low \$0.0 \$20.0 Defect Spacing Description \$20 \$20 EH Extremely High >10 \$20.0 Defect Spacing Description \$200 \$00 EH Extremely closely spaced \$20 \$200 Very videly spaced \$200 \$60 \$200 Very widely spaced \$200 \$600 \$200 S		FR	Fresh					
VL Very Low > 0.03 > 0.1 L Low > 0.1 50.3 M Medium > 0.3 s1 High > 1 s3 s1 VH Very High > 3 s10 EH Extremely High > 1 s3 Defect Spacing Extremely High > 1 s2 Defect Spacing Extremely closely spaced < 20 to 60			Distinctly Weathered (DW) may be used. DW is defined as 'Rock strength changed by weathering. The rock may be highly discoloured, usua ironstaining. Porosity may be increased by leaching, or may be decrea					
L Low >0.1 \$0.3 M Medium >0.3 \$1 High >1 \$3 \$1 Very High >3 \$10 Defect Spacing Extremely High >3 \$10 Defect Spacing Description \$20 \$20 Defect Spacing Extremely High >1 \$20 Defect Spacing Extremely disely spaced \$20 \$20 Very closely spaced 200 to 600 \$200 \$200 Videly spaced 200 to 600 \$200 \$200 Very videly spaced 200 to 600 \$200 \$200 Defect Description (AS1726:2017) Ft Parting \$200 \$6000 Type Pt Parting \$3 \$1 \$400 Join Joint Joint \$5 \$5 \$6000 Cs Crushed Seam \$5 \$5 \$6 \$5 Sh Sheared Surface \$5 \$5 \$5 Ss Sheared Surface \$5 \$5 \$5 Sh Sheared Surface \$5 \$5 \$5 Sc Crushed Seam \$5 \$5 \$5 Un Unduidting Ir	Strength (AS1726:2017)				, MPa)			
M Medium >0.3 ≤1 High >1 ≤3 VH Very High >3 ≤10 Defect Spacing Extremely High >10 Spacing (mm) Defect Oscely spaced <								
H H EH High Extremely High Extremely High Extremely Obsely spaced Very closely spaced Very close								
VH EH Very High Extremely High Extremely Jobes paced >10 Defect Spacing Description Extremely closely spaced <20								
Defect Spacing Description Spacing (mm) Extremely closely spaced -20 Very closely spaced 20 to 60 Closely spaced 60 to 200 Wedium spaced 200 to 600 Very widely spaced 600 to 2000 Very widely spaced 600 to 2000 Very widely spaced 200 to 600 Extremely widely spaced 2000 to 6000 Extremely widely spaced >6000 Defect Description (A\$1726:2017) Pt Type Pt Parting Jo Joint Sh Sheared Surface Sz Sheared Surface Ss Cheared Zone Ss Sheared Seam Cs Crushed Seam Ews Extremely Weathered Seam Macro-surface geometry St Yro Very Rough Ro Rough Sm Smooth Planar Planar Micro-surface geometry Vro Vro Very Rough Ro Such Shicensided Si Slickensided Coating or infilling on vn veneer								
Extremely closely spaced -20 Very closely spaced 20 to 60 Closely spaced 60 to 200 Medium spaced 200 to 600 Very videly spaced 2000 to 6000 Extremely widely spaced 2000 to 6000 Defect Description (AS1726:2017) Pt Type Pt Parting Joint Jo Joint Sh Sheared Surface Sz Sheared Zone Ss Sheared Seam Is Infilled Seam Is Infilled Seam Bws Extremely Weathered Seam Macro-surface geometry St Vro Very Rough Ro Sm Sm Smooth Po Planar Micro-surface geometry Vro Very Rough Ro Sm Sm Smooth Po Polished Sl Slickensided Coating or infilling on or geland ven we rev veneer		EH		>10				
Very closely spaced20 to 60Closely spaced60 to 200Medium spaced200 to 600Widely spaced600 to 2000Very widely spaced2000 to 600Extremely widely spaced>6000Defect Description (AS1726:2017)PtPtPartingJoJointShSheared SurfaceSzSheared SeamCsCrushed SeamCsCrushed SeamSsSheared SeamSkSteppedCuCurvedUnUndulatingIrIrregularPlPlanarMicro-surface geometryVroVery NodelyVery RoughRoRoughSmSmoothPoPolishedSiSlickensidedCoating or infillingonCating or infillingonVery NumerVereer	Defect Spacing			- 1				
Defect Description (AS1726:2017) Type Pt Jo Parting Jo 2000 to 600 Pt Jo Parting Jo 9000 Sheared Surface Sz Ss Sheared Surface Sz Sheared Seam Cs Crushed Seam Is Infilled Seam Ews Extremely Weathered Seam Macro-surface geometry St Xiro-surface geometry St Xiro-surface geometry Vro Vor Very Rough Ro Smooth Po Po Pilanar Micro-surface geometry Vro Xiro-surface geometry Vro				ed				
Medium spaced Widely spaced Very widely spaced Extremely widely spaced Solo200 to 600 600 to 2000 2000 to 6000 Extremely widely spaced soloDefect Description (AS1726:2017) TypePt Pt JoParting Joint Shasheared Surface Seared Zone Ss Sheared Zone Ss Sheared Searm Extremely Weathered Searmsheared Surface Searm CsMacro-surface geometrySt St SmStepped Curved Un Un Undulating Irregular PlStepped Curved Un PlanarMicro-surface geometryVro Sn Sm <br< td=""><td></td><td></td><td></td><td></td><td></td></br<>								
Defect Description (A\$1726:2017) Type Pt Parting Jo >6000 Pt Parting Jo Joint Sh Sheared Surface Sz Sheared Surface Ss Sheared Seam Cs Crushed Seam Is Infilled Seam Ews Extremely Weathered Seam Macro-surface geometry St St Stepped Cu Curved Un Undulating Ir Irregular Planar Smooth Micro-surface geometry Vro Vro Very Rough Sin Smooth Po Sickensided Sin Slickensided Sin Sickensided			Medium spaced					
Defect Description (A\$1726:2017) Extremely widely spaced >6000 Type Pt Parting Jo Joint > Sh Sheared Surface Sz Sheared Surface > Sz Sheared Surface Sz Sheared Seam > > Cs Crushed Seam Infilled Seam Extremely Weathered Seam > > Macro-surface geometry St Stepped Curved Un Undulating Ir Irregular PI Planar Vror Very Rough Sm Smooth Smooth Sickensided								
Defect Description (AS1726:2017) Pt Parting Jo Joint Sheared Surface Sh Sheared Surface Sz Sheared Surface Ss Sheared Seam Is Infilled Seam Ews Extremely Weathered Seam Macro-surface geometry St St Stepped Cu Curved Un Undulating Ir Irregular Pl Planar Micro-surface geometry Vro Vro Very Rough Ro Rough Sm Smooth Po Polished Sl Slickensided Coating or infilling cn Coating or infilling cn Coating or infilling cn Vro Vereer				he				
Pt JoParting JointJoJointJoJointShSheared SurfaceSzSheared ZoneSsCrushed SeamCsInfilled SeamEwsExtremely Weathered SeamMacro-surface geometryStStSteppedCuCurvedUnUndulatingIrIrregularPIPlanarMicro-surface geometryVroVery Rough Ro SmSmoothPoSlickensidedCoating or infillingcnclating or infillingcnvnverer	Defect Description (AS1726:2017)				20000			
JoJoinShSheared SurfaceSzSheared SeamCsCrushed SeamIsInfilled SeamEwsExtremely Weathered SeamMacro-surface geometryStStSteppedCuCurvedUnUndulatingIrIrregularPIPlanarMicro-surface geometryVroVery RoughRoSmSmSmoothPoPolishedSi Si S	Туре	_						
Sh Sz Skared Zone Skared Seam CS Is EwsSheared Zone Sheared Seam Infiled Seam Extremely Weathered SeamMacro-surface geometrySt Cu Cu Un Un Ir PlStepped Curved Undulating Irregular PlanarMicro-surface geometryVro Ro SiStepped Curved Undulating Irregular PlanarMicro-surface geometryVro Ro SiVery Rough Rough Si SickensidedCoating or infillingcn Siclean stained vn								
Sz Ss Cs Is EwsSheared Zone Sheared Seam Crushed Seam Extremely Weathered SeamMacro-surface geometrySt Cu Un Un Un Ir PIStepped Cuvred Undulating Irregular PlanarMicro-surface geometryVro Ro Sm Sm Sm Sm Sm Sm SilVery Rough Rough SilckensidedCoating or infillingcn sn vnclean stained veneer								
Cs Is EwsCrushed Seam Infilled Seam Extremely Weathered SeamMacro-surface geometrySt Cu Un Un Ir PIStepped Curved Undulating Irregular PlanarMicro-surface geometryVro Ro Sm Po SIVery Rough Rough Smooth Polished SlickensidedCoating or infillingcn sn vnclean stained veneer		-						
Is EwsInfilled Seam Extremely Weathered SeamMacro-surface geometrySt Cu Un Ir PIStepped Curved Undulating Irregular PlanarMicro-surface geometryVro Ro Sm Po SIVery Rough Rough Smooth Polished SlickensidedCoating or infillingcn sn vnclean stained veneer								
EwsExtremely Weathered SeamMacro-surface geometrySt Cu Un Un Ir PIStepped Curved Undulating Irregular PlanarMicro-surface geometryVro Ro Sm Po SIVery Rough Rough Smooth Polished SlickensidedCoating or infillingcn sn vnclean stained veneer								
Cu Curved Un Undulating Irregular Irregular PI Planar Micro-surface geometry Vro Very Rough Ro Rough Sm Smooth Po Polished SI Slickensided Coating or infilling cn clean sn stained vn veneer		Ews		Seam				
Cu Curved Un Undulating Irregular Irregular PI Planar Micro-surface geometry Vro Very Rough Ro Rough Sm Smooth Po Polished SI Slickensided Coating or infilling cn clean sn stained vn veneer	Macro surface geometry	C †	Stoppod					
Un Ir PlUndulating Irregular PlanarMicro-surface geometryVro Ro Sm Po SiVery Rough Rough Smooth Polished SlickensidedCoating or infillingcn sn vnclean stained veneer	macro surrace geometry							
PI Planar Micro-surface geometry Vro Very Rough Ro Sm Smooth Po Po Polished SI Slickensided Coating or infilling cn clean sn vn veneer		-						
Ro Rough Sm Smooth Po Polished SI Slickensided Coating or infilling cn clean sn stained vn veneer								
Ro Rough Sm Smooth Po Polished SI Slickensided Coating or infilling cn clean sn stained vn veneer	Micro surface cometry	Vro	Von/ Pouch					
Sm Smooth Po Polished SI Slickensided Coating or infilling cn clean sn stained vn veneer	wilcro-surrace geometry							
Coating or infilling Cn clean sn stained vn veneer		Sm	Smooth					
Coating or infilling cn clean sn stained vn veneer								
sn stained vn veneer		51	Slickensided					
vn veneer	Coating or infilling	cn	clean					
		vn cg	veneer coating					

Grain S	Size mm				Be	dded rock	s (mostly	sedimentary)			
More than 20	20		ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock	
	6	RUD	DACEOUS	CONGLOMERATE Rounded boulders, cob cemented in a finer mat Breccia Irregular rock fragments	trix		DLOMITE ed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose	ite or iron minerals		LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite		Cemented volcanic ash	Gypsum
	0.06	AF		Many feldspar grains Greywacke Many rock chips	T		_	Calcisiltite	1	Fine-grained TUFF	
	0.002		LLACEOUS	MUDSTONE	SILTSTONE Mostly silt	Calcareous Mudstone			CHALK	, , , , , , , , , , , , , , , , , , ,	
	Less than 0.002	AKGI	LLACEOUS	SHALE Fissile	CLAYSTONE Mostly clay	Calca Muds		Calcilutite	СН/	Very fine-grained TUFF	
Amorpho crypto-cry		he Flint: occurs as hands of nodules in the chalk Chert: occurs as nodules and beds in limestone and calcareous sandstone						COAL LIGNITE			
	Granular cemented – except amorphous rocks										
				SILICEOUS			REOUS			SILICEOUS	CARBONACEOUS
					ks vary greatly in stre					any Igneous rocks. Bedding c rocks derived from them, co	
				Calcareous rocks conta	in calcite (calcium c	arbonate)	which eff	ervesces with dil	ute hydro	ochloric acid	

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

Obviously fo	liated rocks (mostly metamorphic)		Rocks with	massive structure	and crystalline texture	(mostly igneous)		Grain size (mm)
Grain size description			Grain size description	Pe	egmatite		Pyrosenite	More than 20
	GNEISS	MARBLE				_	Peridorite	20
	Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO	Peridonte	6
COARSE	Sunsuse Danus	Granulite	COARSE		sometimes are then described, porphyritic granite			0
	Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
	SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
MEDIUM		Serpentine	MEDIUM	These rocks are phorphyritic and as porphyries	e sometimes are then described	Dolerite		0.2
								0.06
FINE	PHYLLITE Slightly undulose foliation; sometimes 'spotted'		FINE	RHYOLITE	ANDESITE	DAGAL T		0.002
FINE	SLATE Well developed plane cleavage (foliation)		FINE	These rocks are phorphyritic and as porphyries	sometimes are then described	- BASALT		Less than 0.002
	Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
CRYSTALLIN	Ē	•		Pale<			>Dark	
SILICEOUS		Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
impart fissility. foliated metan Any rock bake and is general	IIC ROCKS phic rocks are distinguished by foliation Foliation in gneisses is best observe norphics are difficult to recognize exce d by contact metamorphism is describ ly somewhat stronger than the parent tamorphic rocks are strong although p	d in outcrop. Non- pt by association. ed as 'hornfels' rock		closely interlocking	g mineral grains. Stron ; 2 Laccoliths; 3 Sills; 4	• • •		

ANALYTICAL REPORT

- CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact	Indra Jworchan	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Project	14947/1 95-119 OConnell Street, Caddens	SGS Reference	SE222421 R0
Order Number	(Not specified)	Date Received	9/8/2021
Samples	32	Date Reported	16/8/2021

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet LO Senior Organic Chemist/Metals Chemist Shane MCDERMOTT Inorganic/Metals Chemist	Dong LIANG st Metals/Inorganics Team Leade	Huong CRAWFORI Production Manage	
Shane MCDERMOTT	st Metals/Inorganics Team Leade	er Production Manage	ſ
Shane MCDERMOTT			
_			
SGS Australia Pty Ltd Environmen ABN 44 000 964 278	ent, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC		2 8594 0400 www.sgs.com. 2 8594 0499

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 16/8/2021

			TP1	TP1	TP4	TP4	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	1.5-1.6	0.5-0.6	1.5-1.6	0.9-1.0
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.001	SE222421.002	SE222421.007	SE222421.008	SE222421.013
Chloride	mg/kg	0.25	710	410	4.2	9.0	12
Sulfate	mg/kg	0.5	8.5	38	44	16	26
			TP7	TP10	TP10	TP13	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			2.0-2.1	1.0-1.1	2.0-2.1	1.5-1.6	2.0-2.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.014	SE222421.019	SE222421.020	SE222421.025	SE222421.026
Chloride	mg/kg	0.25	12	1500	950	100	460

			TP16	TP16
			SOIL 1.0-1.1 9/8/2021	SOIL 2.0-2.1 9/8/2021
PARAMETER	UOM	LOR	SE222421.031	SE222421.032
Chloride	mg/kg	0.25	150	1300
Sulfate	mg/kg	0.5	65	100

SE222421 R0

pH in soil (1:2) [AN101] Tested: 16/8/2021

			TP1	TP1	TP4	TP4	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	1.5-1.6	0.5-0.6	1.5-1.6	0.9-1.0
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.001	SE222421.002	SE222421.007	SE222421.008	SE222421.013
pH (1:2)	pH Units	-	6.8	9.1	6.6	5.6	6.5

			TP7	TP10	TP10	TP13	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			2.0-2.1	1.0-1.1	2.0-2.1	1.5-1.6	2.0-2.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.014	SE222421.019	SE222421.020	SE222421.025	SE222421.026
рН (1:2)	pH Units	-	7.7	4.3	4.3	7.8	8.7

			TP16	TP16
			SOIL 1.0-1.1	SOIL 2.0-2.1
			9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.031	SE222421.032
pH (1:2)	pH Units	-	8.5	8.0

Conductivity (1:2) in soil [AN106] Tested: 16/8/2021

			TP1	TP1	TP4	TP4	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	1.5-1.6	0.5-0.6	1.5-1.6	0.9-1.0
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.001	SE222421.002	SE222421.007	SE222421.008	SE222421.013
Conductivity (1:2) @25 C*	µS/cm	1	1000	990	98	42	84
Resistivity (1:2)*	ohm cm	-	970	1000	10000	24000	12000
			TP7	TP10	TP10	TD42	7540
				IFIV		TP13	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SOIL 2.0-2.1	SOIL 1.0-1.1	SOIL 2.0-2.1	SOIL 1.5-1.6	SOIL 2.0-2.1
PARAMETER Conductivity (1:2) @25 C*	UOM µS/cm	LOR 1	SOIL 2.0-2.1 9/8/2021	SOIL 1.0-1.1 9/8/2021	SOIL 2.0-2.1 9/8/2021	SOIL 1.5-1.6 9/8/2021	SOIL 2.0-2.1 9/8/2021

			TP16	TP16
PARAMETER	UOM	LOR	SOIL 1.0-1.1 9/8/2021 SE222421.031	SOIL 2.0-2.1 9/8/2021 SE222421.032
Conductivity (1:2) @25 C*	µS/cm	1	530	1800
Resistivity (1:2)*	ohm cm	-	1900	540

Conductivity and TDS by Calculation - Soil [AN106] Tested: 16/8/2021

			TP1	TP1	TP2	TP2	TP3
			00	001	001	001	001
			SOIL 0.5-0.6	SOIL 1.5-1.6	SOIL 0.8-0.9	SOIL 1.6-1.7	SOIL 1.0-1.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.001	SE222421.002	SE222421.003	SE222421.004	SE222421.005
Conductivity of Extract (1:5 as received)	µS/cm	1	520	720	400	760	25
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	660	850	500	890	30
			TP3	TP4	TP4	TP5	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			2.0-2.1	0.5-0.6	1.5-1.6	0.9-1.0	1.4-1.5
PARAMETER	UOM	LOR	9/8/2021 SE222421.006	9/8/2021 SE222421.007	9/8/2021 SE222421.008	9/8/2021 SE222421.009	9/8/2021 SE222421.010
Conductivity of Extract (1:5 as received)	µS/cm	1	19	58	21	960	240
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	22	73	24	1200	270
			TP6	TP6	TP7	TP7	TP8
			SOIL 1.0-1.0	SOIL 2.0-2.1	SOIL 0.9-1.0	SOIL 2.0-2.1	SOIL 1.0-1.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.011	SE222421.012	SE222421.013	SE222421.014	SE222421.015
Conductivity of Extract (1:5 as received)	µS/cm	1	1300	1200	41	94	770
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	1600	1300	50	95	920
			TP8	TP9	ТР9	TP10	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.9-2.0	0.5-0.6	1.5-1.6	1.0-1.1	2.0-2.1
DI DI NUETED	UOM	1.05	9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER Conductivity of Extract (1:5 as received)	μS/cm	LOR 1	SE222421.016	SE222421.017	SE222421.018	SE222421.019 1000	SE222421.020
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	1100 1400	190 230	98 120	1400	1000 1000
	μολοιτί		1400	230	120	1400	1000
			TP11	TP11	TP12	TP12	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.0-1.1 9/8/2021	2.0-2.1 9/8/2021	1.0-1.1 9/8/2021	2.0-2.1 9/8/2021	1.5-1.6 9/8/2021
PARAMETER	UOM	LOR	SE222421.021	SE222421.022	SE222421.023	SE222421.024	SE222421.025
Conductivity of Extract (1:5 as received)	µS/cm	1	340	110	180	210	210
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	410	130	200	260	290
			TP13	TP14	TP14	TP15	TP15
			SOIL	SOIL	SOIL	SOIL	SOIL
			2.0-2.1	0.5-0.6	1.5-1.6	1.0-1.1	2.0-2.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	9/8/2021 SE222421.026	9/8/2021 SE222421.027	9/8/2021 SE222421.028	9/8/2021 SE222421.029	9/8/2021 SE222421.030
PARAMETER Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	UOM µS/cm µS/cm	LOR 1 1	9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021

			TP16	TP16
			SOIL	SOIL
			1.0-1.1	2.0-2.1
			9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.031	SE222421.032
Conductivity of Extract (1:5 as received)	µS/cm	1	760	970
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	950	1100

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 16/8/2021

			TP1	TP1	TP4	TP4	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	1.5-1.6	0.5-0.6	1.5-1.6	0.9-1.0
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.001	SE222421.002	SE222421.007	SE222421.008	SE222421.013
Exchangeable Calcium, Ca	mg/kg	2	1300	4800	2700	1900	1900
Exchangeable Calcium, Ca	meq/100g	0.01	6.5	24	14	9.3	9.6
Exchangeable Calcium Percentage*	%	0.1	28.6	65.7	61.7	53.1	67.5
Exchangeable Potassium, K	mg/kg	2	200	140	200	110	120
Exchangeable Potassium, K	meq/100g	0.01	0.51	0.35	0.52	0.28	0.31
Exchangeable Potassium Percentage*	%	0.1	2.2	1.0	2.3	1.6	2.2
Exchangeable Magnesium, Mg	mg/kg	2	1400	680	840	750	430
Exchangeable Magnesium, Mg	meq/100g	0.02	11	5.5	6.9	6.2	3.5
Exchangeable Magnesium Percentage*	%	0.1	49.8	15.3	30.8	35.3	24.5
Exchangeable Sodium, Na	mg/kg	2	1000	1500	260	400	190
Exchangeable Sodium, Na	meq/100g	0.01	4.5	6.5	1.1	1.8	0.83
Exchangeable Sodium Percentage*	%	0.1	19.5	18.0	5.1	10.1	5.8
Cation Exchange Capacity	meq/100g	0.02	23	36	22	17	14

			TP7	TP10	TP10	TP13	TP13
PARAMETER	UOM	LOR	SOIL 2.0-2.1 9/8/2021 SE222421.014	SOIL 1.0-1.1 9/8/2021 SE222421.019	SOIL 2.0-2.1 9/8/2021 SE222421.020	SOIL 1.5-1.6 9/8/2021 SE222421.025	SOIL 2.0-2.1 9/8/2021 SE222421.026
Exchangeable Calcium, Ca	mg/kg	2	1300	54	37	5200	4000
Exchangeable Calcium, Ca	meq/100g	0.01	6.4	0.27	0.19	26	20
Exchangeable Calcium Percentage*	%	0.1	41.4	1.2	1.0	70.9	56.3
Exchangeable Potassium, K	mg/kg	2	140	140	120	190	200
Exchangeable Potassium, K	meq/100g	0.01	0.35	0.35	0.31	0.49	0.51
Exchangeable Potassium Percentage*	%	0.1	2.2	1.5	1.6	1.3	1.4
Exchangeable Magnesium, Mg	mg/kg	2	870	1300	1100	1000	1300
Exchangeable Magnesium, Mg	meq/100g	0.02	7.1	10	9.4	8.4	11
Exchangeable Magnesium Percentage*	%	0.1	46.3	46.9	48.4	22.8	29.5
Exchangeable Sodium, Na	mg/kg	2	360	2600	2200	420	1000
Exchangeable Sodium, Na	meq/100g	0.01	1.5	11	9.5	1.8	4.6
Exchangeable Sodium Percentage*	%	0.1	10.0	50.3	49.1	5.0	12.8
Cation Exchange Capacity	meq/100g	0.02	15	22	19	37	36

PARAMETER	UOM	LOR	TP16 SOIL 1.0-1.1 9/8/2021 SE222421.031	TP16 SOIL 2.0-2.1 9/8/2021 SE222421.032
Exchangeable Calcium, Ca	mg/kg	2	7200	1500
Exchangeable Calcium, Ca	meq/100g	0.01	36	7.3
Exchangeable Calcium Percentage*	%	0.1	66.6	26.4
Exchangeable Potassium, K	mg/kg	2	230	240
Exchangeable Potassium, K	meq/100g	0.01	0.60	0.61
Exchangeable Potassium Percentage*	%	0.1	1.1	2.2
Exchangeable Magnesium, Mg	mg/kg	2	1600	1500
Exchangeable Magnesium, Mg	meq/100g	0.02	13	13
Exchangeable Magnesium Percentage*	%	0.1	24.0	45.1
Exchangeable Sodium, Na	mg/kg	2	1000	1700
Exchangeable Sodium, Na	meq/100g	0.01	4.5	7.3
Exchangeable Sodium Percentage*	%	0.1	8.3	26.3
Cation Exchange Capacity	meq/100g	0.02	54	28

SE222421 R0

Moisture Content [AN002] Tested: 16/8/2021

			TP1	TP1	TP2	TP2	TP3
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	1.5-1.6	0.8-0.9	1.6-1.7	1.0-1.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.001	SE222421.002	SE222421.003	SE222421.004	SE222421.005
% Moisture	%w/w	1	21.1	15.2	19.8	13.9	16.6

			TP3	TP4	TP4	TP5	TP5
			SOIL	SOIL	SOIL	SOIL	SOIL
			2.0-2.1	0.5-0.6	1.5-1.6	0.9-1.0	1.4-1.5
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.006	SE222421.007	SE222421.008	SE222421.009	SE222421.010
% Moisture	%w/w	1	14.3	20.9	13.6	18.9	13.9

			TP6	TP6	TP7	TP7	TP8
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.0-1.0	2.0-2.1	0.9-1.0	2.0-2.1	1.0-1.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.011	SE222421.012	SE222421.013	SE222421.014	SE222421.015
% Moisture	%w/w	1	17.8	13.9	16.6	1.6	16.6

			TP8	ТР9	TP9	TP10	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.9-2.0	0.5-0.6	1.5-1.6	1.0-1.1	2.0-2.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.016	SE222421.017	SE222421.018	SE222421.019	SE222421.020
% Moisture	%w/w	1	17.3	18.9	20.4	25.0	<1.0

			TP11	TP11	TP12	TP12	TP13
			SOIL	SOIL	SOIL	SOIL	SOIL
			1.0-1.1	2.0-2.1	1.0-1.1	2.0-2.1	1.5-1.6
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.021	SE222421.022	SE222421.023	SE222421.024	SE222421.025
% Moisture	%w/w	1	17.3	15.4	13.1	19.2	29.3

			TP13	TP14	TP14	TP15	TP15
			SOIL	SOIL	SOIL	SOIL	SOIL
			2.0-2.1	0.5-0.6	1.5-1.6	1.0-1.1	2.0-2.1
			9/8/2021	9/8/2021	9/8/2021	9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.026	SE222421.027	SE222421.028	SE222421.029	SE222421.030
% Moisture	%w/w	1	11.2	18.3	19.5	16.2	11.0

			TP16	TP16
			SOIL 1.0-1.1	SOIL 2.0-2.1
			9/8/2021	9/8/2021
PARAMETER	UOM	LOR	SE222421.031	SE222421.032
% Moisture	%w/w	1	20.6	14.2

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN106	Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN245	Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply. NVL IS I NR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. Raised/lowered Limit of î↓ Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	LS
Contact Client Address	Indra Jworchan Geotechnique P.O. Box 880 NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Project	14947/1 95-119 OConnell Street, Caddens	SGS Reference	SE222421 R0
Order Number	(Not specified)	Date Received	09 Aug 2021
Samples	32	Date Reported	16 Aug 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

Moisture Content

1 item

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

16/8/2021

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Conductivity (1:2) in soil

Conductivity (1:2) in soil	Somela Na		Somelad	Possived	Extraction Due	Extracted		ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1	SE222421.001	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P1	SE222421.002	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P4	SE222421.007	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P4	SE222421.008	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P7	SE222421.013	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P7	SE222421.014	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P10	SE222421.019	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P10	SE222421.020	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P13	SE222421.025	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P13	SE222421.026	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P16	SE222421.031	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P16	SE222421.032	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
onductivity and TDS by Ca	Iculation - Soil						Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1	SE222421.001	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
···	SE222421.002	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P2	SE222421.002	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P2	SE222421.003	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P3 P3	SE222421.005	LB230616 LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021 16 Aug 2021	16 Aug 2021	16 Aug 2021
P3 P4	SE222421.006 SE222421.007	LB230616	09 Aug 2021	09 Aug 2021 09 Aug 2021	16 Aug 2021	-	16 Aug 2021	16 Aug 2021
			09 Aug 2021		16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P4	SE222421.008	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P5	SE222421.009	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P5	SE222421.010	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P6	SE222421.011	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P6	SE222421.012	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P7	SE222421.013	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P7	SE222421.014	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P8	SE222421.015	LB230616	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P8	SE222421.016	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P9	SE222421.017	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P9	SE222421.018	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P10	SE222421.019	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P10	SE222421.020	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P11	SE222421.021	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P11	SE222421.022	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P12	SE222421.023	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P12	SE222421.024	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P13	SE222421.025	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P13	SE222421.026	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P14	SE222421.027	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P14	SE222421.028	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P15	SE222421.029	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P15	SE222421.030	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P16	SE222421.031	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
P16	SE222421.032	LB230620	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021	16 Aug 2021
changeable Cations and (Cation Exchange Canaci	W (CEC/ESP/SAR)					Method:	ME-(AU)-[ENV]AI
-								
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1	SE222421.001	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P1	SE222421.002	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P4	SE222421.007	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P4	SE222421.008	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P7	SE222421.013	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P7	SE222421.014	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P10	SE222421.019	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P10	SE222421.020	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P13	SE222421.025	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
P13	SE222421.026	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
	05000404.004	1 0000640	00.4		06.0 0001		06.0 0001	

SE222421.031

LB230619

09 Aug 2021

09 Aug 2021

06 Sep 2021

16 Aug 2021

06 Sep 2021

TP16

16 Aug 2021

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

_	d Cation Exchange Capacit		· ·					ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
FP16	SE222421.032	LB230619	09 Aug 2021	09 Aug 2021	06 Sep 2021	16 Aug 2021	06 Sep 2021	16 Aug 2021
oisture Content							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE222421.001	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP1	SE222421.002	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP2	SE222421.003	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP2	SE222421.004	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
ГР3	SE222421.005	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP3	SE222421.006	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP4	SE222421.007	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP4	SE222421.008	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
rp5	SE222421.009	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
rp5	SE222421.010	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
TP6	SE222421.011	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
ГР6	SE222421.012	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
ГР7	SE222421.012	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
ГР7	SE222421.013	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
ГР8	SE222421.014	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
ГР8	SE222421.016	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P9	SE222421.010	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P9	SE222421.017	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P10	SE222421.018	LB230670		-		-		
P10	SE222421.019 SE222421.020	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
-			09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P11	SE222421.021	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P11	SE222421.022	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P12	SE222421.023	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P12	SE222421.024	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
FP13	SE222421.025	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
FP13	SE222421.026	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
FP14	SE222421.027	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P14	SE222421.028	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P15	SE222421.029	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
FP15	SE222421.030	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
FP16	SE222421.031	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
P16	SE222421.032	LB230670	09 Aug 2021	09 Aug 2021	23 Aug 2021	16 Aug 2021	21 Aug 2021	16 Aug 2021
H in soil (1:2)								ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
FP1	SE222421.001	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
FP1	SE222421.002	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P4	SE222421.007	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P4	SE222421.008	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P7	SE222421.013	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P7	SE222421.014	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P10	SE222421.019	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P10	SE222421.020	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
FP13	SE222421.025	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
rp13	SE222421.026	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
P16	SE222421.031	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021
FP16	SE222421.032	LB230638	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	17 Aug 2021	16 Aug 2021

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: ME-(AU)-[ENV]AN245 Sample Name Sample No. QC Ref Analysis Due Analysed Sampled Received Extraction Due Extracted TP1 SE222421.001 LB230612 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 13 Sep 2021 16 Aug 2021 TP1 SE222421.002 LB230612 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 13 Sep 2021 16 Aug 2021 TP4 SE222421.007 LB230612 13 Sep 2021 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 16 Aug 2021 TP4 SE222421.008 LB230612 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 13 Sep 2021 16 Aug 2021 TP7 SE222421.013 LB230612 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 13 Sep 2021 16 Aug 2021 13 Sep 2021 TP7 SE222421.014 LB230612 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 16 Aug 2021 TP10 SE222421.019 LB230612 09 Aug 2021 09 Aug 2021 16 Aug 2021 16 Aug 2021 13 Sep 2021 16 Aug 2021

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography (continued)							Method: I	ME-(AU)-[ENV]AN245
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP10	SE222421.020	LB230612	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	13 Sep 2021	16 Aug 2021
TP13	SE222421.025	LB230612	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	13 Sep 2021	16 Aug 2021
TP13	SE222421.026	LB230612	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	13 Sep 2021	16 Aug 2021
TP16	SE222421.031	LB230612	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	13 Sep 2021	16 Aug 2021
TP16	SE222421.032	LB230612	09 Aug 2021	09 Aug 2021	16 Aug 2021	16 Aug 2021	13 Sep 2021	16 Aug 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE222421 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil			Meth	od: ME-(AU)-[ENV]AN106
Sample Number Para	ameter	Units	LOR	Result
LB230638.001 Con	ductivity (1:2) @25 C*	µS/cm	1	<1

Conductivity and TDS by Calculation - S	Soll		Meth	od: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result
LB230616.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.52
LB230620.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	its LOR cm 1 cm 1 cm 1 cm 1 cm 1 cm 2 /kg 2	0.83
Exchangeable Cations and Cation Exch	nange Capacity (CEC/ESP/SAR)		Meth	od: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result
LB230619.001	Exchangeable Sodium, Na	mg/kg	2	0
	Exchangeable Potassium, K	mg/kg	2	0
	Exchangeable Calcium, Ca	mg/kg	2	0
	Exchangeable Magnesium, Mg	mg/kg	2	0
Soluble Anions in Soil from 1:2 DI Extra	act by Ion Chromatography		Meth	od: ME-(AU)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result
LB230612.001	Chloride	mg/kg	0.25	<0.25
	Sulfate	mg/kg	0.5	<0.5

Method: ME-(ALI)-JENVIAN106

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Conductivity (1:2) in soil

Conductivity (1:2)	IT SOIL					Meth	od: ME-(AU)-	ENVIAN100
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE222421.026	LB230638.014	Conductivity (1:2) @25 C*	µS/cm	1	960	950	30	1
		Resistivity (1:2)*	ohm cm	-	1000	1100	31	1
SE222421.032	LB230638.017	Conductivity (1:2) @25 C*	µS/cm	1	1800	1700	30	10
		Resistivity (1:2)*	ohm cm	-	540	600	32	10
Conductivity and T	TDS by Calculation - Soil					Meth	od: ME-(AU)-	ENVJAN10
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE222421.005	LB230616.014	Conductivity of Extract (1:5 as received)	µS/cm	1	25	26	38	5
		Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	30	31	37	5
SE222421.015	LB230616.025	Conductivity of Extract (1:5 as received)	µS/cm	1	770	780	30	1
		Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	920	930	30	1
SE222421.025	LB230620.014	Conductivity of Extract (1:5 as received)	µS/cm	1	210	200	31	4
		Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	290	280	31	4
SE222421.032	LB230620.022	Conductivity of Extract (1:5 as received)	µS/cm	1	970	840	30	15
		Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	1100	970	30	15
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE222421.010	LB230670.011	% Moisture	%w/w	1	13.9	13.5	37	3
SE222421.020	LB230670.022	% Moisture	%w/w	1	<1	20.6	39	181 ②
SE222421.030	LB230670.033	% Moisture	%w/w	1	11.0	10.6	39	3
SE222421.032	LB230670.036	% Moisture	%w/w	1	14.2	14.8	37	4
pH in soil (1:2)						Meth	od: ME-(AU)-	(ENVJAN101
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE222421.026	LB230638.014	pH (1:2)	pH Units	-	8.7	8.6	31	0
SE222421.032	LB230638.017	pH (1:2)	pH Units	-	8.0	8.0	31	0

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

Soluble Anions in S	Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: ME-(AU)-[ENV]A				ENVJAN245			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE222421.032	LB230612.017	Chloride	mg/kg	0.25	1300	1300	30	0
		Sulfate	mg/kg	0.5	100	100	32	0

Method: ME-(AU)-[ENV]AN106

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil	Conductivity (1:2) in soil Method: ME-(AU)-[ENV]AN1						U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB230638.002	Conductivity (1:2) @25 C*	µS/cm	1	320	303	70 - 130	105

Conductivity	and TDS	by Calcu	lation - Soil

Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Conductivity of Extract (1:5 as received)	µS/cm	1	320	303	85 - 115	105
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	105
Conductivity of Extract (1:5 as received)	µS/cm	1	320	303	85 - 115	106
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	106
hangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) mple Number Parameter				N	lethod: ME-(A	U)-[ENV]AN12
Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Exchangeable Sodium, Na	meq/100g	0.01	0.21	0.194	80 - 120	108
Exchangeable Potassium, K	meq/100g	0.01	0.63	0.63	80 - 120	100
Exchangeable Calcium, Ca	meq/100g	0.01	6.6	6.3	80 - 120	104
Exchangeable Magnesium, Mg	meq/100g	0.02	1.1	1.11	80 - 120	101
				N	lethod: ME-(A	U)-[ENV]AN10
Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
pH (1:2)	pH Units	_	7.4	7.415	98 - 102	100
	Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) change Capacity (CEC/ESP/SAR) Parameter Exchangeable Sodium, Na Exchangeable Potassium, K Exchangeable Calcium, Ca Exchangeable Magnesium, Mg Parameter	Conductivity of Extract (1:5 as received) µS/cm Conductivity of Extract (1:5 dry sample basis) µS/cm change Capacity (CEC/ESP/SAR) µS/cm Parameter Units Exchangeable Sodium, Na meq/100g Exchangeable Calcium, Ca meq/100g Exchangeable Magnesium, Mg meq/100g	Conductivity of Extract (1:5 as received) μS/cm 1 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 Conductivity of Extract (1:5 as received) μS/cm 1 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 change Capacity (CEC/ESP/SAR) Parameter Units LOR Exchangeable Sodium, Na meq/100g 0.01 Exchangeable Potassium, K meq/100g 0.01 Exchangeable Calcium, Ca meq/100g 0.02 Parameter Units LOR	Conductivity of Extract (1:5 as received) μS/cm 1 320 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA Conductivity of Extract (1:5 as received) μS/cm 1 320 Conductivity of Extract (1:5 as received) μS/cm 1 320 Conductivity of Extract (1:5 as received) μS/cm 1 NA Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA change Capacity (CEC/ESP/SAR) μS/cm 1 NA Exchangeable Sodium, Na meq/100g 0.01 0.21 Exchangeable Potassium, K meq/100g 0.01 0.63 Exchangeable Calcium, Ca meq/100g 0.02 1.1 Parameter Units LOR Result	Conductivity of Extract (1:5 as received) μS/cm 1 320 303 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 change Capacity (CEC/ESP/SAR) μS/cm 1 NA 303 change Capacity (CEC/ESP/SAR) Vinits LOR Result Expected Exchangeable Sodium, Na meq/100g 0.01 0.21 0.194 Exchangeable Potassium, K meq/100g 0.01 0.63 0.63 Exchangeable Calcium, Ca meq/100g 0.01 6.6 6.3 Exchangeable Magnesium, Mg meq/100g 0.02 1.1 1.11	Conductivity of Extract (1:5 as received) μS/cm 1 320 303 85 - 115 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 85 - 115 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 320 303 85 - 115 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 85 - 115 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 85 - 115 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 85 - 115 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 NA 303 85 - 115 Change Capacity (CEC/ESP/SAR) μS/cm 1 NA 303 85 - 115 Exchangeable Sodium, Na meq/100g 0.01 0.21 0.194 80 - 120 Exchangeable Potassium, K meq/100g 0.01 0.63 80 - 120 Exchangeable Calcium, Ca meq/100g 0.01 6.6 6.3 80 - 120

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

Soluble Anions in Soil from 1:2 DI Extr	act by Ion Chromatography				N	lethod: ME-(A	U)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB230612.002	Chloride	mg/kg	0.25	39	40	70 - 130	98
	Sulfate	mg/kg	0.5	38	40	70 - 130	96

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

-second Schwarzell page 1.565 Ref. SEC0401 $_{\star}$, its

ſ	ro:	SGS ENVIRON UNIT 16 33 MADDOX ST ALEXANDRIA	TREET	RVICES		NRITH NSW 2751		info@geotech.co Sampling By:	RS	Job No: Project:	14947/1 Propose	Page	
	PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project Mana	-	Location:		'Connell Street, Caddens	
Ļ		Sampling d	etails						Results	required by	y: Nori	mal Turnaround	
,	Location	Depth	Soil	Water	EC (1:5)	Aggressivity	ESP					Notes	Keep Sa
사	TP1	0.5-0.6	DSP									Aggressivity Test Includes	1
쇠	TP1	1.5-1.6	DSP			\checkmark	\checkmark	~				pH, Chloride, Sulphate and Resistivit	t 🗸
3	TP2	0.8-0.9	DSP										✓
귀	TP2	1.6-1.7	DSP									ESP	
· ·	TP3	1.0-1.1	DSP									Exchangeable Sodium Percentage	✓
위	TP3 TP4	2.0-2.1	DSP DSP										✓ ✓
{a}+						ÿ	`				_		✓
2	TP4 TP5	<u> </u>	DSP DSP				v				<u> </u>		V
1	TP5	1.4-1.5	DSP		~~~~								
	 TP6	1.0-1.0	DSP										✓
라	TP6	2.0-2.1	DSP										
12	TP7	0.9-1.0	DSP		· · ·	~							✓ ✓
15	TP7	2.0-2.1	DSP			~~~~							~
금	TP8	1.0-1.1	DSP			•							~
i2	TP8	1.9-2.0	DSP										~
191	TP9	0.5-0.6	DSP										
ig	TP9	1.5-1.6	DSP					+					ľ v
18	TP10	1.0-1.1	DSP			~~~							
20	TP10	2.0 -2.1	DSP				~~~~			····-	-		Ť
21	TP11	1.0-1.1	DSP										
22	TP11	2.0-2.1	DSP				<u> </u>						
23	TP12	1.0-1.1	DSP								I	·	
24	TP12	2.0-2.1	DSP					++		+ SGS I	EHS Sve	dney COC 🛛 🚽 🗕	
25	TP13	1.5-1.6	DSP		\checkmark	~							
26	TP13	2.0-2.1	DSP			~	~			─+ SE	222	421 –	
27	TP14	0.5-0.6	DSP		~			•-				•	
28	TP14	1.5-1.6	DSP									####################################	· · · · ·
29	TP15	1.0-1.1	DSP										
30	TP15	2.0-2.1	DSP		\checkmark					+			
31	TP16	1.0-1.1	DSP		\checkmark	~ ~	~					<u></u>	
32	TP16	2.0-2.1	DSP			\checkmark	~						
													· · · ·
						Exc	cel Geo	tecg_Geo l	Required				<u> </u>
-	Ne	ame	· · · · · · · · · · · · · · · · · · ·		Signature		Date				Receiv		
F		worchan	<u> </u>		oignaidite			George	Name	- mt		Signature	0100
៍ត	egend:					· · · · · · · · · · · · · · · · · · ·	5100/2021	Junge	(du	Mi			9787

SAMPLE RECEIPT ADVICE

ntact	Indra Jworchan		Manager	Huong Crawford			
ent	Geotechnique		Laboratory	SGS Alexandria Enviro	nmental		
dress	P.O. Box 880 NSW 2751		Address	Unit 16, 33 Maddox St Alexandria NSW 2015	16, 33 Maddox St		
lephone	02 4722 2700		Telephone	+61 2 8594 0400			
csimile	02 4722 6161		Facsimile	+61 2 8594 0499			
		aat Caddaaa	Olas Dlast	- Man 9/8/2021			
roject		eer, Caudens	Samples Received	Mon 9/8/2021 Mon 16/8/2021			
rder Number amples	(Not specified) 32		Report Due SGS Reference	SE222421			
Samples o Sample co Samples r	Prence SE222421 when making e clearly labelled ontainer provider received in correct containers mentation received	Yes Client Yes	Complete docum Sample cooling r Sample counts b	entation received nethod y matrix	Yes None 32 Soil COC		
Date docu Samples	rmentation received received in good order emperature upon receipt	9/8/2021 Yes 19°C	Type of documer	ntation received d without headspace	COC N/A Yes		
	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soll samples will be held	for two months.		
niess otherwis	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soli samples will be held	for two months.		
	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soll samples will be held	for two months.		
	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soli samples will be held	for two months.		
	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soli samples will be held	for two months.		
	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soli samples will be held	for two months.		
	se instructed, water and bulk sam	iples will be held for one	e month from date of report, and	i soli samples will be held	for two months.		
	se instructed, water and bulk sam	nples will be held for one	e month from date of report, and	i soll samples will be held	for two months.		
	se instructed, water and bulk sam	ples will be held for one	e month from date of report, and	i soll samples will be held	for two months.		
	se instructed, water and bulk sam	ples will be held for one	e month from date of report, and	i soll samples will be held	for two months.		

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015
 Australia
 t +61 2 8594 0400

 Australia
 f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

Project 14947/1 95-119 O'Connell Street, Caddens

No.	Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil from 1:2 DI Extract by Ion
001	TP1 0.5-0.6	2	2	13	1	1	2
002	TP1 1.5-1.6	2	2	13	1	1	2
003	TP2 0.8-0.9	-	2	_	_	-	-
004	TP2 1.6-1.7	-	2	-	-	-	-
005	TP3 1.0-1.1	-	2	-	-	-	-
006	TP3 2.0-2.1	-	2	-	-	-	-
007	TP4 0.5-0.6	2	2	13	1	1	2
008	TP4 1.5-1.6	2	2	13	1	1	2
009	TP5 0.9-1.0	-	2	-	-	-	-
010	TP5 1.4-1.5	-	2	-	-	-	-
011	TP6 1.0-1.0	-	2	-	-	-	-
012	TP6 2.0-2.1	-	2	-	-	-	-
013	TP7 0.9-1.0	2	2	13	1	1	2
014	TP7 2.0-2.1	2	2	13	1	1	2
015	TP8 1.0-1.1	-	2	-	-	-	-
016	TP8 1.9-2.0	-	2	-	-	-	-
017	TP9 0.5-0.6	-	2	-	-	-	-
018	TP9 1.5-1.6	-	2	-	-	-	-
019	TP10 1.0-1.1	2	2	13	1	1	2
020	TP10 2.0-2.1	2	2	13	1	1	2
021	TP11 1.0-1.1	-	2	-	-	-	-
022	TP11 2.0-2.1	-	2	-	-	-	-
023	TP12 1.0-1.1	-	2	-	-	-	-
024	TP12 2.0-2.1	-	2	-	-	-	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

Project 14947/1 95-119 O'Connell Street, Caddens

SUMMAR	Y OF ANALYSIS		1			1	1
No.	Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil from 1:2 DI Extract by Ion
025	TP13 1.5-1.6	2	2	13	1	1	2
026	TP13 2.0-2.1	2	2	13	1	1	2
027	TP14 0.5-0.6	-	2	-	-	-	-
028	TP14 1.5-1.6	-	2	-	-	-	-
029	TP15 1.0-1.1	-	2	-	-	-	-
030	TP15 2.0-2.1	-	2	-	-	-	-
031	TP16 1.0-1.1	2	2	13	1	1	2
032	TP16 2.0-2.1	2	2	13	1	1	2

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

		Test Flocedule AS 1203	3.1.1, 3.2.1, 3.3.1, 3.4.1	F
Laboratory Pe	947/1 enrith 2/08/2021		Tested By: Checked By:	BG AK
Sample Identifica	tion	Test Pit 1	Test Pit 4	Test Pit 6
Laboratory Numb	er	14947/1-1	14947/1-4	14947/1-7
Depth (m)		2.0 - 2.1	1.0 - 1.1	0.5 - 0.6
Test Description	n			
Liquid Limit (W _L)		42%	41%	69%
Plastic Limit (W _P)		17%	21%	22%
Plastic Index (I _P)		25%	20%	47%
Linear Shrinkage	(LS)	15.0%	8.5%	15.5%
Mould Length (mi	n)	127	127	125
Sample History		Oven Dried	Oven Dried	Oven Dried
		Dry Sieved	Dry Sieved	Dry Sieved
Material Descrip	tion	(CI) Silty CLAY, medium plasticity, red-brown with grey mottling, trace of fine to medium gravel	(CI) Silty sandy CLAY, medium plasticity, brown, trace of fine to medium gravel	(CH) Silty CLAY, high plasticity, pale brown
Form No R004 Version 1:	2 - 06/13 - Issue	ed by ER Accredited for compliance with I	A Kenc SO/IEC 17025 - Testing.	h 24/08/2021 Approved Signatory
$\mathbf{\vee}$				And
Nata Accreditation N Corporate Site Nur				,
34 Borec Road, Penri	th NSW 2750)	Unit 4, 18-20 Whyalla Place, Pre	stons NSW 2170
Telephone: (02) 4722			Telephone: (02) 9607 6111	
		email: info@geotech.com	n.au www.geotech.com.au	

TEST RESULTS - ATTERBERG LIMITS Test Procedure AS1289 3.1.1, 3.2.1, 3.3.1, 3.4.1

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

				I
Laboratory F	14947/1 Penrith 12/08/2021		Tested By: Checked By:	BG AK
Sample Identific	ation	Test Pit 8	Test Pit 10	Test Pit 12
Laboratory Num	ber	14947/1-10	14947/1-12	14947/1-14
Depth (m)		0.3 - 0.4	0.3 - 0.4	0.3 - 0.4
Test Description	on			
Liquid Limit (WL)	73%	67%	65%
Plastic Limit (W _r	P)	25%	23%	22%
Plastic Index (I _P))	48%	44%	43%
Linear Shrinkag	e (LS)	18.0%	17.5%	17.0%
Mould Length (n	nm)	125	127	127
Sample History	/	Oven Dried	Oven Dried	Oven Dried
		Dry Sieved	Dry Sieved	Dry Sieved
Material Descri	ption	(CH) Silty CLAY, high plasticity, brown	(CH) Silty CLAY, high plasticity, brown	(CH) Silty CLAY, high plasticity, brown
Form No R004 Version	12 - 06/13 - Issu		A Kend	
NATA		Accredited for compliance wit	th ISO/IEC 17025 - Lesting.	Approved Signatory
V				1 1-04
Nata Accreditation Corporate Site N				_
				/
34 Borec Road, Per		0	Unit 4, 18-20 Whyalla Place, Pr	restons NSW 2170
Telephone: (02) 472	22/44		Telephone: (02) 9607 6111	

TEST RESULTS - ATTERBERG LIMITS Test Procedure AS1289 3.1.1, 3.2.1, 3.3.1, 3.4.1

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

		Test Procedure AS128	9 3.1.1, 3.2.1, 3.3.1, 3.4.1		Page 3 of
Laboratory F	4947/1 Penrith 2/08/2021		Tested By: Checked By:	BG AK	
Sample Identific		Test Pit 13	Test Pit 15		
Laboratory Num		1 49 47/1-16	14947/1-18		
Depth (m)		0.4 - 0.5	0.5 - 0.6		
Test Description	on				
Liquid Limit (W)	52%	63%		
Plastic Limit (W _r	»)	21%	23%		
Plastic Index (I _P))	31%	40%		
Linear Shrinkag	e (LS)	17.5%	15.0%		
Mould Length (n	nm)	127	125		
Sample History	,	Oven Dried Dry Sieved	Oven Dried Dry Sieved		
Material Descri	ption	(CI-CH) Silty CLAY, medium to high plasticity, brown	(CH) Silty CLAY, high plasticity, brown		
Form No R004 Version	12 - 06/13 - Issue	d by ER Accredited for compliance with		Kench <u>Ap</u>	24/08/2021 proved Signatory
Nata Accreditation Corporate Site N					,
34 Borec Road, Per			Unit 4, 18-20 Whyalla Plac		W 2170
Telephone: (02) 472	2 2744		Telephone: (02) 9607 611	1	
		email: info@geotech.con	n.au www.geotech.com.au		

TEST RESULTS - ATTERBERG LIMITS Test Procedure AS1289 3.1.1. 3.2.1. 3.3.1. 3.4.1

Document Set ID: 9819409 Version: 1, Version Date: 24/11/2021

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

		Test Procedure AS1289 3).1.1, 3.2.1, 3.3.1, 3.	4.1		Page 1
Laboratory Pe	947/1 enrith 2/08/2021		Tested By: Checked By:		BG AK	
Sample Identifica	tion	Test Pit 11				
Laboratory Numb	er	1 49 47/1-13				
Depth (m)		0.3 - 0.5				
Test Description	n					
Liquid Limit (W _L)		49%				
Plastic Limit (W _P)	Ì	17%				
Plastic Index (I _P)		32%				
Linear Shrinkage	(LS)	14.0%				
Mould Length (mi	m)	125				
Sample History		Oven Dried Dry Sieved				
Material Descrip	tion	(CI-CH) Silty CLAY, medium to high plasticity, red-brown				
Form No R004 Version 1:	2 - 06/13 - Issue	d by ER Accredited for compliance with IS	D/IEC 17025 - Testing.	A Kench	24/08/2021 Approved Signatory	<u>.</u>
Nata Accreditation N Corporate Site Nur						
34 Borec Road, Penri Telephone: (02) 4722			Unit 4, 18-20 Whyalla Telephone: (02) 9607		ns NSW 2170	
100001010. (02) 4/22	~			VIII		

email: info@geotech.com.au www.geotech.com.au

TEST RESULTS - ATTERBERG LIMITS

Test Procedure A\$1289 3.1.1, 3.2.1, 3.3.1, 3.4.1

Job No:	14947/1
Tested By:	BLG
Checked By:	AK
Date Tested:	12/08/2021
Laboratory	Penrith

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

TEST RESULTS - SHRINK / SWELL INDEX

Test Procedure: AS 1289 7.1.1 Sample Identification Test Pit 2 Test Pit 4 Test Pit 5 Test Pit 7 Depth (m) 0.4 - 0.7 0.3 - 0.6 0.4 - 0.7 0.4 - 0.7 Laboratory Number 14947/1-6 14947/1-8 14947/1-2 14947/1-5 **Test Description Moisture Content** Initial % 19.5 19.9 21.0 17.8 22.9 Final % 24.7 24.9 21.9 Swell % 1.8 0.7 1.1 0.3 Shrinkage % 1.7 3.9 5.1 1.1 Shrink/Swell 1.0 2.6 3.0 0.9 Index %/_pF Material Description (CH) Silty CLAY, (CH) Silty CLAY, (CL-CI) Silty CLAY, (CI) Silty CLAY, high plasticity, high plasticity, redlow to medium medium plasticity, brown brown plasticity, brown brown with grey mottling

Form No R007 Version 12 06/13

Accredited for compliance with ISO/IEC 17025 - Testing.

A Kench 18/08/2021 Approved Signatory

NATA Accreditation Number 2734 Corporate Site Number 2727

34 Borec Road, Penrith NSW 2750 Telephone: (02) 4722 2744 Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au Page 1 of 2

Job No:	14947/1
Tested By:	BLG
Checked By:	AK
Date Tested:	12/08/2021
Laboratory	Penrith

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

TEST RESULTS - SHRINK / SWELL INDEX

Test Procedure: AS 1289 7.1.1 Sample Identification Test Pit 9 Test Pit 13 Test Pit 16 Depth (m) 0.4 - 0.7 0.4 - 0.7 0.3 - 0.6 Laboratory Number 14947/1-11 14947/1-17 14947/1-20 **Test Description Moisture Content** Initial % 23.9 22.4 24.1 Final % 23.9 26.4 28.1 Swell % 1.6 0.8 3.1 Shrinkage % 6.7 4.4 5.5 Shrink/Swell 4.1 2.7 3.9 Index %/_pF (CH) Silty CLAY, Material Description (CH) Silty CLAY, (CH) Silty CLAY, high plasticity, redhigh plasticity, brown high plasticity, brown brown

Form No R007 Version 12 06/13

Accredited for compliance with ISO/IEC 17025 - Testing.

A Kench 1 <u>Approved Signatory</u>

18/08/2021

Page 2 of 2

NATA Accreditation Number 2734 Corporate Site Number 2727

34 Borec Road, Penrith NSW 2750 Telephone: (02) 4722 2744 Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION, 89-115 O'CONNELL STREET, CADDENS

	CA	LIFORNIA BEARIN	G RATIO	TEST RE	PORT	Page 1 of 1
CBR Test Proce	dure	Laboratory Compaction Method		Sa	ampling Method	Date of Test
AS1289 6.1.1		AS1289 5.1.1		AS1289 1.2.1 Clause 6.5.4		17/08/2021
Job No:	14947/1	Tested By: BG		Check	ked By: AK	Lab Penrith
Laboratory Num	ber	14947/1-3	14947/1-9		14947/1-15	14947/1-19
		Test Pit 3	Test	Pit 7	Test Pit 12	Test Pit 15
Drawing No		14947/1-AA1	14947.	/ 1-AA 1	14947/1-AA1	14947/1-AA1
Sample No		3		9	15	19
Depth (m)		0.3 - 0.6	_	- 0.7	0.3 - 0.6	0.3 - 0.6
Date Sampled		06/08/2021		/2021	06/08/2021	06/08/2021
Sample Descript	ion	(CH) Silty CLAY, high plasticity, red-brown	(CH) Silty C plasticity, b grey mottlin	rown with	(CI) Silty CLAY, medium plasticity, brown	(CI-CH) Silty CLAY, medium to high plasticity, brown
Maximum Dry De	e nsity t/m3	1.57	1.	70	1.75	1.70
Optimum Moistu		22.8	19	9.5	16.3	18.5
Field Moisture C	ontent %	24.5	22.3		14.2	20.8
% Retained 19m	m	0	0		0	0
Excluded (Yes / N	lo / Not Applicable)	Not Applicable	Not Ap	plicable	Not Applicable	Not Applicable
		CBR	TEST RES	ULTS		
Dry Density	Before soaking	1.58 1		70	1.79	1.70
t/m ³	After soaking	1.56	1.	68	1.77	1.65
Density Ratio %	Before soaking	100.5	10	00	102.5	100
Moisture	Before soaking	23.5	19	9.1	16.3	17.8
Content %	After soaking	27.1	21	1.0	18.5	22.1
Moisture Ratio %	Before soaking	103		8	100	96
Number of Days	Soaked	4		4	4	4
Surcharge	kg	6.75	6.	75	6.75	6.75
Moisture Content after	Top 30mm	27.3	22	2.5	20.0	27.0
test %	Whole Sample	27.1	20).8	18.4	21.9
Swell after soaki	ng %	1.5	1	.0	1.0	3.0
Penetration	mm	2.5	2	.5	2.5	2.5
CBR VALUE	%	6		6	4	2

Form No R003 Version 04 06/13 - issued by ER

Accredited for compliance with ISO/IEC 17025 - Testing.

A Kench

Approved Signatory . /

23.08/2021

Nata Accreditation Number 2734 Corporate Site Number 2727

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au