

Parsons Brinckerhoff Australia Pty Limited

ABN 80 078 004 798

3 May 2012

David Raymond Environmental & Sustainability Manager 7-Eleven Stores Pty Ltd 357 Ferntree Gully Road Mount Waverly, VIC 3149

Dear David

Level 27 Ernst & Young Centre 680 George Street, Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001 Australia

Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 Email: sydney@pb.com.au

www.pbworld.com

Certified to ISO 9001, ISO 14001, AS/NZS 4801 A+ GRI Rating: Sustainability Report 2010

Our ref: 2175684A LT 5642/AH/kt

Environmental Site Assessment - 7-Eleven Service Station - 4 Endeavour Avenue & Bennett Road, St.Clair, NSW (Site No: 2277)

1. Introduction

In January 2012, 7-Eleven Stores Pty Ltd (7-Eleven) commissioned Parsons Brinckerhoff Australia Pty Ltd (Parsons Brinckerhoff) to undertake an Environmental Site Assessment (ESA) for the operating service station site located at 4 Endeavour Avenue & Bennett Road, St.Clair, NSW. The site location is presented in Figure 1 and the site layout is presented in Figure 2 of Attachment A.

1.1 Objectives

The objectives of this ESA were to:

- Assess the potential for the site activities, as a service station, to have contaminated and/or polluted the soil and/or groundwater underlying the site;
- Provide recommendations for future works.

1.2 Scope of works

The scopes of works were:

- Service location.
- Non-destructive drilling (NDD) clearance of all soil bore and groundwater monitoring well locations to a minimum depth of 1.5 metres below ground level (mBGL).
- Drilling of three boreholes to a maximum depth of 2 mBGL.
- Drilling and installation of one groundwater monitoring well to a maximum depth of 6 mBGL.

2175684A LT_5642 1/10

- Laboratory analysis of selected soil samples for total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and lead.
- Well development using a high density polyethylene (HDPE) bailer.
- Gauging, purging and sampling of six existing and newly installed groundwater monitoring wells.
- Laboratory analysis of groundwater samples for TPH, BTEX, PAH, lead, pH and total dissolved solids (TDS).
- Well survey of all groundwater monitoring wells.

2. Methodology

Drilling and soil sampling was conducted on 28 March 2012 and groundwater sampling was conducted on 4 April 2012.

2.1 Soil

A summary of the drilling works and associated soil sampling is included in Table 2-1.

Table 2-1 Field soil sampling methodology

Activity	Details					
Soil bore and locations	Soil bores SB101-SB103 were installed near the central fuel bowsers. The proposed locations were intended to be closer to the fuel bowsers, however, a second concrete slab at 0.5 mBGL was encountered and the soil bores moved further out.					
	Proposed soil bore SB104 hit refusal on the same concrete slab and an alternative location could not be found.					
	Proposed soil bore SB105 was not possible due to proximity of the UST farm and services at the site boundary. An alternative location could not be found.					
	Soil bore MW101 was located in the south-eastern corner of the site.					
Service location	Dial Before You Dig (DBYD) underground service plans were obtained prior to the fieldwork. An independent contractor was engaged to identify the location of underground services prior to soil intrusive activities.					
Concrete cutting	Concrete coring was required at the three soil bore drilling locations.					
Borehole drilling	One groundwater monitoring well (MW101) and three soil bores (SB101-SB103) were drilled during the soil investigation. The drilling locations were cleared using non-destructive digging (NDD) to a minimum depth of 1.5 mBGL. A Geoprobe rig was used to extend these soil bores using push tube to refusal on siltstone and then solid auger.					
Borehole logging	Soil and rock type classifications were based on Australian Standard AS1726.					
	Borehole logs are presented in Attachment B.					
Soil sampling	Soil sampling was undertaken in accordance with Parsons Brinckerhoff field procedures and Australian Standard AS4482.1.2005					
	Soil samples were obtained during borehole drilling using a push tube and from the hand auger during NDD clearance. Soil samples were collected at 0.2, 0.5 and 1.0 mBGL, and every metre thereafter with additional soil samples collected where changes in lithology or evidence of contamination occurred.					
Soil screening	Soil samples were screened by headspace analysis using a handheld photo-ionisation detector (PID) which was calibrated daily to a known concentration of isobutylene gas.					
Soil bore abandonment	Soil bores (SB101-SB103) were backfilled with bentonite and completed with cement grout after sample collection. Soil bore MW101 was converted into a groundwater monitoring well.					
Decontamination procedure	All equipment requiring decontamination (hand auger, trowel and interface probe) was washed using a Decon 90 detergent solution and potable water between sample locations.					

Activity	Details
Sample preservation	Soil samples for laboratory analysis were collected in laboratory supplied and appropriately preserved containers and stored on ice on-site and in transit to the laboratory. Samples were received by the laboratories within the required holding times accompanied by Chain of Custody documentation (Attachment E).
Sample analysis	Selected soil samples were analysed for TPH, BTEX, PAH and lead.
Storage of waste soil	Drill cuttings were temporarily stored within sealed 205 litre drums on site before being removed by a licensed waste disposal contractor.

2.2 Groundwater

A summary of the well construction and associated groundwater sampling is included in Table 2-2.

Table 2-2 Field groundwater sampling methodology

Activity	Details						
Well construction	One groundwater monitoring well (MW101) was installed by Parsons Brinckerhoff on 28 March 2012 to a maximum depth of 6 mBGL.						
	The monitoring wells were constructed using 50 mm Class 18 PVC casing and machine slotted screen.						
Well survey	All new and existing groundwater monitoring wells were surveyed by a licensed surveyor to obtain the height of the casing (metres above height datum (mAHD) and the location coordinates (Appendix E).						
Well development	A minimum of three bore volumes were removed using disposable bailers until groundwater quality parameters stabilised or where wells were purged dry.						
Well gauging	All monitoring wells were gauged using a decontaminated interface meter prior to its use.						
	Groundwater monitoring well gauging data is presented in Attachment C.						
Well purging	Groundwater was abstracted from groundwater monitoring wells using dedicated disposable bailers. Three sets of groundwater quality parameters were recorded (or until acceptable parameter stabilisation was achieved).						
	Groundwater monitoring well purging field sheets are presented in Attachment C.						
Sampling method	Dedicated disposable HDPE bailers were used to obtain groundwater samples.						
	All samples were field filtered for lead analysis.						
Decontamination procedure	All equipment requiring decontamination (e.g. interface probe) was washed using a Decon 90 detergent solution and potable water.						
Sample preservation	Groundwater samples for laboratory analysis were collected in laboratory supplied and appropriately preserved sample containers. Samples were stored on ice while on-site and in transit to the laboratory. Samples were delivered to the laboratories within the specified holding times accompanied by Chain of Custody documentation (Attachment F).						
Sample analysis	Groundwater samples were analysed for TPH, BTEX, PAH, lead, pH and TDS. Field parameters including pH, conductivity, oxidation/reduction potential (redox), temperature and dissolved oxygen were recorded at the time of sampling						
Storage of purged groundwater	Purged groundwater is temporarily stored within sealed 205-litre drums onsite prior to removal by a licensed waste contractor.						

3. Site investigations

3.1 Site condition

The site is located in an area approximately 50 metres Australian Height Datum (mAHD). The surrounding topography slopes to the south towards

The entire site is concrete hardstand and is square in shape. A retail building is located along the western boundary with the fuel bowsers and canopy in the centre of the site. The UST farm is located between the fuel bowsers and the eastern boundary.

Immediate neighbouring land uses at the time of the assessment include:

- North Mark Leece Sporting Complex playing fields opposite Endeavour Avenue.
- South carpark and large shopping complex including Woolworths.
- East carpark to the large shopping complex to the south of the site.
- West Red Rooster restaurant.

A summary of the underground storage tanks (USTs) is included in Table 3-1.

Table 3-1 Summary of site underground storage tanks

Tank ID	Product Type	Size (litres)
T1	E10	54,800
T2	E10	54,800
Т3	PULP 98	20,900
T4	ULP 92	54,800
T5	LPG	30,000

3.2 Geology

The regional map of the area (Department of Mineral Resources, 1991, Geological Series Sheet 9030, Edition 1, Penrith, Scale 1:100,000) and the NSW Natural Resources Atlas (http://www.nratlas.nsw.gov.au viewed 3rd February 2012) indicates that the regional geology in the area of the site consists of Bringelly Shale from the Mesozoic period. The formation comprises of shale, carbonaceous claystone, claystone, laminate, fine to medium grained lithic sandstone, rare coal and tuff.

A search of the CSIRO Australian Soil Resource Information System (ASRIS, http://www.asris.csiro.au/index_ie.html viewed 3rd February 2012) indicated that the site is located in an area where there is an 'extremely low probability' of the occurrence of acid sulfate soils (ASS).

Table 3-2 Site specific geology summary

Depth (mBGL)	Lithology
0.0 - 0.5	FILL: Silty CLAY; low to high plasticity, grey with red mottling, some sand and gravels
0.5 - 3.5	Silty CLAY: low plasticity, red-brown, some gravels, soft, dry
3.5 – 5.5	SHALE; weathered, grey, some clay, soft

3.3 Hydrogeology

The nearest surface water receptor is Byrnes Creek located approximately 50 metres to the north of the site.

A search of the Department of Natural Resources (DNR) licensed borehole register (http://waterinfo.nsw.gov.au/gw viewed 1st February 2012) indicated that there no registered bores within a 1 km radius of the site. The nearest 6 groundwater bore is at approximately 1.7 km north-west of the site and are registered for monitoring purpose.

3.4 Summary of previous environmental investigations

A summary of previous environmental investigations is provided in Table 3-3.

Table 3-3 Previous environmental investigations

Type and date of investigation	Consultant	Findings				
Remediation Action Plan, July 2009	Parsons Brinckerhoff (Ref: PR_0358)	A remediation action plan (RAP) was prepared for the proposed UST removal works and soil validated for continued petroleum use.				
Phase 1 ESA, November 2009	Parsons Brinckerhoff (Ref: PR_0484)	A desktop study of the site was undertaken.				
Phase 2 ESA, August 2010	URS (Ref: 42424301)	Five groundwater monitoring wells were installed across the site and subsequently sampled. Standing water levels (SWLs) ranged between 2.470 mBTOC (MW05) and 10.185 mBTOC (MW04) with groundwater flow expected to be directed towards the north-west. All soil samples collected during drilling works reported concentrations of TPH, BTEX and lead below the laboratory limit of reporting.				
GME, September 2011	Parsons Brinckerhoff (Ref: St Clair 2277 GME_2011)	Standing water levels (SWLs) ranged between 2.512 mBTOC (MW01) and 3.512 mBTOC (MW04) with groundwater flow expected to be directed towards the north-west. All soil samples collected during drilling works reported concentrations of TPH, BTEX, PAHs and lead below or equal to the laboratory limit of reporting.				

4. Adopted Guidelines

4.1 Soil

To assess the contamination status of soils at a service station site, the NSW EPA refers to NSW EPA (1997) Guidelines for the NSW Site Auditor Scheme and the NSW EPA (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition). Reference is also made to the National Environmental Protection Council (1999) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

The NEPM (1999) does not include investigation levels of TPH and BTEX. For assessing contamination by these compounds at sensitive sites, the NSW EPA (1994) Guidelines for Assessing Service Station Sites have been adopted. The NSW EPA has also recommended that these threshold values should also be used to assess the suitability of sites for less stringent uses, such as commercial/industrial.

The adopted soil investigation levels have been summarised in Table 4-1.

Table 4-1 Soil investigation levels

Analyte	Sensitive Land Use ¹	NEHF F ²	Adopted Assessment Criteria
	(mg/kg)	(mg/kg)	(mg/kg)
TPH C ₆ -C ₉	65	-	65
TPH C ₁₀ -C ₃₆	1,000	-	1,000
Benzene	1	-	1
Toluene	1.4	-	1.4
Ethyl benzene	3.1	-	3.1
Total xylenes	14	-	14
Lead	300	1,500	300
Benzo (a) pyrene	1	5	1
Total PAHs	20	100	20

Note:

- No investigation level available
 - NSW EPA (1997) Guidelines for Assessing Service Station Sites
 - NSW EPA (2006) Guidelines for the NSW Site Auditor Scheme Commercial/Industrial

4.2 Groundwater

For assessing groundwater quality, it is necessary to assess the potential uses of groundwater down gradient of the site being investigated. The nearest surface water receptor to the site is Byrnes Creek located approximately 50 metres to the north. Byrnes Creek flows through open parkland and sporting playing fields and may be used for recreational purposes. Hence, Section 5 for Guidelines for recreational water quality and aesthetics values in the ANZECC (2000) Fresh and Marine Water Quality Guidelines has been considered to assess the groundwater quality.

There are seven registered groundwater extraction bores within 1,000 m of the site. These bores were predominantly registered for irrigation purposes. Based on the potential uses of the bores the ANZECC (2000) Fresh and Marine Water Quality Guidelines – Long-term trigger values have been considered.

The threshold concentrations presented in the ANZECC (2000) Fresh and Marine Waters Quality Guidelines are considered applicable for the protection of aquatic ecosystems of the receiving waters. As these guidelines apply to receiving waters, it is generally conservative to apply these to groundwater discharging to receiving waters. It is important to note that these are not threshold values at which an environmental problem is likely to occur if exceeded, rather, if the trigger values are exceeded, then further action is required which may include either further site-specific investigations to assess whether or not there is an actual problem or management/remedial action should be undertaken.

It is understood that the EPA's policy is that the trigger values for the protection of 95% of aquatic ecosystems should be used except where contaminants are potentially bio-accumulative in which case the trigger values for the protection of 99% of species should be used. Therefore, trigger values for the protection of 95% of freshwater water species have been selected for the majority of contaminants. For these contaminants, low reliability trigger values have been adopted when applicable.

Based on an electrical conductivity range of 19,620 μ S/cm to 25,800 μ S/cm, the groundwater beneath the site is considered to be too saline to be potable and hence, drinking water guidelines has not been considered.

The adopted groundwater investigation levels have been summarised in Table 4-2.

Table 4-2 Groundwater investigation levels

Analyte	Freshwater ¹	Recreational ²	Irrigation ³	Adopted Assessment Criteria
	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TPH C ₆ -C ₉	-	-	-	-
TPH C ₁₀ -C ₃₆	-	-	-	-
Benzene	950	10	-	10
Toluene	180	-		180
Ethyl benzene	80	-	-	80
Lead	3.4	50	2,000	3.4
Benzo (a) pyrene	0.2	-	+	0.2
Naphthalene	16	-	-	16
Phenanthrene	2 ⁴	-	+	2
Anthracene	0.4 4	-	-	0.4
Fluoranthene	1.4 4	-	-	1.4

Notes:

¹ Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ, 2000) – trigger values for freshwater – protection of 95% of species.

² Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ, 2000) – Recreation

³ Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ, 2000) – Irrigation

⁴ Low reliability water quality values used as indicators only

5. Results/ Discussion

5.1 Soil

The following summarises the soil sampling results:

- Soil bores SB102, SB103 and MW101 reported concentrations of TPH, BTEX and PAHs below the laboratory limit of reporting.
- TPH C₁₅-C₂₈ (210 mg/kg), TPH C₂₉-C₃₆ (100 mg/kg) and total PAHs (5.6 mg/kg) was detected in soil bore SB101 at 0.25-0.35 mBGL located near the central southern boundary.
- During the previous drilling investigation conducted by URS in June 2010, a minimum of three soil samples were collected for the five well locations drilled. TPH, BTEX and phenols concentrations were reported below the laboratory limit of reporting for all samples. Some PAHs were detected in soil sample MW4 at 0.2 mBGL, however, were below the adopted assessment criteria.

5.2 Groundwater

A summary of the groundwater gauging results has been included in Table 5-1.

Table 5-1 Gauging results

Well ID	Depth to groundwater (mTOC)	Casing height (mAHD)	SWL (mAHD)
MW01B	1.941	46.290	44.349
MW02	2.518	46.220	43.702
MW03	2.743	46.180	43.437
MW04	2.218	46.470	44.252
MW05	2.269	46.580	44.311
MW101	2.753	47.230	44.477

Groundwater levels have risen by approximately 0.5 metres since the last GME conducted in September 2011. Groundwater flow is directed to the north-west which is consistent with previous reports.

The groundwater quality parameters measured in the field indicated the following:

- pH values ranged between 6.75 and 7.47 indicating near neutral conditions.
- Electrical conductivity ranged between 19,620 and 25,800 μS/cm indicative of high salinity
- Redox potential ranged between 10 and 91 mV indicating aerobic conditions
- Average dissolved oxygen is 2.63 indicating moderately oxygenated conditions.

The following summarises the groundwater sampling results:

- Wells MW02, MW03, MW04, MW05 and MW101 reported concentrations of TPH, BTEX and lead below the laboratory limit of reporting.
- TPH C₁₅-C₂₈ (790 μg/L), TPH C₂₉-C₃₆ (660 μg/L) and benzene (2 μg/L) concentrations were detected in well MW01B located in the south-west corner of the site.
- Phenanthrene (2.5 μg/L) exceeded the low reliability water quality values in freshwater for groundwater in well MW01B. Some PAHs were also detected in wells MW03, MW04 and MW101, however, were below the adopted assessment criteria.
- Previous groundwater investigations conducted at the site in 2010 and 2011 have reported concentrations of all petroleum contaminants below or equal to the laboratory limit of reporting. The heavy end concentrations detected in well MW01B during the current investigation is likely due to a small surface spill of oil and is unlikely to pose a risk to site users.

6. Quality Assurance / Quality Control (QA/QC)

A summary of the QA/QC requirements has been included in Table 6-1.

Table 6-1 Data validation

QA/QC requirement	Completed	Comments
Boreholes were cleared with NDD for a minimum of 1.5 mBGL.	Yes	None
Bores were developed and purged according to AS/NZS 5667.11	Yes	None
Samples delivered to laboratory within holding times and with correct preservative.	Yes	None
All laboratory analyses NATA accredited.	Yes	None
Required number of sample duplicates and blanks taken.	Yes	None
Sample blanks reported results below detection limits.	Yes	None
Sample duplicates reported RPDs within limits set by AS4482.1	Yes	None

In consideration of the nature and magnitude of the variations, it was considered that the results and conclusions of this report had not been significantly affected by the sampling or analytical procedures, and therefore it is considered that the overall quality of the data is sufficient to support the findings of this report.

7. Conclusions and Recommendations

Based on the results of the investigation, Parsons Brinckerhoff concludes the following:

- Soil bores SB102, SB103 and MW101 reported concentrations of TPH, BTEX and PAHs below the laboratory limit of reporting.
- TPH C₁₅-C₂₈ (210 mg/kg), TPH C₂₉-C₃₆ (100 mg/kg) and total PAHs (5.6 mg/kg) was detected in soil bore SB101 at 0.25-0.35 mBGL located near the central southern boundary.
- Groundwater in wells MW02, MW03, MW04, MW05 and MW101 reported concentrations of TPH,
 BTEX and lead below the laboratory limit of reporting.
- TPH C₁₅-C₂₈ (790 μg/L), TPH C₂₉-C₃₆ (660 μg/L) and benzene (2 μg/L) concentrations in groundwater were detected in well MW01B located in the south-west corner of the site.
- Phenanthrene (2.5 μg/L) exceeded the low reliability water quality values in freshwater for groundwater in well MW01B. Some PAHs were also detected in wells MW03, MW04 and MW101, however, were below the adopted assessment criteria.
- Previous groundwater investigations conducted at the site in 2010 and 2011 have reported concentrations of all petroleum contaminants below or equal to the laboratory limit of reporting. The heavy end TPH concentrations detected in well MW01B during the current investigation is likely due to a small surface spill of oil and is unlikely to pose a risk to site users.
- Parsons Brinckerhoff recommends on-going groundwater monitoring.

Should you require any additional information, please contact the undersigned on (02) 9272 5195.

Yours sincerely,

Andrew Hill

Senior Environmental Scientist

Parsons Brinckerhoff Australia Pty Limited

Attachments

Attachment A Figures

Attachment B Borelogs

Attachment C Groundwater gauging details and fieldnotes

Attachment D Tabulated Analytical Results

Attachment E Survey data

Attachment F Laboratory reports and chain of custody documentation

Attachment G Limitations

Attachment A

Figures

Base map source: Spatial information exchange (2012

LEGEND

Site boundary

Underground storage tanks

Fuel bowsers

- Existing monitoring well
- ♦ Monitoring well not located
- Deep (4 m) soil bores
- ⊕ Shallow (2 m) soil bores

Figure 2 Detailed site layout

7-Eleven St Clair Service Station (2233) 4 Endeavour Road, St Clair, NSW 2759

Base map source: Spatial information exchange (2012

LEGEND

Site boundary

Underground storage tanks

Fuel bowsers

- Existing monitoring well
- Monitoring well not located
 - - Inferred groundwater contour (mAHD)
- Anticipated groundwater flow direction

Figure 3 Groundwater contour plan

7-Eleven St Clair Service Station (2233) 4 Endeavour Road, St Clair, NSW 2759

Attachment B

Borelogs

125 YEARS

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

SB101

SHEET 1 OF 1

7-Eleven 28/3/12 Client: Date Commenced: St. Clair ESA 28/3/12 Project: Date Completed: Borehole Location: St. Clair NSW Recorded By: NR Project Number: 2175684A Log Checked By: AH

Drill Model/Mounting: Geoprobe

Borehole Diameter: 90 mm

Hole Angle: 90°

Bearing: --
Co-ords:

Borehole Diameter: 90 mm Borehole Information													Bearing: Co-ords: Field Material Description					
-	В		ole										4.5	128				
1	2	3		4	5	6	7	8	9	1	10	11	12 °C	13				
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHICLOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE	RELATIVE DENSITY / CONSISTENCY RELATIVE DENSITY / CONSISTENCY RELATIVE DENSITY / CONSISTENCY	HAND PENETROMETER (kPa)	STRUCTURE AND ADDITIONA OBSERVATIONS				
2C	_	_	_		ш	0)	2 4 A		CONCRETE	70	D D		TITE					
		N F G 12 E					4 4		3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3		_							
_	-	8(7)12	2	0.25	PID=4.	1 ј			FILL; Sandy Clay; medium plasticity, dark brown,					SB101_0.25-0.35				
QQN		=	ń.		ppm		\bowtie	_	medium grained sand, gravels and cobbles, soft to	L								
									firm, dry	1		11111						
					-				Refusal on concrete slab END OF BOREHOLE AT 0.40 m			11111						
									END OF BOREHOLE AT 0.40 III									
					ł													
				12								iiiii						
				1-	1							11111						
					ĺ													
				-	4													
												11111						
					+													
							1											
				9	1													
				0								11111						
				2-	1							11111						
					1													
												iiiii						
					1							11111						
					1													
				•								iiiii						
				3-	1							11111						
												11111						
					-													
												11111						
				-								11111						
				1	<u> </u>													
				4								iiiiii						
				4 -			1					11111						
					1		1											
					+		1											
												11111						
					1		1					11111						
					1		1											
				5-								iiiiii						
				5			1					11111						
					1													
							1											
				-														
												iiiiii						
					1		1					11111						
												11111						
				-	Ť		1											
							nole log				_							

BOREHOLE NO.

SHEET 1 OF 1

7-Eleven Client: Date Commenced: 28/3/12 St. Clair ESA 28/3/12 Project: Date Completed: Borehole Location: St. Clair NSW Recorded By: NR Project Number: 2175684A Log Checked By: AH

Drill Model/Mounting: **Geoprobe**Hole Angle: **90°**Surface RL:

Borehole Diameter: **90 mm**Bearing: --
Co-ords:

125 YEARS

Borehole Diame	eter: 90 mm	Bearing: Co-ords:	
Borehole	Information	Field Material Description	
1 2 3	4 5 6	7 8 9 10 11	12 13
METHOD SUPPORT WATER RL(m)	DEPTH(m) FIELD TEST SAMPLE	SOIL/ROCK MATERIAL FIELD DESCRIPTION WOISTURE MOISTURE MOISTURE	STRUCTURE AND ADDITIONAL OBSERVATIONS
Нор Нор <td>(w) HLdad New York Ne</td> <td>SOIL/ROCK MATERIAL FIELD DESCRIPTION Solid Soil Soi</td> <td>SB102_0.25-0.35 SB102_0.5-0.6 SB102_1.0-1.1 SB102_1.9-2.0</td>	(w) HLdad New York Ne	SOIL/ROCK MATERIAL FIELD DESCRIPTION Solid Soil Soi	SB102_0.25-0.35 SB102_0.5-0.6 SB102_1.0-1.1 SB102_1.9-2.0
	5-	ole log should be read in conjunction with Parsons Brinckerhoff's accompanying st	

BOREHOLE NO.

SHEET 1 OF 1

28/3/12 Client: 7-Eleven Date Commenced: 28/3/12 Project: St. Clair ESA Date Completed: Borehole Location: St. Clair NSW Recorded By: NR Project Number: 2175684A Log Checked By: AH

Drill Model/Mounting: **Geoprobe**Hole Angle: **90°**Surface RL:

Borehole Diameter: **90 mm**Bearing: --
Co-ords:

125 YEARS

					eter:		mm				Bearing: Co-			S:		
Г	14	Вс	rel	ole	Infor	matio	on			3 0	Field Material De	es	cr	iption		
1		2	3		4	5	5	6	7	8	9		10	11	12	13
METHOD	H	SUPPORT	WATER	RL(m)	DFPTH(m)	F. C. L.	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	L C: ((-)		RELATIVE DENSITY / CONSISTENCY		STRUCTURE AND ADDITIONAL OBSERVATIONS
E LOG 7ELEVEN ST CLAIR LOGS.GPJ YH2006,GDT 20/4/12 G			m € Duz		0.40 — 1.50 — 1.50 — 2	PID DE	D=3.7 pm /	C C SAMPLE	SCAPHIC LOG	TORUN SOSON	CONCRETE FILL; Silty Clay; high plasticity, grey mottled red, some coarse grained gravels and cobbles, firm, dry Silty CLAY; low to medium plasticity, red mottled brown and grey, some medium to coarse grained gravels, soft, dry As above, but becoming yellow As above, but becoming grey mottled red and orange Gravelly CLAY; medium plasticity, red mottled yellow, medium grained gravels, soft to firm, dry END OF BOREHOLE AT 2.00 m	20	MOISTORE	MD VC V	HAND PENETROMETE (KPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS SB103_0.4-0.5 SB103_1.0-1.1
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOL					5	-	his bo	preho	ole loo	shoi	lld be read in conjunction with Parsons Brinckerhoff's	ac		ompanying s	tandard	notes.
Parsons Brinckerhoff Austra						TI	his bo	oreho	ole log	shou	ald be read in conjunction with Parsons Brinckerhoff's	ac	cco	ompanying s	standard	notes.

125 YEARS

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

MW101

SHEET 1 OF 1

Client: 7-Eleven Date Commenced: 28/3/12 St. Clair ESA 28/3/12 Project: Date Completed: St. Clair NSW NR Borehole Location: Recorded By: 2175684A Project Number: Log Checked By: AH

Drill Model/Mounting: Geoprobe Driller: NUMAC Surface RL:
Borehole Diameter: 90 mm Driller Lic No: Co-ords:

Explanatory Notes - Soil Description

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer.

METHOD

Method	Description	
AS	Auger Screwing	
BH	Backhoe	
CT	Cable Tool Rig	
EE	Existing Excavation/Cutting	
EX	Excavator	
HA	Hand Auger	
HQ	Diamond Core-63mm	
JET	Jetting	
NMLC	Diamond Core -52mm	
NQ	Diamond Core –47mm	
PT	Push Tube	
RAB	Rotary Air Blast	
RB	Rotary Blade	
RT	Rotary Tricone Bit	
TC	Auger TC Bit	
V	Auger V Bit	
WB	Washbore	
DT	Diatube	

WATER

NFGWO: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

NFGWE: The borehole/test pit was dry soon after excavation. Inflow may have been observed had the borehole/test pit been left open for a longer period.

SAMPLING

Sample	Description		
В	Bulk Disturbed Sample		
D	Disturbed Sample		
Jar	Jar Sample		
SPT	Standard Penetration Test		
U50	Undisturbed Sample -50mm		
U75	Undisturbed Sample –75mm		

UNIFIED SOIL CLASSIFICATION

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as, sieve analysis, liquid limit and plasticity index.

USC Symbol	Description	
GW	Well graded gravel	
GP	Poorly graded gravel	
GM	Silty gravel	
GC	Clayey gravel	
SW	Well graded sand	
SP	Poorly graded sand	
SM	Silty sand	
SC	Clayey sand	
ML	Silt of low plasticity	
CL	Clay of low plasticity	
OL	Organic soil of low plasticity	
MH	Silt of high plasticity	
CH	Clay of high plasticity	
ОН	Organic soil of high plasticity	
Pt	Peaty Soil	

Moist - Soil feels cool, darkened in colour Cohesive soils can be moulded Cohesionless soil grains tend to adhere

Wet - Cohesive soils usually weakened Free water forms on hands when handling

For cohesive soils the following codes may also be used:

MC>PL Moisture Content greater than the Plastic Limit.
MC~PL Moisture Content near the Plastic Limit.
MC<PL Moisture Content less than the Plastic Limit.

PLASTICITY

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows:

Description of Plasticity	LL (%)
Low	<35
Medium	35 to 50
High	>50

COHESIVE SOILS - CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by hand penetrometer values and by resistance to deformation to hand moulding.

A Hand Penetrometer may be used in the field or the laboratory to provide an approximate assessment of the unconfined compressive strength (UCS) of cohesive soils. The undrained shear strength of cohesive soils is approximately half the UCS. The values are recorded in kPa as follows:

Strength	Symbol	Undrained Shear Strength, C _u (kPa)		
Very Soft	VS	< 12		
Soft	S	12 to 25		
Firm	F	25 to 50		
Stiff	St	50 to 100		
Very Stiff	VSt	100 to 200		
Hard	Н	> 200		

COHESIONLESS SOILS - RELATIVE DENSITY

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration or the Standard Penetration Test (SPT) 'N' values. Other condition terms, such as friable, powdery or crumbly may also be used.

Term	Symbol	Density Index	N Value (blows/0.3 m)
Very Loose	VL	0 to 15	0 to 4
Loose	L	15 to 35	4 to 10
Medium Dense	MD	35 to 65	10 to 30
Dense	D	65 to 85	30 to 50
Very Dense	VD	>85	>50

COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

Name	Subdivision	Size
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 μm to 2.36 mm
	medium	200 μm to 600 μm
	fine	75 μm to 200 μm

MOISTURE CONDITION

Ory - Cohesive soils are friable or powdery
Cohesionless soil grains are free-running

Rock Description

The rock is described with strength and weathering symbols as shown below. Other features such as bedding and dip angle are given.

METHOD

Refer soil description sheet

WATER

Refer soil description sheet

ROCK QUALITY

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

length of core recovered TCR (%) = length of core run

Sum of Axial lengths of core > 100mm long RQD (%) =

length of core run

ROCK MATERIAL WEATHERING

Rock weathering is described using the abbreviations and definitions used in AS1726. AS1726 suggests the term "Distinctly Weathered" (DW) to cover the range of substance weathering conditions between (but not including) XW and SW. For projects where it is not practical to delineate between HW and MW or it is deemed that there is no advantage in making such a distinction, DW may be used with the definition given in AS1726.

Symbol	Term	Definition
RS	Residual Soil	Soil definition on extremely weathered rock; the mass structure and substance are no longer evident; there is a large change in volume but the soil has not been significantly transported
xw	Extremely Weathered	Rock is weathered to such an extent that it has 'soil' properties, ie. It either disintegrates or can be remoulded in water
HW \rightarrow DW	Highly Weathered Distinctly Weathered (see AS1726 Definition below)	The rock substance is affected by weathering to the extent that limonite staining or bleaching affects the whole rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength is usually decreased compared to the fresh rock. The colour and strength of the fresh rock is no longer recognisable.
MW _	Moderately Weathered	The whole of the rock substance is discoloured, usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no longer recognisable
SW	Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
FR	Fresh	Rock shows no sign of decomposition or staining

"Distinctly Weathered: Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to the deposition of weathering products in pores." (AS1726)

Rock strength is described using AS1726 and ISRM - Commission on Standardisation of Laboratory and Field Tests, "Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index", as follows:

Term	Symbol	Point Load Index Is ₍₅₀₎ (MPa)
Extremely Low	EL	< 0.03
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	M	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	>10

- Diametral Point Load Index test
- Axial Point Load Index test

DEFECT SPACING/BEDDING THICKNESS

Measured at right angles to defects of same set or bedding.

Term	Defect Spacing	Bedding
Extremely closely spaced	<6 mm	Thinly Laminated
	6 to 20 mm	Laminated
Very closely spaced	20 to 60 mm	Very Thin
Closely spaced	0.06 to 0.2 m	Thin
Moderately widely spaced	0.2 to 0.6 m	Medium
Widely spaced	0.6 to 2 m	Thick
Very widely spaced	>2 m	Very Thick

DEFECT DESCRIPTION

Type:	Definition:	
В	Bedding	
BP	Bedding Parting	
F C	Fault	
С	Cleavage	
J	Joint	
SZ	Shear Zone	
CZ	Crushed Zone	
DB	Drill Break	

Planarity:	Roughness:					
P – Planar	R – Rough					
Ir – Irregular	S – Smooth					
St - Stepped	SI – Slickensides					
U - Undulating	Po – Polished					

Coating or Infill:	Description
Clean	No visible coating or infilling
Stain	No visible coating or infilling but surfaces are discoloured by mineral staining
Veneer	A visible coating or infilling of soil or mineral substance but usually unable to be measured (<1mm). If discontinuous over the plane, patchy veneer
Coating	A visible coating or infilling of soil or mineral substance, >1mm thick. Describe composition and thickness

The inclinations of defects are measured from perpendicular to the core

ROCK STRENGTH

Graphic Symbols for Soil and Rock

Graphic symbols used on borehole and test pit reports for soil and rock are as follows. Combinations of these symbols may be used to indicate mixed materials such as clayey sand.

Soil Sym	nbols	Rock Sy	mbols
Main Com	ponents	Sedimenta	ary Rocks
	CLAY		SANDSTONE
	SILT		SILTSTONE
	SAND		CLAYSTONE, MUDSTONE
	GRAVEL		SHALE
99	BOULDERS / COBBLES		LAMINITE
	PEAT (Organic)		CONGLOMERATE
			BRECCIA
Minor Con	rponents Clayey		TILL
	Silty		COAL
	Sandy		LIMESTONE
000	Gravelly	Igneous R	ocks
00		+ + - + - + +	PLUTONIC IGNEOUS (eg: Granite)
Other Sy	ymbols		VOLCANIC IGNEOUS (eg: Basalt)
	TOPSOIL		PYROCLASTIC IGNEOUS (eg: Ignimbrite)
	FILL	Metamorpl	nic Rocks
	ASPHALT	\$	SLATE, PHYLLITE, SCHIST
	CONCRETE		GNEISS
	NO CORE	× × ×	QUARTZITE

Attachment C

Groundwater gauging details and fieldnotes

Table C1 Groundwater gauging results

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Well ID	Date gauged	T.O.C. elevation	Screen interval	Total well depth	Depth to product	Depth to water	Groundwater elevation
		(mAHD)	(m)	(mBTOC)	(mBTOC)	(mBTOC)	(mAHD)
MW01B	4/04/2012	46.290	10.0 - 13.0	12.93	-	1.941	44.349
MW02	4/04/2012	46.220	10.0 - 13.0	12.93	-	2.518	43.702
MW03	4/04/2012	46.180	9.0 - 13.0	12.86	-	2.743	43.437
MW04	4/04/2012	46.470	9.0 - 12.0	11.94	-	2.218	44.252
MW 05	4/04/2012	46.580	8.0 - 10.0	10.10	-	2.269	44.311
MW 101	4/04/2012	47.230	3.0 - 5.5	5.70	-	2.753	44.477

Notes:

T.O.C. - top of casing

mBTOC - metres below top of casing

mAHD - metres Australian Height Datum

Table C2 Groundwater purging details

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Well ID	Date purged	рН	Electrical conductivity	Redox potential	Dissolved oxygen	Temperature
			(μS/cm)	(mV)	(ppm)	(°C)
MW01B	4/04/2012	7.16	19,620	10	4.60	23.1
MW02	4/04/2012	7.47	21,360	82	2.14	22.5
MW03	4/04/2012	7.23	22,530	80	1.82	22.6
MW04	4/04/2012	7.40	22,710	74	2.20	23.7
MW05	4/04/2012	7.08	22,780	91	2.50	24.2
MW 101	4/04/2012	6.75	25,800	64	2.50	23.2

	ARSON: RINCKE	S RHOFF			GR	OUND	WATER			CLM 3.2- AMETERS
JOB NU	MBER:	21756	84A			WELL	. NUME	BER:	HWIO	MWOLE
Client: 7				Purging Date: 4 4 12						
Site Locat			2277	7) Sampling Date: 4/4/12					<u>-</u>	
Casing Diam		50 mm	20.1				Floating Pro	oduct (n	- 	
Casing Heigh	nt Above Gr		mAGL):						+1	
Bore Locked	/ Covered?	: uts . aati	c cove	er			Thickness (r			
Cap Type: g						Well Dept	th from TO	C (m):	12.9	32
Well conditio	n: 000d			-		Depth to	be Purged ((m): •		 .
	7		P	URGING INI	FOR	MATIO	N		•	
Purge 5 casii	ng volumes	or until 'dry':								<u>.</u>
1 casing volu	ıme = 2 L/m	for 50 mm IL	D wells.			1 casing v	volume = 8	L/m for	100 mm ID	wells.
Method/Pum Micro-Purge	p Type: Ba	ailer 🗹 Wa	terra 🗌 W	/haler □		Planned F	Purge Volun	ne:	66 Litr	res (5 well vols
Material: To Other:	eflon 🗌	S/Steel _] HDP	PE 🗹 PVC		Actual Pu	rge Volume	: :	32	Litres
Start Time (2	400 hr):	11:15				Did well p	urge 'dry'?	No 🗌	Yes 📝 A	t?: Litre
		"	FIELD	RESULTS	WHI	LE PUR	GING			
# Purge Volume	Time	SWL	pН			Redox DO (mV) % □		its m 🗹	Turbidity	/ Temp.
1	11:24		6.69	10.45)	1.36	,	Med	23.
. 2	11:29		7.16	19.62	1.62 10		4.60		High	23./
3	well	pyrain	a dn	same	108	take			10	
4	* V . C . L	1	J 33	7350714		, , , , ,				
5										
Additional Volume:										
Acceptable Variation:	n/a	+/- 0.05m	+/- 0.05	+/- 3%	+/	- 10%	+/- 10	%	n/a	+/- 10%
Are the field	results acce	eptable?:	-						·	
	SAI	MPLING D	ETAILS				ANA	LYSIS	DETAILS	<u> </u>
Method/Pum Micro-Purge	p Type: Ba	iler 🗹 Wate	erra 🔲 Wh	naler 🗌		TPH	Ø		VOCs	
Material: Tefl	on 🗌 S/Ste	eel HDPE	PVC[Other:		BTEX	Ø		SVOCs	
Equipment: Dedicated 🗹 Decontaminated				Other:		PAHs	1		PH	
Is there a hyd	drocarbon s	heen?:	Yes 🗌	No Metals		Metals (%)	Mu) I		TDJ W	
	M/K)	Odour:	none	Sample ID		WIO	l	Duplic	ate ID:	-
Colour: Bh	44.1	_ /						1		_
	'	Medium 🔽	High [Rinse Blar	nk Aft	er: Yes / (<u></u>	Triplic	ate ID:	<u>-</u>
	·			Rinse Blar				Triplic	ate ID:	-
Turbidity:	Low 🔲 🏻 I	Medium 🔽		EATHER C	ON	DITION	IS .		ate ID:	Dusty

	PA BR	RSONS INCKE) RHOFF		. (GRO	UND	WA	TER			CLM 3.2- Ameters	
J	OB NU	MBER:	217568	14A		V	VELL	. NU	JME	ER:	MW0	2	
CI	ient: 7 -	-Eleve	n							1 4		<u></u>	
Si	te Locat	ion: St.	Clair (2277)				•	4 4		· · · · · ·	
_			Somm	<u>. • </u>							BTOC):	·	
			ound Level (n	nAGL): 🛰	-	De	epth to	Grou	ndwate	er (mBT	OC): 2.5	518	
Во	re Locked	/ Covered?	nes ga	tic	Product Thickness (mm):								
			WAN Pli			w	ell Dep	th fro	m TO	C (m):	12.92	27	
Wε	ell condition	n: 900	_)		De	epth to	be Pu	ırged ([m): 🤦			
Purge 5 ca 1 casing v Method/Pu Micro-Pur		V	 	PI	URGING INF	ORM	ATIO	N	•				
	rge 5 casir	ig volumes	or until 'dry':										
	asing volu	me = 2 L/m	for 50 mm ID	wells.		1 (casing	volum	e = 8	L/m for	100 mm ID	wells.	
Me Mic	thod/Pump cro-Purge	o Type: Ba □	iller 🗹 Wat	erra 🗌 W	haler 🗌	Pla	anned l	ourge	Volun	ne: 6	D Lit	tres (5 well vols	
	iterial: Te	eflon []	S/Steel [HDP	E ☑ PVC	□Ac	tual Pu	rge V	olume	: 3	6	Litres	
Sta	art Time (2	400 hr):	12:20			Di	d well p	urge	'dry'?	No 🗌	Yes 🔽	At?: Litre 36	
	Start Time (2400 hr): 2 · 20 Did well purge 'dry'? No ☐ Yes ☑ At?: Litre 36												
	‡ Purge Volume	Time	SWL	рН	EC (<u>M</u> S/cm)	Red (m)		D % [O un	its m ☑	Turbidit	y Temp.	
	1	12:24		7.41	18.38	9)	2	1	60		LOW	24.5	
	2	12:26		7.20	18.85	70		2.01			LUW		
	3	12:31		7.47	21.36	<u>.</u> හ	_		. 14	-	High		
	4	12)(••••	21.50						11191	22.0	
	5												
	ditional lume:												
	ceptable riation:	n/a	+/- 0.05m	+/- 0.05	+/- 3%	+/- 1	0%		+/- 10'	%	n/a	+/- 10%	
Are	e the field r	esults acce	ptable?:										
		SAN	MPLING DE	ETAILS					ANA	LYSIS	DETAIL	S	
Me Mic	thod/Pump cro-Purge [Type: Bai	iler 🗹 Wate	rra 🗌 Wh	aler 🗌	TF	PH		d		VOCs		
Ма	terial: Tefl	on 🗌 S/Ste	el 🔲 HDPE [₹ PVC [Other:	В1	ΓEX		V		SVOCs		
Eqi	uipment: [Dedicated [Decontami	inated [Other:/	P/	AHs		<u> </u>	<u> </u>	οΗ		
ls t	here a hyd	rocarbon sl	neen?:	Yes 🗌	No [X	Me	etals (🎉	(مار	¥		70.5	N/	
Col	lour: BY	oWh	Odour:	done	Sample ID:		WO2			Duplica	ate ID:	UPO I	
Tur	bidity: l	_ow 🔲 🛝	/ledium 🔲	High 🔽	Rinse Blan					Triplica			
				WI	EATHER C	OND	ITION	S		•		-	
Cc		Mild War		Medium	Dry - Mediu	ne-Hu	mio>R	ain			€ Windy	Dusty	
Oth	er comme	nts and obs	servations: R	edule	d purge	vol	vme	n	C IN	P115.	not. n	echangin	
			1 '			~ ,		-	• ·	~ u			

Document Set ID: 6313080 3.2-1 Revision E 06/04/10 Version: 1, Version Date: 11/12/2014

PA PA	RSONS INCKE	RHOFF			GROUND	FOI WATER FIEI		LM 3.2-1 METERS					
JOB NU	MBER:	21756	84A		WELI	NUMBER:	MW03						
Client: 7	- Eleve	h			Purgin	g Date: 4/4/	12						
 ,	 -	clair (2277)	Sampli	ing Date: 4)4	12							
Casing Diamo		50 mm		Depth to	Floating Product (m	nBTQC):							
Casing Heigh	t Above Gre	ound Level (n		Depth to	Groundwater (mBT	OC): 2.7	43						
Bore Locked	/ Covered?:	MES, 010	ttic co	ver	Product	Thickness (mm):							
Cap Type: <i>0</i>	- I \	1/11	va		Well Der	oth from TOC (m):	12.86	2					
Well condition	" good)		Depth to	be Purged (m):	10						
V PURGING INFORMATION													
Purge 5 casii	-	=					100 15						
1 casing volume = 2 L/m for 50 mm ID wells. 1 casing volume = 8 L/m for 100 mm ID wells. 1 casing volume = 8 L/m for 100 mm ID wells. 1 casing volume = 8 L/m for 100 mm ID wells. 1 Planned Purge Volume: (5 well vols)													
Method/Pump Type: Bailer													
Material: To	eflon 🗌	S/Steel	HDPI	₽VC	☐ Actual P	urge Volume:		Litres					
Start Time (2	400 hr):	1240		Did well	purge 'dry'? No 🗌	Yes ☐ At	?: Litre						
FIELD RESULTS WHILE PURGING													
# Purge Volume	Time	SWL	рН	EC (<u>[/^</u> S/cm)	Redox (mV)	DO units % ☐ ppm 🗹	Turbidity	Temp. °C					
1	1245		7.49	22.53	90	2.84	Med	23.7					
2	1244)		6.95	22.67	77	1.58	Hinh	22.6					
[′] 3	1250		7.23	22.53	90	1.92	High	22.b					
4	· ,						J -						
5													
Additional Volume:													
Acceptable Variation:	n/a	+/- 0.05m	+/- 0.05	+/- 3%	+/- 10%	+/- 10%	n/a	+/- 10%					
Are the field	results acce	eptable?:					.,,						
	SA	MPLING D	ETAILS			ANALYSIS	S DETAILS						
Method/Pum Micro-Purge		ailer 🗹 Wate	erra 🗌 Wh	aler 🗌	TPH	<u> </u>	VOCs						
Material: Tef	lon 🗌 S/St	eel 🗌 HDPE	☑ PVC [Other:	BTEX	<u> </u>	SVOCs						
Equipment:	Dedicated	Decontan	ninated 🗌	Other:	PAHs	ø,	рН	Z ,					
ls there a hy	drocarbon s	sheen?:	Yes 🗌	No 🔽	Metals (inly)	TDS	□Z/					
Colour: 3	rowh	Odour:	None	Sample ID	MW	03 Duplic	cate ID:						
Turbidity:	Low 🗌	Medium 🗌	High 🖪	Rinse Blar	nk After: Yes	Triplio	ate ID:	<u>. </u>					
			W	EATHER C	ONDITIO	NS	. <u>. </u>						
Cold - Cool	Hot	_ (- Medium Cloudy		um (Humid)	Rain Still - Gree	2 - Windy	Dusty					
Other comm	ents and ob	servations:			volvme	, due to w	ells pui	rosing d					
Sampler's N	ame: R.	Aabu a	nd D.	smith		r'signature:	beh A	\mathcal{R}^{VY}					

	PARSON: BRINCKE	S RHOFF			GR	OUNE)WA	TER			CLM 3.2-1 AMETERS
JOB N	UMBER	2175	684A			WEL	L N	UMB	ER:	MWO	4
Client:	7 - Elei	1Ph				Purgin	g Da	ate:	414	-112	····· !
Site Lo	cation: 6+		(22	(51		Sampl	ing [Date:	4/4	7/12	···
	iameter (mm):					Depth to	Float	ting Pro	- ' !	nBTOC):	
	eight Above G			Depth to Groundwater (mBTOC): 2					OC): 2.1	218	
Bore Loc	ked / Covered?	· ues a	atic			Product		-			
Сар Туре		J	<i>}</i>	1 plva		Well De	oth fro	om TOC	(m):	11.94	-O
Well cond			/ * · · ·	' 		Depth to	be P	urged (m): 🔑	9.3	
	7		P	URGING INI	FOR	MATIO	N	•	•		
_	asing volumes	•				4		0.1	1	400	,,
	volume = 2 L/n ump Type: B	/		balar 🗆		r——				100 mm ID	
Micro-Pu	ge 🗌	aner∟ v i Wa				Planned	Purge	e volum	ie: (¿	り Litt	res (5 well vols)
Material: Other:	Teflon	S/Steel] HDP	E Z PVC		Actual P	urge \	Volume	3	6	Litres
Start Tim	e (2400 hr):	13:05	<u> </u>			Did well	purge	dry'?	No 🗹	Yes □ A	At?: Litre
Start Time (2400 hr): 13: 05 Did well purge 'dry'? No ☑ Yes ☐ At?: FIELD RESULTS WHILE PURGING											
# Purg Volum		SWļ	рН	EC (<u>M</u> S/cm)				DO units % ppm 🗹		Turbidity	/ Temp.
1	13:07		7.21	23.06	(ol	1	. 33		med	24.4
2	13: 10		7.29	23.11	(50		1.31		High	24. 1
3	13:12	,	7.40	22.71		74	2.20		High	23.7	
4						<u>* </u>			119.7		
5							:				
Additiona Volume:	I										
Acceptab Variation		+/- 0.05m	+/- 0.05	+/- 3%	+,	/- 10%		+/- 10%	6	n/a	+/- 10%
Are the fi	eld results acc	eptable?:	***		•		•			<u>.</u>	
	SA	MPLING D	ETAILS					ANA	LYSIS	DETAILS	 S
Method/F Micro-Pu	ump Type: Ba	ailer 🗹 Wate	_ erra □ ˌŴh	naler 🗌		TPH		7		VOCs	
	Teflon ☐ S/St	eel 🗌 HDPE	PVC[Other:	-	BTEX		Ø		SVOCs	
Equipme	nt: Dedicated	Decontar	ninated 🗌	d Other:		PAHs		Image: Control of the		PH	<u> </u>
Is there a	hydrocarbon s	sheen?:	Yes 🗌	No 🗹		Metals (Phinlu)	☑		TDS	.
Colour:	Brows	Odour:	None	Sample ID): N	10002			Duplic	ate ID:	
Turbidity:		Medium 🔲	High [v	Rinse Blar	nk Af	ter:(es)	No		Triplica	ate ID:	
		ź.	W	EATHER C	ON	DITIO	NS				
Cold - C	ool - Mild ∕ V∕a Hot	Clear	-Medium Cloudy	- Dry - Medi	um -	Humid	Rain	Still	-)Breez	ze - Windy	Dusty
Other cor	nments and ob							<u>.l.</u>			 .
Sampler's	Name: 12	Gabil A	hd D	Sampler' sign				ature:		2111	.1

DD PA	ARSONS RINCKE	S RHOFF		FORM FM-CLM 3.2-1 GROUNDWATER FIELD PARAMETERS									
JOB NU	MBER:	21756	84A		[WEL	L NUMBER:	MW05					
Client: 7	- Elever)	 :				ng Date: 4/4	112	<u> </u>				
Site Loca	tion: 5+.	clair	(227	7)	;	Sampl	ing Date: 4 4	112	 -				
Casing Diam	eter (mm):	50					Floating Product (n	nBTOC):	<u> </u>				
Casing Heigl	ht Above Gr	ound Level (ı	mAGL): -	.		Depth to	Groundwater (mBT	OC): 2.21	09				
Bore Locked	/ Covered?	: yes, gat	ic cove	er	1	Product	Thickness (mm):	.,					
Cap Type: ,		11 / 13	vell ca		,	Well De	pth from TOC (m):	10.097					
Well condition	n: 000					Depth to	be Purged (m): 🔥	- B					
	J	•	PI	URGING INF	FORI	MATIO	N						
Purge 5 casi	ing volumes	or until 'dry':											
1 casing volu	ıme = 2 L/m	for 50 mm II	D wells.		7	1 casing	volume = 8 L/m for	100 mm ID w	ells.				
Method/Pum Micro-Purge	p Type: Ba □	ailer 🗹 Wa	terra □ W	haler 🗌	F	Planned	Purge Volume: 4	3 24 Litre	s (5 well vols)				
Material: T Other:	eflon 🗌	S/Steel] HDP	E PVC		Actual P	urge Volume:	1111 ,32	Litres				
Start Time (2	2400 hr):	12:00			Ī	Did well	purge 'dry'? No 🗹	Yes □ At	?: Litre				
		•	FIELD	RESULTS \	WHIL	E PUI	RGING						
# Purge Volume	Time	SWL	pН	EC (<u>M</u> S/cm)		Redox DO units / Turbidity Temp (mV) % ppm 🗹 °C							
1 3	12:04		7.4)	21.43	Ç	36	1.64	LOW	26.8				
2	12:00		7.30	22.32	9	7	1.12	Med	24.5				
3	12:08		7.32	22.56	1	01	1.84	Med	23.7				
4	12:10		7.08	22.78		31	2.50	med	24.2				
5				-		· · · · ·		101001	21				
Additional Volume:													
Acceptable Variation:	n/a	+/- 0.05m	+/- 0.05	+/- 3%	+/-	10%	+/- 10%	n/a	+/- 10%				
Are the field	results acce	eptable?:					1		<u> </u>				
	SAI	MPLING D	ETAILS	· .			ANALYSIS	DETAILS					
Method/Pum Micro-Purge	p Type: Ba	iler 🔽 Wate	erra 🗌 Wh	aler 🗌	-	TPH	a	VOCs [
		eel 🗌 HDPE	D PVC F	Other:		BTEX	<u> </u>	SVOCs [

Equipment: Dedicated Decontaminated Other: PAHs \square Metals(Pb Is there a hydrocarbon sheen?: No 🗹 TDS Yes 🗌 Odour: Non-e Colour: B WWY MW05 Sample ID: Duplicate ID: Turbidity: Medium 🗹 High 🔲 Rinse Blank After: Yes /No Low [Triplicate ID: **WEATHER CONDITIONS** Clear Medium Cold - Cool - Mild - Warm -Dry - Medium - Mumid Rain Still - Breeze Windy Dusty

(HDD) Cloudy Redued pvrying Other comments and observations:

Sampler's Name:

Sampler' signature: /

PARSONS BRINCKERHOFF
JOB NUMBER: 2175

FORM FM-CLM 3.2-1

	100					.	00112			IVIE I EXO		
	JOB NU	MBER:	21756	844			WELL NUMBER: MW101					
	Client: "	-fleve	<i>h</i>	•			Purging Date: 04/04/12					
	Site Locat			(227	7)		Sampling Date: 04 04 112					
	Casing Diam	eter (mm):	50			Depth to Floating Product (mBTOC):						
			ound Level (r	nAGL): ()	.15		Depth to Groundwater (mBTOC): 2.753					
	Bore Locked	/ Covered?	yes, g	atic co	rer		Product 1	Thickness (mm):				
	Сар Туре:		ap ga	tic lo	yer			oth from TOC (m):)		
	Well conditio	n: 6000						be Purged (m): 🗸	<u>√3</u>			
	<u></u>			Pl	JRGING INI	FOR	MATIO	N				
	Purge 5 casii	- .	•	. "					400 15	,,		
	1 casing volu Method/Pum					volume = 8 L/m for						
	Micro-Purge		mer 🗀 VVai	ena 🔲 w	nalei 🔲		Planned	Purge Volume:	& Litre	es (5 well vols)		
	Material: To Other:	eflon 🗌	S/Steel	HDPI	E ▼ PVC		Actual Po	urge Volume:	9	Litres		
	Start Time (2	400 hr):	11:40			Did well	purge 'dry'? No 🔽	Yes ☐ At	?: Litre			
		·		FIELD	LE PUF	RGING						
	# Purge Volume	Time	SWL	рН	EC (<u>ff</u> S/cm)		edox (mV)	DO units % ppm 🕰	Turbidity	Temp. °C		
67	1	1144		8.3	25.8		47	1.91	med.	24.2		
12L	2	1146		6.76	23.43		<ુ	2.77	high	24.2		
182	3	1149		6.75	25.8		64	2.86	High	23.2		
	4											
	5											
	Additional Volume:							•				
	Acceptable Variation:	n/a	+/- 0.05m	+/- 0.05	+/- 3%	+,	/- 10%	+/- 10%	n/a	+/- 10%		
	Are the field		·		,							
			MPLING D						DETAILS	<u> </u>		
	Method/Pum Micro-Purge		iler 🗹 Wate	erra 🔲 Wh	aler 🗌		TPH	Image: section of the	VOCs			
	Material: Tef	lon 🗌 S/Ste	eel 🗌 HDPE	PVC [Other:		BTEX		SVOCs			
	Equipment:	Dedicated [Decontam	inated	Other:		PAHs	Ø	рH	v		
	ls there a hyd	drocarbon s	heen?:	Yes 🗌	No 🗹		Metals (only) 🗹	_Tbs_			
	Colour: 👸	DWD_	Odour:	None	Sample ID): N	1W10	Duplic	ate ID:			
	Turbidity:	Low 🗌 🔝	Medium	High ✓				<u> </u>	ate ID:	-		
				W	EATHER C	ON	IDITIO	VS		<u> </u>		
	Cold - Cool	- Mild - War		Medium	Dry - Medi	um - ₍	Aumio 1	Rain Still- Bree	ze - Windy	Dusty		
	Other commo						 	þ	1 1			
	Sampler's Na	me: 2. A	iby of E	s.Smi	l h		Sampler	' signature:	Mr A	er_		

Attachment D

Tabulated analytical results

Table D1 Groundwater analytical results - TPH, BTEX and lead

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Well ID	Date sampled -		Total petr	oleum hydrocart	on (TPH)		Benzene	Toluene	Ethylhonzono	m- & p-Xylene	0-	Total	Lead
		C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	Total C ₁₀ - C ₃₆	Belizelle	Toluelle	Ettiyibelizelle	III- & p-Aylelle	Xylene	Xylenes	Leau
MW01B	4/04/2012	<20	<50	790	660	1,450	2	<2	<2	<2	<2	<2	<10
MW 02	4/04/2012	<20	<50	<100	<50	<50	<1	<2	<2	<2	<2	<2	<10
MW 03	4/04/2012	<20	<50	<100	<50	<50	<1	<2	<2	<2	<2	<2	<10
MW 04	4/04/2012	<20	<50	<100	<50	<50	<1	<2	<2	<2	<2	<2	<10
MW 05	4/04/2012	<20	<50	<100	<50	<50	<1	<2	<2	<2	<2	<2	<10
MW 101	4/04/2012	<20	<50	<100	<50	<50	<1	<2	<2	<2	<2	<2	<10
Adopted assessment criteria		•				-	10	180	80			•	3.1

Notes:

Concentrations expressed in µg/L, unless indicated

BOLD Gro

Groundwater concentration exceeded site assessment criteria

Table D2 Groundwater analytical results - PAHs

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Bore ID	Date sampled	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	Total PAHs
MW01B	4/04/2012	1.1	<1	<1	<1	2.5	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	3.6
MW02	4/04/2012	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1
MW03	4/04/2012	<1	<1	<1	<1	1.1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	1.1
MW04	4/04/2012	1.8	<1	<1	<1	1.5	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	3.3
MW05	4/04/2012	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1
MW101	4/04/2012	2.7	<1	<1	<1	1.3	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	4
Adopted assessment criteria		16	-		·	2	0.4	1.4		-	-	-	0.2	-		-	-

Notes:

Concentrations expressed in µg/L

BOLD

Groundwater concentration exceeded site assessment criteria

Table D3 Soil analytical results - TPH, BTEX and lead

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Bore ID	Sample depth (mBGL)	Date sampled		Total petro	oleum hydroca	rbon (TPH)		Benzene	Toluene	Ethylhenzene	m- & p-Xylene	0-	Total	Lead
			C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	Total C ₁₀ - C ₃₆		Totache	Littyibetizette	III- & p-Aylette	Xylene	Xylenes	Leau
SB101	0.25-0.35	28/03/2012	<10	<50	210	100	310	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	97
SB102	0.5-0.6	28/03/2012	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	18
SB102	1.9-2.0	28/03/2012	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	16
SB103	1.0-1.1	28/03/2012	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	16
SB103	1.9-2.0	28/03/2012	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	28
MW101	2.0-2.1	28/03/2012	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	23
MW101	3.8-3.9	28/03/2012	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	19
Adopted assessment criteria		65	-	-	-	1,000	1	1.4	3.1	-	-	14	300	

Notes:

Concentrations expressed in mg/kg

BOLD Soil concentration exceeded site assessment criteria

Table D4 Soil analytical results - PAHs

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Bore ID	Sample depth (mBGL)	Date sampled	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	Total PAHs
SB101	0.25-0.35	28/03/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	1.4	0.6	0.6	0.7	0.7	<0.5	<0.5	0.5	5.6
SB102	0.5-0.6	28/03/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
SB102	1.9-2.0	28/03/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SB103	1.0-1.1	28/03/2012	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
SB103	1.9-2.0	28/03/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
MW101	2.0-2.1	28/03/2012	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW101	3.8-3.9	28/03/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Adopted assessment criteria				- 2	-	4 s	1020	- 4	* //	(* *	- 4	(2	1	//≅/	911	1020	20

Notes:

Concentrations expressed in mg/kg

BOLD

Soil concentration exceeded site assessment criteria

Table D5 Quality assurance and quality control - field duplicates

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Groundwater results

Commis ID		Total petro	oleum hydroca	rbon (TPH)		D	Talmana	Ethyl	m- & p-	0-	Total
Sample ID	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	Total C ₁₀ - C ₃₆	Benzene	Toluene	benzene	Xylene	Xylene	Xylenes
MW 101	<20	<50	<100	<50	<50	<1	<2	<2	<2	<2	<2
DUP01	<10	<50	<100	<100	<50	<1	<1	<1	<2	<1	<1
RPD (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Soil results

	Sample depth		Total petro	oleum hydroca	arbon (TPH)			Toluene	Ethyl	m- & p-	0-	Total
Bore ID	(mBGL)	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	Total C ₁₀ - C ₃₆		Toluene	benzene	Xylene	Xylene	Xylenes
MW 101	3.8-3.9	<10	<50	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
DUP01	3.8-3.9	<25	<50	<100	<100	<50	<0.5	<0.5	<1	<2	<1	<1
RPD (%)	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Notes:

Concentrations of groundwater results are expressed in $\mu g/L$ and soil results are expressed as mg/kg

BOLD

RPD values exceeded acceptable limit

Table D6 Quality assurance and quality control - Sample blanks

Phase 2 Environmental Site Assessment - March/April 2012

7-Eleven St.Clair service station (Site ID: 2277)

4 Endeavour Road and Bennett Road, St Clair, NSW

Sample ID Date			Total petr	oleum hydrocar	bon (TPH)		Benzene	Toluene	Ethylbonzono	m- & p-Xylene	0-	Total
Sample ib	sampled	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	Total C ₁₀ - C ₃₆	Belizelle	Toluene	Etriyiberizerie	III- & p-Aylerie	Xylene	Xylenes
Equipment rinsate												
RB_280312	28/03/2012	<20	<50	<100	<50	<50	<1	<5	<2	<2	<2	<2
RB_040412	4/04/2012	<20	<50	<100	<50	<50	<1	<5	<2	<2	<2	<2
Trip blank												
TB_220312	28/03/2012	<20	-	-	-	-	<1	<5	<2	<2	<2	<2
TB_040412	4/04/2012	<20	<50	<100	<50	<50	<1	<5	<2	<2	<2	<2

Document Set ID: 6313080 Version: 1, Version Date: 11/12/2014

Attachment E

Survey data

Document Set ID: 6313080 Version: 1, Version Date: 11/12/2014

Incorporating

Barrie Green & Associates

P 02 9651 2921 info@survevplus.com.au F 02 9651 2501 www.surveyplus.com.au ABN 88 142 006 077

PO Box 3342 Dural NSW 2158

Our Ref: 11548 SURVEY RESULTS ST CLAIR

17 April 2012

Attn: Andrew Hill Email: AHill@pb.com.au

> Parsons Brinckerhoff Level 27, Ernst & Young Centre 680 George Street **GPO Box 5394** SYDNEY NSW 2001

Re: SURVEY OF MONITORING WELL - 7-ELEVEN SITE, 4 ENDEAVOUR AVENUE, ST CLAIR

SurveyPlus has surveyed 1 monitoring well (known as MW101) in the south-east corner of this site. Results are as follows:

MW101

Easting: 295288.86

Northing: 6258433.85

Reduced Levels:

Top of PVC pipe: 47.23 (AHD)

Lid: 47.32 (AHD)

Origin of levels: SSM 101318 RL 56.016 AHD.

Origin of coordinates: SSM 101318 & SSM 21852 (SCIMS).

Date of fieldwork: 16.04.2012

Attachment F

Laboratory reports and chain of custody documentation

Document Set ID: 6313080 Version: 1, Version Date: 11/12/2014

	<u> </u>		CHAIN OF	CUST	ODY FOR AI	NALYTICAL S	ERVICE	S		<u> </u>				·			
Company: (tick)	Convenience Properties P/L 7 Eleven Stores P/L				ract No:	PO 55001	90054	7.	-Elev	en Site:		St Clai	r			. /	7
(CICK)	Strasburger Enterprises P/L]	Date:	28/3 No: 1 o f	3/12		7	-Elev	en Store	No:	2277			- R	ELEVI	En l
Laboratory:	ALS Laboratory Group NSW Smithfield			COC	No: 10f	2_		7-	-Elev	en PM:		David	Raymond				
Address:	NSW 2164			Comr	ments:		:	a	luota	ation No:		EN-05	3-10				
Attention:	Glenyss Weeks						ļ !										
								i	Analy	sis Require	d						
	ļ.				S-4 W-4	S-6 W-6	S-7	W-7 F	-16	CrVI	W-	28	S-21 W-2:	L			
LAB ID	Sample ID	Sample Date	Matrix Soild (S) Water (W)	НОГР	тРН(С6-С36)/ВТЕХ	TPH(C6-C36)/BTEX plus Pb	TPH(C6-C36)/BTEX plus		IWRG 621	IWRG 621 metals (As, Cd, CrVI, Cu, Pb, Hg, Mo, Ni, Sn, Se, Ag, Zn)	Natural Attenuation Indicators (nitrate,	ferrous iron, sulphate, methane)	ТРН (С6-С36), ВТЕХ, РАН, РЬ		S		
				모	Ĭ.	<u> </u>	Ē	A A	፮	Ğ Ç ≦	Na	fer m	F A A	표	T _D	 	1——
1	55101-0.25-0.35	28/3/12	5										X			·	\perp
(10)	SB102_025-0.35	,		区			Enviror		ا. نظام		·	***					1
2	56102-6.5-0.6						Enviror	Sydne		vision			X			· 	
\odot	5802-10-1.1			×			W	/ork O	-								$\perp \perp \perp$
(1) (1)	SB102-15-16			\times			ES	120	75	05							
3	5B102-19-20												<u> </u>			ļ	\perp
(3) (9)	MW101-0,1-02			又						 	:						
(19)	MW101-0.5-0.6			\times				# ? {{{{}}}}}		JJA I M							
(U)	MW101-1.0-1.1			×			II II II III III elephone		 0.70	1 0555							
4	MW101-20-21	"				<u> </u>	elebilotie	: + 0 1-	2-0/0	4 6555			X				
(6)	MW101-30-3.1	V	J/	×							/ ·						<u> </u>
Consultant	contact name/company:	Andrew Hill /	Parsons I	Brinck	erhoff	Phor	e: 92	72 51	95				Mobile: (0403 3	 73 206		
Forward Re	sults to: ahill@pb.com.au	26	ત્ર			Turn	around:		Star	ndard (5 d	lays)				1		
Relinquishe		Date / Time: 🎘	13)12	[]	س. دردها	Rece	ived By	<i>D</i>	رجو:	+.\.d			Date / Tim		9/3		1100
Relinguishe	ed By:	Date / Time:				Rece	ived By	:		• • • • • • • •	• • • • • •	•	Date / Tim	e:		• • • •	

Document Set Liberen Master CoC template Version: 1, Version Date: 11/12/2014

<u> </u>			CHAIN OF	CUST	ODY FOR A	NALYTIC	AL SE	RVIC	ES										
Company:	✓ Convenience Properties P/L		1		act No:	PO 550	- I-		•	7-Flor	en Site:		St Clai	r					
(tick)	7 Eleven Stores P/L						0013	7000-		/~LIC	ren site.		Jt Clair	•					
ľ	Strasburger Enterprises P/L			Date:	28/3 Vo: 2 of	JIS.				7-Elev	en Store	No:	2277					ELEVE	n 🗐
	 - -		_		٠,	1													0
Laboratory:	•			COC	10:'L of	2				7-Elev	/en PM:		David	Raymo	nd				
	Smithfield				•		:			Ount	stion No.		EN-053	2 10					
Address:	NSW 2164			Comn	nents:					Quota	ation No:		EN-US:	2-10					
Attention:	Glenyss Weeks																		
							1			Analy	sis Require	d							
					S-4 W-4		V-6_	S-7	W-7	P-16	CrVI	W	-28	S-21	W-21				<u> </u>
			6.6-at			snld		snjd			As, B, Zn)		ate,	٠					
LAB ID	Sample ID	Sample Date	-Matrix Soild (S)		TEX	X		ĬĔ			als (, o, Hg Ag,	latio ate,	ydır	BTE					
			Water (W)		9/(98] (9)		9/(9 <u>/</u>			met .u, Pł , Se,	ten. (nit	ın, sı	36),					
) 9	ÿ		ÿ		621	621 VI, C II, Sn	al At Itors	us irc ane)	J-95	og.				
				НОГР	ТРН(С6-С36)/ВТЕХ	TPH(C6-C36)/BTEX plus	,	TPH(C6-C36)/BTEX plus	AH	IWRG 621	IWRG 621 metals (As. Cd, CrVI, Cu, Pb, Hg, Mo, Ni, Sn, Se, Ag, Zn	Natural Attenuation Indicators (nitrate,	ferrous iron, sulphate, methane)	трн (с6-с36), втех,	PAH, Pb	చ	TDS		
2	MW101-3.8-39	28/3/12	5	 	- 1	 ⊢ ≞	\vdash				202	_ =		X		-0	<u> </u>		 ' '''
<u> </u>	5B103-04-05	2013/12		×		† 						<u> </u>							
6	B-58103_1.0-1.1					1								\times					
7	SB103-1.9-2.0													X					
	100PO1	─ √		> C	LEAS	£ #c	7 /	177 £	(P)	10	(N)	1/RC	TRI						
8	RB_280312	28/3/12	W		×			~~.	<u>.,</u>										
9	18-280312	J'	\w/		X														
	, i											<u> </u>							
						<u> </u>											<u> </u>		<u> </u>
																		<u> </u>	<u> </u>
	1				1.00		1												
	contact name/company:	Andrew Hill /	Parsons	Brinck	erhoff				272 5					Mobil	e: 04	03 37	′3 206	>	
Forward Re	sults to: ahill@pb.com.au	20	N = 1 = =	4	·•		į	round		Sta	ndard (5 d	iays)				2	9/3	t i	V G
Relinquishe	ed By: N RAPI	Date / Time: 👭	3317		jaiv		1	ed By	-	H, & -	<i>∿.!</i>		•	Date /					
Relinquishe	ed Bý:	Date / Time:				R	eceiv	ved By	/:				•	Date /	Time:				

CERTIFICATE OF ANALYSIS

Work Order Page : ES1207505 : 1 of 8

Client : Environmental Division Sydney : STRASBURGER ENTERPRISES PTY LTD Laboratory

: ANDREW HILL Contact Contact : Glenyss Weeks Address

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

E-mail E-mail : ahill@pb.com.au : Glenyss.Weeks@alsglobal.com

Telephone Telephone : +61 2 8784 8555 . ____ Facsimile Facsimile : +61 2 8784 8531

Project QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement : 2277

Order number : 5500190054 C-O-C number .---Date Samples Received : 29-MAR-2012

: SL Issue Date : 05-APR-2012 Sampler

No. of samples received : 17 Quote number No. of samples analysed : 9 : EN/053/10 - Sydney

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

: ST CLAIR

- General Comments
- Analytical Results
- Surrogate Control Limits

Site

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IFC 17025

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Hoa Nguyen	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Document Set ID: 6313080

Page : 2 of 8
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005T: Poor precision was obtained for Iron on sample ES1207520-2 due to sample heterogeneity. Results have been confirmed by re-extraction and reanalysis.

Page : 3 of 8 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 227

Analytical Results

Page : 4 of 8 Work Order : ES1207505

Client STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Analytical Results

Sub-Matrix: SOIL		Cli	ent sample ID	SB101_0.25-0.35	SB102_0.5-0.6	SB102_1.9-2.0	MW101_2.0-2.1	MW101_3.8-3.9
	Cli	ent sampli	ing date / time	28-MAR-2012 15:00				
Compound	CAS Number	LOR	Unit	ES1207505-001	ES1207505-002	ES1207505-003	ES1207505-004	ES1207505-005
EP080: BTEX - Continued								
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP080: BTEXN		1.4						
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compou	ind Surrogates							•
Phenol-d6	13127-88-3	0.1	%	109	110	111	105	96.9
2-Chlorophenol-D4	93951-73-6	0.1	%	98.2	99.8	100	96.8	90.3
2.4.6-Tribromophenol	118-79-6	0.1	%	51.8	76.3	78.0	73.5	69.0
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	97.2	96.9	98.2	98.1	96.0
Anthracene-d10	1719-06-8	0.1	%	102	102	101	102	97.6
4-Terphenyl-d14	1718-51-0	0.1	%	83.4	84.1	85.0	84.2	87.2
EP080S: TPH(V)/BTEX Surrogat	es							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	110	109	105	103	75.3
Toluene-D8	2037-26-5	0.1	%	106	96.0	77.7	92.0	99.3
4-Bromofluorobenzene	460-00-4	0.1	%	103	96.7	119	98.2	87.2

Page : 5 of 8 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Analytical Results

Page : 6 of 8
Work Order : ES1207505

Client STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Analytical Results

Sub-Matrix: SOIL		Cli	ent sample ID	SB103_1.0-1.1	SB103_1.9-2.0	 	
	Cli	ent sampli	ng date / time	28-MAR-2012 15:00	28-MAR-2012 15:00	 	
Compound	CAS Number	LOR	Unit	ES1207505-006	ES1207505-007	 	
EP080: BTEX - Continued							
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	 	
EP080: BTEXN							
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	 	
` Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	<1	 	
EP075(SIM)S: Phenolic Compoun	nd Surrogates						
Phenol-d6	13127-88-3	0.1	%	93.9	101	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	88.0	99.9	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	65.7	63.7	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	95.2	92.8	 	
Anthracene-d10	1719-06-8	0.1	%	96.5	103	 	
4-Terphenyl-d14	1718-51-0	0.1	%	83.5	81.4	 	
EP080S: TPH(V)/BTEX Surrogate	s						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	74.1	91.3	 	
Toluene-D8	2037-26-5	0.1	%	82.0	91.0	 	
4-Bromofluorobenzene	460-00-4	0.1	%	81.6	81.8	 	

Page : 7 of 8
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Analytical Results

Page : 8 of 8 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	71	137		
Toluene-D8	2037-26-5	79	131		
4-Bromofluorobenzene	460-00-4	70	128		

Document Set ID: 6313080

QUALITY CONTROL REPORT

Work Order : **ES1207505** Page : 1 of 9

Client : STRASBURGER ENTERPRISES PTY LTD Laboratory : Environmental Division Sydney

Contact : ANDREW HILL : Glenyss Weeks

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : --- Telephone
 : +61 2 8784 8555

 Facsimile
 : --- Facsimile
 : +61 2 8784 8531

Project : 2277 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ST CLAIR

 C-O-C number
 : -- Date Samples Received
 : 29-MAR-2012

 Sampler
 : SL
 Issue Date
 : 05-APR-2012

Order number : 5500190054

No. of samples received : 17

Quote number : EN/053/10 - Sydney No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Hoa Nguyen	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500
Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🗦

www.alsglobal.com

Page : 2 of 9 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 9
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA055: Moisture Co	ntent (QC Lot: 2239882)								
ES1207356-007	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	8.6	8.0	8.0	No Limit
ES1207562-005	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	35.3	38.1	7.7	0% - 20%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	2238985)							
ES1207454-001	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	7	9	17.1	No Limit
ES1207520-002	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	7	5	28.4	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydroc	arbons (QC Lot: 2237898)							
ES1207350-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
ES1207383-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ment Set ID: 6313080		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 4 of 9
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2237898) - continued							
ES1207383-001	Anonymous	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2237886)							
ES1207317-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1207356-008	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2237897)							
ES1207350-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1207383-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbor	ns - NEPM 2010 Draft (QC Lot: 2237886)							
ES1207317-001	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1207356-008	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbor	ns - NEPM 2010 Draft (QC Lot: 2237897)							
ES1207350-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
	,,	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1207383-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
	•	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 2237886)								
ES1207317-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
	,,	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	0.5	0.0	No Limit
		Er soo. meta a para xyrene	106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1207356-008	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
)	EP080; ortho-Xvlene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 5 of 9
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 2237886) - contir	nued							
ES1207356-008	Anonymous	EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2239432)							
ES1207504-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES1207466-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2010 Draft (QC Lot: 2239432)							
ES1207504-001	Anonymous	EP080: C6 - C10 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES1207466-001	Anonymous	EP080: C6 - C10 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 2239432)								
ES1207504-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<5	<5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES1207466-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<5	<5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 6 of 9
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Hig
EG005T: Total Metals by ICP-AES (QCLot: 223	38985)							
EG005T: Lead	7439-92-1	5	mg/kg	<5	54.76 mg/kg	95.0	85.2	111
EP075(SIM)B: Polynuclear Aromatic Hydrocar	bons (QCLot: 2237898)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	102	81.9	113
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	96.6	79.6	11:
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	101	81.5	11:
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	97.6	79.9	11:
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	102	79.4	11
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	101	81.1	112
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	101	78.8	113
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	105	78.9	11:
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	91.4	77.2	11:
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	108	79.8	11
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	83.5	71.8	118
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	93.4	74.2	11
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	85.6	76.4	11
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	85.8	71	11:
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	81.4	71.7	113
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	100	72.4	114
EP080/071: Total Petroleum Hydrocarbons(Q	PCI of: 2237886)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	72.1	68.4	128
EP080/071: Total Petroleum Hydrocarbons(Q	CL at: 2237997)							
EP030/071. Total Petroleum Hydrocarbons (&		50	mg/kg	<50	200 mg/kg	107	59	13
EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	102	74	13
EP071: C13 - C28 Fraction EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	97.1	63	13
		9 45555	mg/kg	1100	200 mg/kg	Or. 1	00	10
EP080/071: Total Recoverable Hydrocarbons -				-40	24 //	72.0	CO 4	100
EP080: C6 - C10 Fraction		10	mg/kg	<10	31 mg/kg	73.9	68.4	128
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2010 Draft (QCLot: 22							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	103	59	13
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	93.7	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	450			
		50	mg/kg		150 mg/kg	97.3	63	13
EP080: BTEXN (QCLot: 2237886)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	83.9	62	120
EP080: Toluene ment Set ID: 6313080	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	82.4	62	128

Page : 7 of 9
Work Order : ES1207505

Client STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 2237886) - continued								
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	78.4	58	118
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	84.3	60	120
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	78.9	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	81.8	62	138
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 223730	0)							
EP071: C10 - C14 Fraction		50	μg/L	<50	200 μg/L	91.9	58.9	131
EP071: C15 - C28 Fraction		100	μg/L	<100	250 μg/L	107	73.9	138
EP071: C29 - C36 Fraction		50	μg/L	<50	200 μg/L	83.7	62.7	131
EP080/071: Total Petroleum Hydrocarbons (QCLot: 223943)	2)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	117	75	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 [Draft (QCLot: 2	2237300)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	250 μg/L	76.5	58.9	131
EP071: >C16 - C34 Fraction		100	μg/L	<100	350 μg/L	84.6	73.9	138
EP071: >C34 - C40 Fraction		100	μg/L	<100				
		50	μg/L		150 μg/L	97.9	62.7	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 [Praft (QCLot: 2	2239432)						
EP080: C6 - C10 Fraction		20	μg/L	<20	310 μg/L	117	75	127
EP080: BTEXN (QCLot: 2239432)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	99.3	70	124
EP080: Toluene	108-88-3	2	μg/L		10 μg/L	94.8	66	132
		5	μg/L	<5				
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	97.3	70	120
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	10 μg/L	101	69	121
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	101	72	122
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	101	70	124

Page : 8 of 9
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

			Spike	0 1 0 00/1	The Control of the Co	
			Spike	Spike Recovery (%)	Recovery	Limits (%)
Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig
s by ICP-AES (QCLot: 2238985						
Anonymous	EG005T: Lead	7439-92-1	250 mg/kg	91.3	70	130
uclear Aromatic Hydrocarbons	(QCLot: 2237898)					
Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	80.4	70	130
	EP075(SIM): Pyrene	129-00-0	10 mg/kg	88.9	70	130
roleum Hydrocarbons (QCLot	: 2237886)					
Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	117	70	130
roleum Hydrocarbons (QCI ot						
			640 ma/ka	87.1	73	137
•	EP071: C15 - C28 Fraction		3140 mg/kg	104	53	131
	EP071: C29 - C36 Fraction		2860 mg/kg	89.2	52	132
coverable Hydrocarbons - NEP	The state of the s					
-			37.5 mg/kg	109	70	130
coverable Hydrocarbons NEB	(C. 19) AND MARK STANDAY MODEL FROM SIZE OF A STANDAY OF					
			850 ma/ka	104	73	137
/ monymous						131
	18 200 M-030 DM008 St DM0075 MM0070 at 81 at 16 MM00705 X005					132
ot: 2227996)	El Gri. 2 Con - Cho i luction			,		
	ED090: Panzana	71-43-2	2.5 mg/kg	82.3	70	130
Amonymous		10 10 DOM OUT		400,10,0900		130
						130
				89.6	70	130
	a para vyiono	106-42-3		00.00000000		77.074.001
	EP080: ortho-Xylene	95-47-6	2.5 mg/kg	81.4	70	130
	EP080: Naphthalene	91-20-3	2.5 mg/kg	73.7	70	130
				Matrix Spike (MS) Repo	rt	
			Spike	Spike Recovery (%)	Recovery	Limits (%)
Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig
roleum Hydrocarbons (QCL of						
Anonymous	EP080: C6 - C9 Fraction		325 µg/L	110	70	130
coverable Hydrocarbons - NEP	19 10 00 00 00 00 00 00 00 00 00 00 00 00					
			375 µg/L	110	70	130
•	E1 000. 00 - 010 Haction		ma [,] -			
Anonymous	EDOSO, Damass	71-43-2	25 μg/L	73.7	70	130
Anonymous	EP080: Benzene	11-43-2	∠J µg/∟	13.1	10	130
	Anonymous Itroleum Hydrocarbons (QCLot: Anonymous Itroleum Hydrocarbons (QCLot: Anonymous Itroleum Hydrocarbons (QCLot: Anonymous Itroleum Hydrocarbons (QCLot: Anonymous Itroleum Hydrocarbons - NEP Anonymous Coverable Hydrocarbons (QCLot: Anonymous Coverable Hydrocarbons - NEP Anonymous	Solution	Name	Anonymous EGOST: Lead 7439-92-1 250 mg/kg	Section Content Cont	Parameter Para

Page : 9 of 9
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Sub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (QCL	ot: 2239432) - continued						
ES1207504-001	Anonymous	EP080: Ethylbenzene	100-41-4	25 μg/L	91.2	70	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	87.4	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 μg/L	90.8	70	130
		EP080: Naphthalene	91-20-3	25 μg/L	89.1	70	130

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : ES1207505 Page : 1 of 6

Client : STRASBURGER ENTERPRISES PTY LTD Laboratory : Environmental Division Sydney

Contact : ANDREW HILL : Contact : Glenyss Weeks

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone :---- Telephone :+61 2 8784 8555
Facsimile :---- Facsimile :+61 2 8784 8531

Project : 2277 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site :ST CLAIR

C-O-C number : Date Samples Received : 29-MAR-2012

 Sampler
 : SL
 Issue Date
 : 05-APR-2012

 Order number
 : 5500190054
 : 05-APR-2012

No. of samples received : 17

Quote number : EN/053/10 - Sydney No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

Page : 2 of 6
Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: **SOIL**Evaluation: **×** = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content									
Soil Glass Jar - Unpreserved (EA055-103) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, SB103_1.9-2.0	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012				02-APR-2012	11-APR-2012	✓	
EG005T: Total Metals by ICP-AES									
Soil Glass Jar - Unpreserved (EG005T) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, SB103_1.9-2.0	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012	31-MAR-2012	24-SEP-2012	✓	02-APR-2012	24-SEP-2012	✓	
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2010 Draft								
Soil Glass Jar - Unpreserved (EP071) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, SB103_1.9-2.0	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012	30-MAR-2012	11-APR-2012	✓	03-APR-2012	09-MAY-2012	✓	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Soil Glass Jar - Unpreserved (EP075(SIM)) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, SB103_1.9-2.0	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012	30-MAR-2012	11-APR-2012	✓	03-APR-2012	09-MAY-2012	✓	
EP080: BTEX									
Soil Glass Jar - Unpreserved (EP080) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, SB103_1.9-2.0	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012	30-MAR-2012	11-APR-2012	✓	03-APR-2012	11-APR-2012	✓	
EP080: BTEXN									
Soil Glass Jar - Unpreserved (EP080) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, Ument Set 109-2-31 3080	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012	30-MAR-2012	11-APR-2012	✓	03-APR-2012	11-APR-2012	✓	

Page : 3 of 6 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Matrix: SOIL					Evaluation	: 🗴 = Holding time	breach; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft							
Soil Glass Jar - Unpreserved (EP080) SB101_0.25-0.35, SB102_1.9-2.0, MW101_3.8-3.9, SB103_1.9-2.0	SB102_0.5-0.6, MW101_2.0-2.1, SB103_1.0-1.1,	28-MAR-2012	30-MAR-2012	11-APR-2012	✓	03-APR-2012	11-APR-2012	✓
Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071) RB_280312		28-MAR-2012	02-APR-2012	04-APR-2012	✓	03-APR-2012	12-MAY-2012	✓
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) RB_280312,	TB_280312	28-MAR-2012	02-APR-2012	11-APR-2012	√	02-APR-2012	11-APR-2012	✓
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft							
Amber VOC Vial - Sulfuric Acid (EP080) RB_280312,	TB_280312	28-MAR-2012	02-APR-2012	11-APR-2012	1	02-APR-2012	11-APR-2012	✓

Page : 4 of 6 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		,000 to	(a)	Lvaidatioi		itror requericy r	not within specification ; ✓ = Quality Control frequency within spe
Quality Control Sample Type			ount		Rate (%)	100 V 100	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	17	5.9	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ΓΡΗ - Semivolatile Fraction	EP071	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.3	5.0	1	ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	17	5.9	5.0		ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0		ALS QCS3 requirement
ΓΡΗ Volatiles/BTEX	EP080	1	20	5.0	5.0	1	ALS QCS3 requirement
latrix: WATER				Evaluation	v = Quality Car	etrol fraguancy n	not within specification ; ✓ = Quality Control frequency within spe
			7	Evaluation		illoi irequericy i	
Quality Control Sample Type	Method		ount	0 -41	Rate (%)	Evaluation	Quality Control Specification
Analytical Methods	Wethod	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
TPH Volatiles/BTEX	EP080	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
TPH - Semivolatile Fraction	EP071	11	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
ГРН - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ΓΡΗ Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	1	ALS QCS3 requirement

Page : 5 of 6 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
TPH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
TPH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Page : 6 of 6 Work Order : ES1207505

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

	·		CHAIN C	F CUS	TODY FOR A	NALYTICAL	SERVICES				 -				
Company: (tick)	Convenience Properties P/L 7 Eleven Stores P/L		7	Cont	ract No:	PO 55001	90054	7-Ele	ven Site:	 St.Cla			F		7
	Strasburger Enterprises P/L	<u>·</u>] .	Date	: 4/4	/12		7-Eleven Store No: 2277			•		1	ELEVI	FN EN
Laboratory	ALS Laboratory Group NSW Smithfield			coc	No:			7-Ele	ven PM:	David	Raymond				
Address:	NSW 2164			Comr	ments:			Quot	ation No:	EN-05	i3-10		H =	استوية	
Attention:	Glenyss-Weeks Subcom/Gerward Lan/Spi											ŀ	1		
	E ob (A The Carry) Sur	T WO	T		_			Anah							
	I WITH A PERMINANCE (CONTRACT RUN	ספומני	Ì		S-4 W-4	S-6 W-6	S-7 W-7	P-16	CrVI		T 5 24 144 24	т	- 		
	Organised By / Date: C Du	p 01 /	ļ		 -			t		W-28	5-21 W-21	 	 		
LADID	Relinquished By / Date:	Sample Date	Matrix		×	TPH(C6-C36)/BTEX plus	TPH(CG-C36)/BTEX plus PAH		IWRG 621 metals (As, Cd, CrVI, Cu, Pb, Hg, Mo, Ni, Sn, Se, Ag, Zn)	Natural Attenuation Indicators (nitrate, ferrous iron, sulphate, methane)	, ,			,	
LAB ID	Connote /semple:Per: WO No: LES/208072	Sample Date	Soild (S)	1 1	BTE	BTE	37E		als (o, H Ag,	atic ate, alph	J E		1 1]
	WO No: <u>Ed 12080 72</u>		Water (W)		36)/	(98)/	/(9;	1 1	met u, Pl Se,	ent (nitr n, st	(9)]			
	Affach By FC / Internal She	ot:]	тРН(С6-С36)/ВТЕХ	ÿ	۲	521	521 'I, C	Natural Attenuation Indicators (nitrate, ferrous iron, sulphat methane)	ТРН (С6-С36), ВТЕХ, РАН, РЬ] [1	i I
				HOLD	H(C	H(C	, H(C)	WRG 621	5 5 ž	Natural Al Indicators ferrous irc methane)) - (CR			- 1	
1	14, 1010	 	┼	Ĭ	<u> </u>	19.	P A	_	કેં છેં કે	Nai Ind feri feri	TP TP PA	玉	Į ŠĘ Į		
	MWOIB	<u> </u>	W					ı j	I		$\neg \neg x$	X	$\overline{\mathbf{x}}$	$\neg \neg$	
2	MWO2	4/4/12	W					En		tal Division	T _×	×		$\neg +$	-
3	MW03	4/4/12	W				,		Sydi	•	 	$\frac{1}{2}$			
Ψ	MW04	4/4/12	7					_	Work		1		\bigcirc	}	 .
	MW05	4/4/12	W			_	 	E	ES120	08072	+	Ž.		 	
6	MWIO	1/1/12	W				 				12	<u>Z</u> J	\times		
	RB	4/4/2		-+			<u> </u>					\times	\geq		
		4/4/12	W		$- \Delta $	<u> </u>	<u> </u>						1		
		<u> </u>					ışi.								
	<u>DUPOI</u> (please find to Envi	rolab)				_	+1	Telep	hone: +6	1-2-8784 8555		$\neg \neg$		$\neg +$	
{	TB.						·		-·		_/	\dashv		-+	
			,		-			一十						\dashv	
												— ↓			
onsultant c	ontact name/company:	Andrew Hill /	Parsons B	rincke	rhoff	Phone	⇒: 9272 5 1	OE.							
orward Res	•	·									Mobile: 040	J3 37	3 206		
elinquished	- 17/	ate / Time:	:35				round:		dard (5 da		-				
				• • • • • •	• • • • • • • •	Receiv	برز ed By:	(. Q.	بب	[Date / Time:	4-6	4-12	142	<u>'</u> 0
elinquished	l By:	ate / Time:				Receiv	/ed By:			[Date / Time:				
7 Class	Mt 0									_					• • •
/ -⊏ievei	n Master CoC template		Last	Modifi	ed: 1 Marc	h 2011 (AC	21								

Page 1 of 1

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

: ES1208072 Work Order

Client STRASBURGER ENTERPRISES PTY Laboratory : Environmental Division Sydney

Contact : ANDREW HILL Contact Glenyss Weeks

Address Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

F-mail F-mail : ahill@pb.com.au : Glenyss.Weeks@alsglobal.com

Telephone Telephone : +61 2 8784 8555 : ---Facsimile Facsimile : +61 2 8784 8531

Project : 2277 ST CLAIR Page : 1 of 2

Order number : 5500190054

> : ES2010STRENT0003 (EN/053/10 -Sydney)

Site : ----

Quote number

QC Level

: NEPM 1999 Schedule B(3) and QCS3 requirement

Dates

Sampler

C-O-C number

Date Samples Received Issue Date : 04-APR-2012 21:50 : 04-APR-2012 Client Requested Due Date : 13-APR-2012 Scheduled Reporting Date 13-APR-2012

Delivery Details

Mode of Delivery : Carrier Temperature : 4.9'C - Ice present

No. of coolers/boxes No. of samples received : 8 : 1 HARD Security Seal : Not intact. No. of samples analysed : 8

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Sample DUP01 will be forwarded to Envirolab as per COC.
- Received extra sample TB, lab will analyse for TPH and BTEX analysis.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🚴

Document Set ID: 6313080 Version: 1, Version Date: 11/12/2014 Issue Date : 04-APR-2012 21:50

Page : 2 of 2 Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

process neccess tasks. Packages the determination tasks, that are included If no sampling default to 15:00 date is provided,	ary for the execut may contain addition of moisture couded in the package. time is provided, on the date of sain the sampling date processing purposes	mpling. If no sampling will be assumed by the s and will be shown	WATER - EA005P pH (PC)	WATER - EA015H Total Dissolved Solids - High Level	WATER - W-04 TPH/BTEX	WATER - W-21 TPH/BTEX/PAH/Filtered Pb
ES1208072-001	04-APR-2012 15:00	MW01B	✓	✓	> F	✓
ES1208072-002	04-APR-2012 15:00	MW02	1	1		1
ES1208072-003	04-APR-2012 15:00	MW03	1	✓		✓
ES1208072-004	04-APR-2012 15:00	MW04	1	1		✓
ES1208072-005	04-APR-2012 15:00	MW05	1	✓		✓
ES1208072-006	04-APR-2012 15:00	MW101	1	1		1
ES1208072-007	04-APR-2012 15:00	RB			1	
ES1208072-008	[04-APR-2012]	ТВ			1	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ANDREW HILL

*ALL Cartificate of Applyois NATA (COA)	E	-1:110-1
 *AU Certificate of Analysis - NATA (COA) 	Email	ahill@pb.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ahill@pb.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ahill@pb.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ahill@pb.com.au
- Chain of Custody (CoC) (COC)	Email	ahill@pb.com.au
- EDI Format - ENMRG (ENMRG)	Email	ahill@pb.com.au
- EDI Format - ESDAT (ESDAT)	Email	ahill@pb.com.au
Mr David Raymond		
 *AU Certificate of Analysis - NATA (COA) 	Email	dxr@7eleven.com.au
Ms Kyla Horgan		
- A4 - AU Tax Invoice (INV)	Email	kch@7eleven.com.au

Document Set ID: 6313080 Version: 1, Version Date: 11/12/2014

CERTIFICATE OF ANALYSIS

Work Order : **ES1208072** Page : 1 of 7

Client : STRASBURGER ENTERPRISES PTY LTD Laboratory : Environmental Division Sydney

Contact : ANDREW HILL : Glenyss Weeks

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

E-mail : ahill@pb.com.au : Glenyss.Weeks@alsglobal.com

Telephone : ---- Telephone : +61 2 8784 8555
Facsimile : --- Facsimile : +61 2 8784 8531

Project : 2277 ST CLAIR QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : 5500190054

 C-O-C number
 : ---

 Date Samples Received
 : 04-APR-2012

Sampler : ---- Issue Date : 16-APR-2012

Quote number : EN/053/10 - Sydney No. of samples received : 8

Quote number : EN/053/10 - Sydney No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Site

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IFC 17025

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Edwandy Fadjar	Organic Coordinator	Sydney Organics
Hoa Nguyen	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

Page : 2 of 7

Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EA015 TDS may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- EG020A: LOR 's have been raised due to matrix interference (Internal standard suppression)

Page : 3 of 7
Work Order : ES1208072

Client STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Analytical Results

Page : 4 of 7 Work Order · ES1208072

Client · STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

EP080S: TPH(V)/BTEX Surrogates

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

Analytical Results

115

122

109

98.3

98.0

89.6

89.3

89.3

78.1

101

99.8

91.8

91.8

102

91.5

%

%

%

17060-07-0

2037-26-5

460-00-4

0.1

0.1

Page : 5 of 7
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Analytical Results

Page : 6 of 7 Work Order · ES1208072

Client · STRASBURGER ENTERPRISES PTY LTD

0.1

%

2037-26-5

460-00-4

Project : 2277 ST CLAIR

Analytical Results

101

93.1

99.3

89.4

103

90.5

Document Set ID: 6313080 Version: 1, Version Date: 11/12/2014

Toluene-D8

4-Bromofluorobenzene

Page : 7 of 7
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Surrogate Control Limits

QUALITY CONTROL REPORT

Work Order : **ES1208072** Page : 1 of 6

Client : STRASBURGER ENTERPRISES PTY LTD Laboratory : Environmental Division Sydney

Contact : ANDREW HILL : Glenyss Weeks

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : ---- Telephone : +61 2 8784 8555
Facsimile : +61 2 8784 8531

Project : 2277 ST CLAIR QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : --

 C-O-C number
 :-- Date Samples Received
 : 04-APR-2012

 Sampler
 :-- Issue Date
 : 16-APR-2012

Order number : 5500190054

Quote number : EN/053/10 - Sydney No. of samples received : 8

Quote number : EN/053/10 - Sydney No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Edwandy Fadjar	Organic Coordinator	Sydney Organics
Hoa Nguyen	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

Page : 2 of 6 Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Document Set ID: 6313080

Page : 3 of 6
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC 1	Fitrator (QC Lot: 2245554)								
ES1208030-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.09	8.14	0.6	0% - 20%
ES1208062-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	5.86	5.35	9.1	0% - 20%
EA015: Total Dissol	ved Solids (QC Lot: 22509	955)							
ES1208072-001	MW01B	EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	16800	14300	16.1	0% - 20%
ES1208073-004	Anonymous	EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	7700	8800	13.3	0% - 20%
EA015: Total Dissol	ved Solids (QC Lot: 22541	119)							
ES1208442-001	Anonymous	EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	266	252	5.4	0% - 20%
ES1208531-006	Anonymous	EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	2500	2430	2.8	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC Lot	: 2246084)							
ES1208016-007	Anonymous	EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.020	<0.020	0.0	No Limit
EW1201014-003	Anonymous	EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons (Q	C Lot: 2251313)							
ES1208072-001	MW01B	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES1208210-003	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons -	NEPM 2010 Draft (QC Lot: 2251313)							
ES1208072-001	MW01B	EP080: C6 - C10 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES1208210-003	Anonymous	EP080: C6 - C10 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 2251313)								
ES1208072-001	MW01B	EP080: Benzene	71-43-2	1	μg/L	2	3	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
ES1208210-003	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3					14.000	
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 4 of 6
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids (QCLot: 2250955)								
EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	<10	293 mg/L	84.6	70	130
EA015: Total Dissolved Solids (QCLot: 2254119)								
EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	<10	293 mg/L	91.5	70	130
EG020F: Dissolved Metals by ICP-MS (QCLot: 2246084)							
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	102	90	110
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(Q0	CLot: 2246443)	11.0						
EP075(SIM): Naphthalene	91-20-3	0.2	μg/L		5 μg/L	74.9	58.6	119
		1	μg/L	<1.0				
EP075(SIM): Acenaphthylene	208-96-8	0.2	μg/L		5 μg/L	80.2	63.6	114
		1	μg/L	<1.0				
EP075(SIM): Acenaphthene	83-32-9	0.2	μg/L		5 μg/L	79.7	62.2	113
		1	μg/L	<1.0				
EP075(SIM): Fluorene	86-73-7	0.2	μg/L		5 μg/L	82.3	63.9	115
		1	μg/L	<1.0				
EP075(SIM): Phenanthrene	85-01-8	0.2	μg/L		5 μg/L	86.7	62.6	116
		1	μg/L	<1.0				
EP075(SIM): Anthracene	120-12-7	0.2	μg/L		5 μg/L	86.2	64.3	116
	Springs/Application and an application	1	μg/L	<1.0				7
EP075(SIM): Fluoranthene	206-44-0	0.2	μg/L 		5 μg/L	88.8	63.6	118
		1	μg/L	<1.0				
EP075(SIM): Pyrene	129-00-0	0.2	μg/L		5 μg/L	89.7	63.1	118
		11	μg/L	<1.0				
EP075(SIM): Benz(a)anthracene	56-55-3	0.2	μg/L		5 μg/L	89.1	64.1	117
	242.24.2	1	μg/L	<1.0				
EP075(SIM): Chrysene	218-01-9	0.2	μg/L		5 μg/L	94.6	62.5	116
	205.00.0	1	μg/L	<1.0				
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.2	μg/L	 <1.0	5 μg/L	80.7	61.7	119
	207.00.0	1	μg/L	199542	 E//		 61.7	117
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.2 1	μg/L	<1.0	5 μg/L 	95.6	61.7	117
FDO7F (CIM) - Dawney (-) - Vision - Vis	50-32-8	0.2	μg/L			87.6	63.3	117
EP075(SIM): Benzo(a)pyrene	50-52-0	0.5	μg/L	 <0.5	5 μg/L 	07.0		
5D075(CIM), Indone/4 2 2 ad/m/wana	193-39-5	0.3	μg/L		 5 μg/L	86.9	59.9	118
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-3	0.2	μg/L μg/L	 <1.0	5 µg/L	00.9	J9.9 	

Page : 5 of 6
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
:P075(SIM)B: Polynuclear Aromatic Hydrocarbons(G	QCLot: 2246443) - cor	ntinued							
:P075(SIM): Dibenz(a.h)anthracene	53-70-3	0.2	μg/L		5 μg/L	89.2	61.2	117	
		1	μg/L	<1.0					
P075(SIM): Benzo(g.h.i)perylene	191-24-2	0.2	μg/L		5 μg/L	85.8	59.1	118	
		1	μg/L	<1.0					
P075(SIM): Sum of polycyclic aromatic hydrocarbons		1	μg/L	<1.0					
P080/071: Total Petroleum Hydrocarbons (QCLot: 22	246442)								
P071: C10 - C14 Fraction		50	μg/L	<50	200 μg/L	102	58.9	131	
P071: C15 - C28 Fraction		100	μg/L	<100	250 μg/L	114	73.9	138	
P071: C29 - C36 Fraction		50	μg/L	<50	200 μg/L	78.9	62.7	131	
P080/071: Total Petroleum Hydrocarbons (QCLot: 22	251313)								
P080: C6 - C9 Fraction		20	μg/L	<20	260 μg/L	94.2	75	127	
P080/071: Total Recoverable Hydrocarbons - NEPM 2	2010 Draft (QCLot: 22	246442)							
P071: >C10 - C16 Fraction		100	μg/L	<100	250 μg/L	80.6	58.9	131	
P071: >C16 - C34 Fraction		100	μg/L	<100	350 μg/L	84.8	73.9	138	
P071: >C34 - C40 Fraction		100	μg/L	<100					
		50	μg/L		150 μg/L	98.5	62.7	131	
:P080/071: Total Recoverable Hydrocarbons - NEPM 2	2010 Draft (QCLot: 22	251313)							
P080: C6 - C10 Fraction		20	μg/L	<20	310 μg/L	91.7	75	127	
:P080: BTEXN (QCLot: 2251313)									
P080: Benzene	71-43-2	1	μg/L	<1	10 μg/L	94.0	70	124	
P080: Toluene	108-88-3	2	μg/L		10 μg/L	100	66	132	
		5	μg/L	<2					
P080: Ethylbenzene	100-41-4	2	μg/L	<2	10 μg/L	80.8	70	120	
P080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 μg/L	82.5	69	121	
	106-42-3								
P080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	82.2	72	122	
P080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	108	70	124	

Page : 6 of 6
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	ub-Matrix: WATER				Matrix Spike (MS) Repo	eport		
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020F: Dissolved	Metals by ICP-MS (QCLot: 2246084)							
ES1208016-007	Anonymous	EG020A-F: Lead	7439-92-1	0.2 mg/L	90.7	70	130	
EP080/071: Total Pe	troleum Hydrocarbons (QCLot: 2251313							
ES1208072-001	MW01B	EP080: C6 - C9 Fraction		325 µg/L	100	70	130	
EP080/071: Total Re	coverable Hydrocarbons - NEPM 2010 D	raft (QCLot: 2251313)						
ES1208072-001	MW01B	EP080: C6 - C10 Fraction		375 μg/L	87.6	70	130	
EP080: BTEXN (QC	Lot: 2251313)							
ES1208072-001	MW01B	EP080: Benzene	71-43-2	25 μg/L	84.7	70	130	
		EP080: Toluene	108-88-3	25 μg/L	90.8	70	130	
		EP080: Ethylbenzene	100-41-4	25 μg/L	85.0	70	130	
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	84.8	70	130	
		* *	106-42-3					
		EP080: ortho-Xylene	95-47-6	25 μg/L	83.9	70	130	
		EP080: Naphthalene	91-20-3	25 μg/L	80.4	70	130	

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : ES1208072 Page : 1 of 6

Client : STRASBURGER ENTERPRISES PTY LTD Laboratory : Environmental Division Sydney

Contact : ANDREW HILL : Contact : Glenyss Weeks

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone :---- Telephone :+61 2 8784 8555
Facsimile :---- Facsimile :+61 2 8784 8531

Project : 2277 ST CLAIR QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Site
 :---

 C-O-C number
 :---

 Date Samples Received
 : 04-APR-2012

 Sampler
 : -- Issue Date
 : 16-APR-2012

 Order number
 : 5500190054

Quote number : EN/053/10 - Sydney No. of samples received : 8

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

Page : 2 of 6 Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

ethod		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) MW01B, MW03, MW05,	MW02, MW04, MW101	04-APR-2012		04-APR-2012		04-APR-2012	04-APR-2012	✓
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural (EA015H) MW01B, MW03, MW05,	MW02, MW04, MW101	04-APR-2012				11-APR-2012	11-APR-2012	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW01B, MW03, MW05,	MW02, MW04, MW101	04-APR-2012		01-OCT-2012		05-APR-2012	01-OCT-2012	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM	2010 Draft							
Amber Glass Bottle - Unpreserved (EP071) MW01B, MW03, MW05, RB,	MW02, MW04, MW101, TB	04-APR-2012	07-APR-2012	11-APR-2012	✓	10-APR-2012	17-MAY-2012	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM)) MW01B, MW03, MW05,	MW02, MW04, MW101	04-APR-2012	07-APR-2012	11-APR-2012	✓	10-APR-2012	17-MAY-2012	✓
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) MW01B, MW03, MW05, RB,	MW02, MW04, MW101, TB	04-APR-2012	11-APR-2012	18-APR-2012	✓	11-APR-2012	18-APR-2012	✓

Page : 3 of 6
Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Matrix: **WATER**Evaluation: ★ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydroc	arbons - NEPM 2010 Draft							
Amber VOC Vial - Sulfuric Acid (EP080)							
MW01B,	MW02,	04-APR-2012	11-APR-2012	18-APR-2012	✓	11-APR-2012	18-APR-2012	1
MW03,	MW04,							
MW05,	MW101,							
RB,	ТВ							

Page : 4 of 6 Work Order : ES1208072

Total Dissolved Solids (High Level)

Dissolved Metals by ICP-MS - Suite A

TPH - Semivolatile Fraction

TPH Volatiles/BTEX

Matrix Spikes (MS)

TPH Volatiles/BTEX

Matrix: WATER

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification.

ALS QCS3 requirement

ALS QCS3 requirement

NEPM 1999 Schedule B(3) and ALS QCS3 requirement

NEPM 1999 Schedule B(3) and ALS QCS3 requirement

NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

EA015H

EP071

EP080

EP080

EG020A-F

2

1

1

1

1

Quality Control Sample Type Quality Control Specification Count Rate (%) QC Evaluation Analytical Methods Method Regular Actual Expected Laboratory Duplicates (DUP) Dissolved Metals by ICP-MS - Suite A EG020A-F 2 16 12.5 10.0 1 NEPM 1999 Schedule B(3) and ALS QCS3 requirement pH by PC Titrator 2 20 EA005-P 10.0 10.0 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 1 Total Dissolved Solids (High Level) 36 EA015H 4 11.1 10.0 NEPM 1999 Schedule B(3) and ALS QCS3 requirement TPH Volatiles/BTEX EP080 2 20 10.0 10.0 NEPM 1999 Schedule B(3) and ALS QCS3 requirement Laboratory Control Samples (LCS) Dissolved Metals by ICP-MS - Suite A NEPM 1999 Schedule B(3) and ALS QCS3 requirement EG020A-F 1 16 6.3 5.0 PAH/Phenols (GC/MS - SIM) EP075(SIM) 1 6 16.7 5.0 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 2 36 Total Dissolved Solids (High Level) EA015H 5.6 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 5.0 1 TPH - Semivolatile Fraction EP071 1 9 11.1 5.0 NEPM 1999 Schedule B(3) and ALS QCS3 requirement TPH Volatiles/BTEX EP080 1 20 5.0 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 5.0 Method Blanks (MB) Dissolved Metals by ICP-MS - Suite A EG020A-F 16 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 6.3 5.0 PAH/Phenols (GC/MS - SIM) EP075(SIM) 1 6 16.7 NEPM 1999 Schedule B(3) and ALS QCS3 requirement 5.0 1

5.6

11.1

5.0

6.3

5.0

5.0

5.0

5.0

5.0

5.0

1

1

36

9

20

16

20

Page : 5 of 6 Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	APHA 21st ed. 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids (High Level)	EA015H	WATER	In-House, APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
TPH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
TPH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Page : 6 of 6 Work Order : ES1208072

Client : STRASBURGER ENTERPRISES PTY LTD

Project : 2277 ST CLAIR

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Document Set ID: 6313080

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Parsons Brinckerhoff Aust. Pty Ltd (7-11) ph: 02 9272 5100 GPO Box 5394 Fax: 02 9272 5101

Sydney NSW 2001

Attention: Andrew Hill

Sample log in details:

Your reference: 2277, St Clair

Envirolab Reference: 71192

Date received: 30/03/12

Date results expected to be reported: 10/04/12

Samples received in appropriate condition for analysis:

No. of samples provided

1 Soil

Turnaround time requested:

Temperature on receipt

Cooling Method:

Condition for analysis:

YES

1 Soil

Standard

Cool

Cooling Method:

Sampling Date Provided:

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Parsons Brinckerhoff Aust. Pty Ltd (7-11) ph: 02 9272 5100 GPO Box 5394 Fax: 02 9272 5101

Sydney NSW 2001

Attention: Andrew Hill

Sample log in details:

Your reference: 2277, St Clair

Envirolab Reference: 71192

Date received: 30/03/12

Date results expected to be reported: 10/04/12

Samples received in appropriate condition for analysis:

No. of samples provided

1 Soil

Turnaround time requested:

Temperature on receipt

Cooling Method:

Condition for analysis:

YES

1 Soil

Standard

Cool

Cooling Method:

Sampling Date Provided:

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

Envirolab Services Pty Ltd

www.envirolabservices.com.au

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au

CERTIFICATE OF ANALYSIS

71192

Client:

Parsons Brinckerhoff Aust. Pty Ltd (7-11)

GPO Box 5394 Sydney NSW 2001

Attention: Andrew Hill

Sample log in details:

Your Reference: 2277, St Clair No. of samples: 1 Soil

30/03/12 Date samples received / completed instructions received 30/03/12

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

10/04/12 4/04/12 Date results requested by: / Issue Date:

Date of Preliminary Report: Not issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Nancy Zhang Chemist

Technical Manager

Jeremy Faircloth Chemist

∨TRH&BTEXin Soil		
Our Reference:	UNITS	71192-1
Your Reference		DUP01
Date Sampled		28/03/2012
Type of sample		Soil
Date extracted	-	02/04/2012
Date analysed	-	03/04/2012
vTRHC6-C9	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	106

sTRH in Soil (C10-C36)		
Our Reference:	UNITS	71192-1
Your Reference		DUP01
Date Sampled		28/03/2012
Type of sample		Soil
Date extracted	-	02/04/2012
Date analysed	-	03/04/2012
TRHC10 - C14	mg/kg	<50
TRHC15 - C28	mg/kg	<100
TRHC 29 - C36	mg/kg	<100
S <i>urrogate</i> o-Terphenyl	%	100

71192

PAHs in Soil		
Our Reference:	UNITS	71192-1
Your Reference		DUP01
Date Sampled		28/03/2012
Type of sample		Soil
Date extracted	-	02/04/2012
Date analysed	-	04/04/2012
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
S <i>urrogate p</i> -Terphenyl-d ₁₄	%	135

Acid Extractable metals in soil		
Our Reference:	UNITS	71192-1
Your Reference		DUP01
Date Sampled		28/03/2012
Type of sample		Soil
Date digested	-	02/04/2012
Date analysed	-	02/04/2012
Lead	mg/kg	15

Moisture		
Our Reference:	UNITS	71192-1
Your Reference		DUP01
Date Sampled		28/03/2012
Type of sample		Soil
Date prepared	-	02/04/12
Date analysed	-	03/04/12
Moisture	%	10

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals-020ICP- AES	Determination of various metals by ICP-AES.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

Client Reference: 2277, St Clair									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	SpikeSm#	Spike % Recovery	
vTRH & BTEX in Soil						Base II Duplicate II %RPD		reservery	
Date extracted	-			02/04/2 012	[NT]	[NT]	LCS-1	02/04/2012	
Date analysed	-			03/04/2 012	[NT]	[NT]	LCS-1	03/04/2012	
vTRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	104%	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	95%	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	104%	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	105%	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-1	109%	
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	108%	
S <i>urr</i> ogate aaa- Trifluorotoluene	%		Org-016	115	[NT]	[NT]	LCS-1	114%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	SpikeSm#	Spike % Recovery	
sTRH in Soil (C10-C36)						Base II Duplicate II %RPD		,	
Date extracted	-			02/04/2 012	[NT]	[NT]	LCS-1	02/04/2012	
Date analysed	-			03/04/2 012	[NT]	[NT]	LCS-1	03/04/2012	
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	82%	
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	101%	
TRHC 29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	99%	
Surrogate o-Terphenyl	%		Org-003	102	[NT]	[NT]	LCS-1	99%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	SpikeSm#	Spike % Recovery	
PAHs in Soil						Base II Duplicate II %RPD		-	
Date extracted	-			02/04/2 012	[NT]	[NT]	LCS-1	02/04/2012	
Date analysed	-			04/04/2 012	[NT]	[NT]	LCS-1	04/04/2012	
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	121%	
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]	
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]	
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	118%	
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	115%	
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]	
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	110%	
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	115%	
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]	
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	107%	

Version: 1, Versio Date lab/Rederrence: 71192 Page 8 of 10

		Clie	ent Referenc	e: 22	277, St Clair			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	SpikeSm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-1	101%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
S <i>urrogate p</i> -Terphenyl- d ₁₄	%		Org-012 subset	131	[NT]	[NT]	LCS-1	123%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	SpikeSm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		recovery
Date digested	-			02/04/2 012	[NT]	[NT]	LCS-1	02/04/2012
Date analysed	-			02/04/2 012	[NT]	[NT]	LCS-1	02/04/2012
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	100%
QUALITYCONTROL Moisture	UNITS	PQL	METHOD	Blank			•	•
Date prepared	-			[NT]	1			
Date analysed	-			[NT]				

Inorg-008

[NT]

%

Moisture

0.1

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Document Set ID: 6313080

Version: 1, Versi使中风神电刮形积绿色槽nce: 71192 Page 10 of 10

CHAIN OF CUSTODY FOR <u>SECONDARY</u> ANALYTICAL SERVICES - ALS TO FORWARD SAMPLES TO <u>ENVIROLAB</u>

Company: (tick)		enience Proper en Stores P/L	rties P/L			Contract N	o: PO 5	500190054	-	7-Elev	ven Site:	St. CI			
	Strash	ourger Enterp	ises P/L	<u></u>		COC No:				7-Elev	ven Store No	o: 2277	7		
Laboratory	y: ENVI	ROLAB				Date:	1/4/12			7-Elev	ven PM:	David	d Raymon	b	
Address:		nley Street wood NSW 206	7			Report No:				Quota	tion No:	1075	1		eb Świkies
Attention:	Aileen		•			Comments	:						enviko.	Chatswood	9910 6200
										Analysis Rec	uired				2
						S-4 W-4	S-6 W-6	S-7 W-7	P-16	P-16/1 + CrVI	W-28	S-21 W-21	l l	ceived: 2/ 1/	11 L
LAB ID	Sample	e ID	Sample Date	Matrix Soild (S) Water (W)		TPH(C6-C36)/BTEX	TPH(C6-C36)/BTEX plus Pb	TPH(C6-C36)/BTEX plus PAH	521	IWRG 621 metals (As, Cd, CrVI, Cu, Pb, Hg, Mo, Ni, Sn, Se, Ag, Zn)	Natural Attenuation Indicators (nitrate, ferrous iron, sulphate, methane)	(C6-C36), BTEX, I, Pb	Receive Temp: C Cooling	d by: A V con/Amblent (ce)icepack r: Mag/Broken/	None
					поп		TPH(C	TPH(C6-C	IWRG 621	IWRG (Cd, CrV Mo, Ni,	Natura Indicat ferrous methai	ТРН (С	pH TDS		
1	DUPOI (St.	Clair)	4/4/12	W		\sim									
		<u> </u>			<u> </u>	<u> </u>				 				+ + -	+
			··-						<u> </u>						
Consultant	t contact name:			s Brinckerhof	f		Phone: 9					Mobile: (0403 373	206	
Forward R	tesults to:	ahill@pb.c Lb.Y	com.au	Date / Time	::	3:35	Turnaroui			5 days) AlexW	A	Date	/ Time: S	5/4/12)	14:00
	ned By:												/ Time:		••••

7-Eleven Master CoC template
Document Set ID: 6313080
Version: 1, Version Date: 11/12/2014

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067

ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Parsons Brinckerhoff Aust. Pty Ltd (7-11) ph: 02 9272 5100 GPO Box 5394 Fax: 02 9272 5101

Sydney NSW 2001

Attention: Andrew Hill

Sample log in details:

Your reference: 2277, St Clair

Envirolab Reference: 71458

Date received: 05/04/2012

Date results expected to be reported: 16/04/12

Samples received in appropriate condition for analysis:

No. of samples provided

1 Water

Turnaround time requested:

Temperature on receipt

Cool

Cooling Method:

Ice

Sampling Date Provided:

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

71458

CERTIFICATE OF ANALYSIS

Client:

Parsons Brinckerhoff Aust. Pty Ltd (7-11)

GPO Box 5394 Sydney NSW 2001

Attention: Andrew Hill

Sample log in details:

Your Reference: 2277, St Clair
No. of samples: 1 Water

Date samples received / completed instructions received 05/04/2012 / 05/04/2012

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 16/04/12 / 12/04/12

Date of Preliminary Report: Not issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Nancy Zhang

Chemist

Envirolab Reference: 71458 Revision No: R 00

vTRH & BTEX in Water		
Our Reference:	UNITS	71458-1
Your Reference		Dup01(St
		Clair)
Date Sampled		4/04/2012
Type of sample		Water
Date extracted	-	05/04/2012
Date analysed	-	06/04/2012
TRHC6 - C9	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	99

Envirolab Reference: 71458 Revision No: R 00 Page 2 of 6

sTRHinWater(C10-C36)				
Our Reference:	UNITS	71458-1		
Your Reference		Dup01(St		
		Clair)		
Date Sampled		4/04/2012		
Type of sample		Water		
Date extracted	-	10/04/2012		
Date analysed	-	11/04/2012		
TRH C 10 - C14	μg/L	<50		
TRH C 15 - C28	μg/L	<100		
TRH C 29 - C36	μg/L	<100		
Surrogate o-Terphenyl	%	91		

Envirolab Reference: 71458 Revision No: R 00

Revision No: R 00

Page 3 of 6

2277, St Clair Client Reference:

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.

Envirolab Reference: 71458 Revision No: R 00

Page 4 of 6

Client Reference: 2277, St Clair										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
vTRH & BTEX in Water						Base II Duplicate II %RPD				
Date extracted	-			05/04/2 012	[NT]	[NT]	LCS-W1	05/04/2012		
Date analysed	-			06/04/2 012	[NT]	[NT]	LCS-W1	06/04/2012		
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	112%		
Benzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	112%		
Toluene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	112%		
Ethylbenzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	111%		
m+p-xylene	μg/L	2	Org-016	<2	[NT]	[NT]	LCS-W1	112%		
o-xylene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	111%		
S <i>urrogate</i> Dibromofluoromethane	%		Org-016	96	[NT]	[NT]	LCS-W1	98%		
Surrogate toluene-d8	%		Org-016	100	[NT]	[NT]	LCS-W1	99%		
Surrogate 4-BFB	%		Org-016	99	[NT]	[NT]	LCS-W1	99%		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	SpikeSm#	Spike % Recovery		
sTRHinWater(C10- C36)						Base II Duplicate II %RPD		-		
Date extracted	-			10/04/2 012	[NT]	[NT]	LCS-W2	10/04/2012		
Date analysed	-			11/04/2 012	[NT]	[NT]	LCS-W2	11/04/2012		
TRHC 10 - C14	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W2	79%		
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	118%		
TRHC 29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	109%		
S <i>urrogat</i> e o-Terphenyl	%		Org-003	100	[NT]	[NT]	LCS-W2	140%		

Envirolab Reference: 71458 Revision No: R 00

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference: 71458 Pa
Revision No: R 00

Attachment G

Limitations

G.1 Scope of services

This environmental site assessment report ('the report') has been prepared in accordance with this scope of services set out in the contract, or as otherwise agreed, between the Client and Parsons Brinckerhoff ('scope of services'). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

G.2 Reliance on data

In preparing the report, Parsons Brinckerhoff has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the report ('the data'). Except as otherwise stated in the report, Parsons Brinckerhoff has not verified the accuracy or completeness of the data. To the extent that the statements, opinion, facts, information, conclusions and/or recommendations in the report ('conclusions') are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Parsons Brinckerhoff will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Parsons Brinckerhoff.

G.3 Environmental conclusions

In accordance with the scope of services, Parsons Brinckerhoff has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

G.4 Report for benefit of client & other parties

The report has been prepared exclusively for the benefit of the client. Parsons Brinckerhoff will not be liable to any other person or organisation and assumes no responsibility to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of Parsons Brinckerhoff or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). No person or organisation other than the Client and a purchaser of the site from the Client is entitled to rely upon the report or the accuracy or completeness of any conclusions and such other parties should make their own enquiries and obtain independent advice in relation to such matters.

G.5 Other limitations

Parsons Brinckerhoff will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

The scope of services did not include any assessment of the title to or ownership of the properties, buildings and structure referred to in the report nor the application or interpretation of laws in the jurisdiction in which those properties, buildings and structures are located.