

Report on Geotechnical Investigation

Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

> Prepared for Boston Global

Project 99851.00 November 2020

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	99851.00	Document No.	R.001.Rev0			
Document title	Report on Geote	Report on Geotechnical Investigation				
	Proposed Hotel [Development				
Site address	28 - 32 Somerse	t Street, Kingswood				
Report prepared for	Boston Global					
File name	99851.00.R.001.	Rev0				

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Ray Blinman	Scott Easton	10 November 2020	

Distribution of copies

Status	Electronic	Paper	Issued to	
Revision 0	1	0	Michael Viskovich, Boston Global	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	pp S. Easton	10 November 2020
Reviewer	ABL:0	10 November 2020

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introd	luction	.1				
2.	Backg	ground	.1				
3.	Site D	Site Description2					
4.	Geolo	рду	.2				
5.	Field	Work Methods	.2				
6.	Field	Work Results	.3				
	6.1	Boreholes	.3				
	6.2	Permeability Test	.3				
7.	Labor	atory Testing	.3				
8.	Geote	echnical Model	.3				
9.	Propo	osed Development	.4				
10.	Comn	nents	.5				
	10.1	Site Preparation and Earthworks	.5				
		10.1.1 Excavation Conditions	.5				
		10.1.2 Dilapidation Surveys	.5				
		10.1.3 Disposal of Excavated Material	.5				
	10.2	Excavation Support	.5				
		10.2.1 Retaining/Shoring Walls					
		10.2.2 Earth Pressure Design	.6				
		10.2.3 Passive Resistance.	.6				
		10.2.4 Ground Anchors	.7				
		10.2.5 Excavation Induced Ground Movements	.7				
	10.3	Groundwater and Seepage	.7				
	10.4	Foundations	.8				
		Seismic Loading					
11.	Limita	ations	.9				

Appendix A:	About This Report
Appendix B:	Drawings
Appendix C:	Field Work Results

Report on Geotechnical Investigation Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

1. Introduction

This report presents the results of a geotechnical investigation undertaken by Douglas Partners Pty Ltd (DP) in 2015 for a previous residential development at 28 - 32 Somerset Street, Kingswood. The property has since changed ownership and the new owners are proposing a hotel development. The results of the 2015 site investigation remain valid and are presented herein with regards to the new development proposal. This updated geotechnical investigation report was commissioned in an email dated 12 October 2020 by Michael Viskovich of Boston Global and was prepared in accordance with DP's proposal SYD201126 dated 9 October 2020.

It is understood that the proposed development of the site includes the construction of a new hotel that will have six above ground floor levels, rooftop facilities and two basement levels. Excavation to depths of approximately 6 m to 7 m will be required.

The 2015 investigation included the drilling of six rock cored boreholes and the installation of one groundwater well. Details of the field work undertaken are given in the report, together with comments on design and construction issues.

A preliminary site investigation (PSI) for contamination was also conducted in 2015 and is currently being updated for the new development proposal. The results are presented separately (refer DP report Ref: 99851.00.R.001.Rev0 dated 10 November 2020).

2. Background

The 2015 development proposal was for a residential apartment building that included five above ground floor levels and two basement floor levels. In engineering terms, that development was of a similar nature to the currently proposed hotel. Similar to the 2015 proposal, the proposed hotel will occupy most of the site area and will require a similar depth of excavation to accommodate the two basement floors. In the current proposal, the lowest basement floor level is proposed at a reduced level of RL 41.6, relative to Australian height datum (AHD).

Geotechnical investigations undertaken in 2015 included six boreholes that were drilled to depths of between 9.9 m and 11.6 m with the bottom of the boreholes extended to between 6.5 m and 8.3 m into rock, equating to levels of between RL 38.7 and RL 36.1, approximately 3.5 m to 5 m below proposed bulk excavation level. Site conditions remain essentially unchanged since the 2015 investigation. Accordingly, the results are considered valid and of sufficient scope for the current hotel development.

3. Site Description

The site is located on the eastern side of Somerset Street, on the corner with Hargrave Street. The site comprises three residential lots, with the northernmost lot occupied by a single storey weatherboard house. The central and southern lots were vacant and covered with grass at the time of our 2020 site inspection.

The site slopes gently towards the east, with site levels ranging from RL 49.3 to RL 47.5 (AHD).

The only significant change in the condition of the site since 2015 was that the dwelling present on the central lot in 2015 has since been demolished.

4. Geology

Reference to the Sydney 1:100 000 Series Geological Sheet indicates the site is underlain by Bringelly Shale which typically comprises shale, carbonaceous claystone, laminite and fine to medium grained lithic sandstone. The geological mapping was confirmed by the field work, which identified residual soils overlying shale.

5. Field Work Methods

The field work for the 2015 investigation included six boreholes (BH1 to BH6) drilled using a truckmounted drilling rig. The borehole locations are shown on Drawing 1, presented in Appendix B.

The boreholes were drilled through soil to depths of 2.9 m to 4.5 m using solid flight augers and rotary drilling methods. The boreholes were then continued to depths of 9.9 m to 11.6 m using diamond core drilling equipment to obtain continuous core samples of the bedrock.

The boreholes were logged and sampled by a geotechnical engineer. The rock cores recovered from the boreholes were photographed, followed by Point Load Strength Index (Is_{50}) testing on selected samples.

A groundwater monitoring well was installed in BH4 to a depth of 10.0 m to monitor the static water levels during the investigation period.

A rising head permeability test was conducted in the monitoring well in BH4. The water within the well was pumped out and then the rise in the water level was measured at regular intervals as the water level recharged.

Borehole coordinates were approximated from the Google Earth website and the surface levels were interpolated from the site survey drawing supplied at that time.

Geotechnical Investigation, Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

6. Field Work Results

Details of the subsurface conditions encountered in the investigation are given in the borehole logs in Appendix C, together with colour photographs of the rock core and notes defining classification methods and descriptive terms.

6.1 Boreholes

The sequence of subsurface materials encountered within the boreholes, in increasing depth order, may be summarised as follows:

- Fill: Generally silty clay fill with some gravel and some sand fill (BH4 only) to depths of 0.2 m to 0.7 m;
 Clay: Firm clay overlying stiff to very stiff clay in the east of the site (BH1, BH3 and BH5) and stiff to very stiff clay in the west (BH2, BH4 and BH6) to depths of 2.7 m to 4.3 m; and
- **Shale:** Extremely low to very low strength shale to depths of 4.5 m to 6.0 m overlying low and then medium strength shale. Some medium to high strength shale was encountered below 9.5 m in BH5.

No free groundwater was observed during augering of the boreholes to maximum depths of 2.5 m. The use of water during rotary drilling and rock coring precluded further groundwater measurements.

The water level in the monitoring well installed in BH4 was measured at 2.5 m depth (RL 45.2) on 9 October 2015, approximately three weeks after drilling of the borehole.

6.2 Permeability Test

A rising head permeability test was carried out in the monitoring well in BH4. The monitoring well was pumped and the rise in water level then measured at regular intervals. The average hydraulic conductivity was assessed to be 2.6×10^{-8} m/s (0.0022 m/day).

7. Laboratory Testing

Selected samples of the rock core were tested in the laboratory to determine the Point Load Strength Index (I_{550}) values to assist with the rock strength classification. The results of the testing are shown on the borehole logs at the appropriate depth. The I_{550} values for the rock ranged from 0.2 MPa to 1.4 MPa, indicating that the rock samples tested were of very low to high strength.

8. Geotechnical Model

Geotechnical cross-sections (Section A-A' and B-B') showing the interpreted subsurface profile are presented as Drawings 2 and 3 respectively, in Appendix B. These sections show the interpreted

Geotechnical Investigation, Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

geotechnical divisions of underlying soil and rock. The interpreted boundaries shown on the section are accurate at the borehole locations only and layers shown diagrammatically on this drawing are inferred strata boundaries only. Reference should be made to the borehole logs for more detailed information and descriptions of the soil and rock.

The rock encountered in the cored boreholes has been classified in accordance with the procedures given in Reference 1, which use a combination of rock strength and fracture spacing to divide the rock into five classes ranging from Class I (medium to high strength and very few defects) to Class V (extremely low to very low strength and/or highly fractured). The interpreted depth and Reduced Level (RL) at the top of the rock classes are shown in Table 1.

Borehole	Surface	Depth <i>(</i>	<i>(RL)</i> to Shale Rock Cl	ass (m)
Borenole	RL (AHD)	Class V-IV	Class III	Class II
BH1	48.4	2.7 (45.7)	4.5 (43.9)	5.3 (43.1)
BH2	47.7	4.3 (43.4)	6.1 <i>(41.6)</i>	**
BH3	48.6	2.7 (45.9)	4.7 (43.9)	5.8 (42.8)
BH4	47.7	3.5 (44.2)	6.1 <i>(41.6)</i>	**
BH5	48.8	3.0 (45.8)	-	6.0 (42.8)
BH6	48.1	3.2 (44.9)	-	6.2 (41.9)

Table 1: Summary of Depths (and Reduced Levels) to Top of Rock Strata

Notes: Rock classification is based on Reference 1.

Bracketed numbers are the Reduced Level (to AHD) for the top of the stratum.

** Class II rock has been assessed as not encountered in BH2 and BH4 due to weak seams (i.e. core loss) and fracture spacing.

It should be noted that closely fractured zones and weak seams or bands can occur within higher strength rocks and the classification may reduce in these areas. Some zones of higher strength rock have been down-rated due to the presence of significant defects or weak seams observed in the rock cores (e.g. medium strength shale at base of BH2 and BH4 being down-rated to Class III). It is possible that some of the core loss and fractured zones are drilling induced.

It is expected that the permanent groundwater table would be well below the proposed bulk excavation. Water was measured at 2.5 m depth (RL 45.2) in the groundwater well installed in BH4, 22 days after installation. Ongoing monitoring of the well in BH4 should be carried out to assess likely fluctuations.

9. Proposed Development

Based on the architectural plans by Rothelowman (dated 9 November 2020), it is understood that the proposed development includes the construction a six storey building with two basement levels.

The lower basement floor level is at RL 41.6 and will require excavation to depths of approximately 6 m to 7 m. Deeper localised excavations are expected for footings and lift wells.

Details of structural loads have not been provided, however based on previous experience, the column working loads for the building may be in the order of 3,000 kN to 5,000 kN.

10. Comments

10.1 Site Preparation and Earthworks

10.1.1 Excavation Conditions

It is expected that the basement will require the excavation of soils and extremely low to very low strength shale (Class V-IV), with some low and medium strength shale in the western side of the site (Class III and II).

Excavation of soil and extremely low to low strength rock should be achievable using conventional earthmoving equipment. It is anticipated that excavation of medium strength rock will require moderate to heavy ripping with a large bulldozer.

10.1.2 Dilapidation Surveys

Dilapidation surveys should be carried out on surrounding buildings and pavements that may be affected by the basement construction. The dilapidation surveys should be undertaken before the commencement of any excavation work in order to document any existing defects so that any claims for damage due to construction related activities can be accurately assessed.

10.1.3 Disposal of Excavated Material

All excavated materials will need to be disposed of in accordance with the recommendations presented in DP's PSI report (Project 99851.00.R.002.Rev0) and with the provisions of the current legislation and guidelines including the *Waste Classification Guidelines* (EPA, 2014).

10.2 Excavation Support

Due to the close proximity of the excavation to the site boundaries, the excavation will need to be cut vertically and will require temporary shoring during construction. Temporary batters are not considered possible for the proposed excavation on this site.

10.2.1 Retaining/Shoring Walls

Vertical excavations within the soils and extremely low to low strength shale (Class V to III) will require both temporary and permanent lateral support during and after excavation. A bored soldier pile shoring wall with shotcrete infill panels would be suitable where there are no movement sensitive structures in close proximity to the excavation. Typically, soldier piles are spaced at approximately 2 m to 2.5 m centres, however, closer spaced piles may be required to reduce wall movements, or prevent collapse of infill materials, where pavements, structures or services are located in close proximity to the excavation.

Geotechnical Investigation, Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

Shoring piles should be founded at least 1.0 m below the base of the bulk excavation level (or any perimeter drainage trenches or footings) in order to provide lateral restraint at the base of the excavation and to avoid the risk of adversely inclined joints or wedges undermining the bases of the piles.

It is anticipated that one to two rows of anchors may be required to provide lateral restraint to shoring piles for the basement excavation. Shoring will need to be designed to support earth pressures and surcharge loads and will may also consider potential rock wedges, however they are unlikely to be encountered in the majority of the excavation that extends through extremely low to very low strength shale.

10.2.2 Earth Pressure Design

Design for lateral earth pressures may be based on the parameters given in Table 2. For situations where only minor lateral movements are acceptable, such as the support of sensitive structures or services, an increased pressure based on 'at-rest' conditions should be adopted, depending on the level of restraint required. A uniform pressure of 10 kPa should be adopted for the support of Class III to Class II rock between soldier piles and to account for minor joint wedges that may become mobilised, although the extent of this rock strata is expected to be limited on this site.

All surcharge loads should be allowed for in the shoring design including building footings, inclined slopes behind the wall, traffic and construction related activities.

Material	Unit Weight	Coefficient		Effective Cohesion c'	Effective Friction
	(kN/m ³)	Active (K _a)	At Rest (K₀)	(kPa)	Angle (Degrees)
Filling and Residual Clay	20	0.3	0.5	5	20
Class IV-V Shale	21	0.2	0.3	10	25
Class III and Class II Shale	22	10 kPa uniform	10 kPa uniform	20	25

Table 2: Recommended Design Parameters for Shoring Systems

Shoring walls should be designed for full hydrostatic pressures unless drainage of the ground behind impermeable walls can be provided. Drainage could comprise 150 mm wide strip drains pinned to the face at 1 m to 2 m centres behind shotcrete in-fill panels. The base of the strip drains should extend out from the shoring wall to allow any seepage to flow into a perimeter toe drain which is connected to the stormwater drainage system.

10.2.3 Passive Resistance

Passive resistance for piles founded below the base of the bulk excavation (including allowance for services or footings) may be based on the ultimate passive restraint values provided in Table 3. These ultimate values will need to incorporate a factor of safety to limit the wall movement that is required to mobilise the full passive resistance. The top 0.5 m of the socket should be ignored due to possible disturbance (e.g. over-excavation) and tolerance effects.

Foundation Stratum	Ultimate Passive Pressure (kPa)
Class V-IV Shale	1,000
Class III and Class II Shale	1,500

10.2.4 Ground Anchors

The design of temporary and permanent ground anchors for the support of excavations may be carried out on the basis of the maximum bond stresses given in Table 4.

Table 4: Recommended Bond Stresses for Rock Anchor Design

Material Description	Maximum Allowable Bond Stress (kPa)	Maximum Ultimate Bond Stress (kPa)
Class V- IV Shale	75	150
Class III Shale	100	200
Class II Shale	300	500

The parameters given in Table 4 assume that the drilled holes are clean and adequately flushed. The anchors should be bonded behind a line drawn up at 45 degrees from the base of the shoring, and 'lift-off' tests should be carried out to confirm the anchor capacities. It is suggested that ground anchors should be proof loaded to 125% of the design working load and locked-off at no higher than 80% of the working load.

It is anticipated that the building will support the basement excavation over the long term and therefore the ground anchors are expected to be temporary only. The use of permanent anchors would require careful attention to corrosion protection including full column grouting and the use of an internal corrugated sheathing over the full length of the anchor. A detailed specification would need to be prepared for the installation and stressing of permanent anchors.

10.2.5 Excavation Induced Ground Movements

There is a possibility that horizontal movements due to stress relief will occur during the excavation works. Based on published literature and recent experience, the lateral deflections for vertical excavations supported by shoring could be in the order of 0.05% to 0.1% of the excavation height, which corresponds with approximately 3 - 7 mm for a 7 m depth of excavation.

10.3 Groundwater and Seepage

The basement excavation is expected to be above the groundwater table, however, seepage should be expected along the top of rock and along bedding planes and defects in the rock, particularly after periods of wet weather.

During construction and in the long term, it is anticipated that seepage into the excavation should be readily controlled by perimeter drains connected to a 'sump-and-pump' system. A drained basement

Geotechnical Investigation, Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

will require permanent subfloor drainage below the basement floor slab to direct seepage to the stormwater drainage system.

It is possible that iron oxides will precipitate from any seepage, possibly leading to a build-up of an ironoxide sludge. Allowance for periodic cleaning of such sludge should be made in the long-term maintenance requirements.

Excavations for pile foundations / shoring will likely encounter some seepage inflows and allowance should be made to remove water prior to cleaning and pouring concrete, or to 'tremie' pour/pump concrete to the base of the pile excavations.

10.4 Foundations

It is anticipated that bulk excavation for the basement will expose Class V-IV shale along the eastern side, grading to Class III-II on the west. It may be preferable to found all footings onto Class III or better rock, and this may require slightly deeper pad footings in the eastern part of the site.

Recommended maximum design pressures for the various rock strata are presented in Table 5. The foundation design parameters given in this table assume that the footing excavations are clean and free of loose debris.

	Maximur	n Allowable	Maxim	um Ultimate	Voung's	
Foundation Stratum	End Bearing (kPa)	Shaft Adhesion (Compression) (kPa)	End Bearing (kPa)	Shaft Adhesion (Compression) (kPa)	Young's Modulus E (MPa)	
Class V-IV	1000	75	3000	150	150	
Class III	2500	250	6,000	350	300	
Class II	3500	350	10,000	600	500	

Table 5: Recommended Design Parameters for Foundation Design

Notes: Rock classification is based on Reference 1.

Shaft adhesion applicable for the design of bored piers, uncased over rock socket length, where adequate sidewall cleanliness and roughness is achieved.

Footings proportioned on the basis of the allowable bearing pressures in Table 5 would be expected to experience total settlements of less than 1% of the footing size / pile diameter under the applied working load, with differential settlements between adjacent columns expected to be less than half of this value.

All footings and pile excavations should be inspected by a geotechnical engineer prior to the placement of steel and concrete.

10.5 Seismic Loading

In accordance with AS1170-2007 Structural Design Actions, Part 4: Earthquake Actions in Australia, a hazard factor (Z) of 0.08 and a site subsoil Class C_e is considered to be appropriate for the site.

Geotechnical Investigation, Proposed Hotel Development 28 - 32 Somerset Street, Kingswood

11. Limitations

Douglas Partners (DP) has prepared this report for this project at 28 – 32 Somerset Street, Kingswood in accordance with DP's proposal dated 9 October 2020 and acceptance received from Michael Viskovich of Boston Global dated 12 October 2020. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Boston Global for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the subsurface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Subsurface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during the 2015 investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

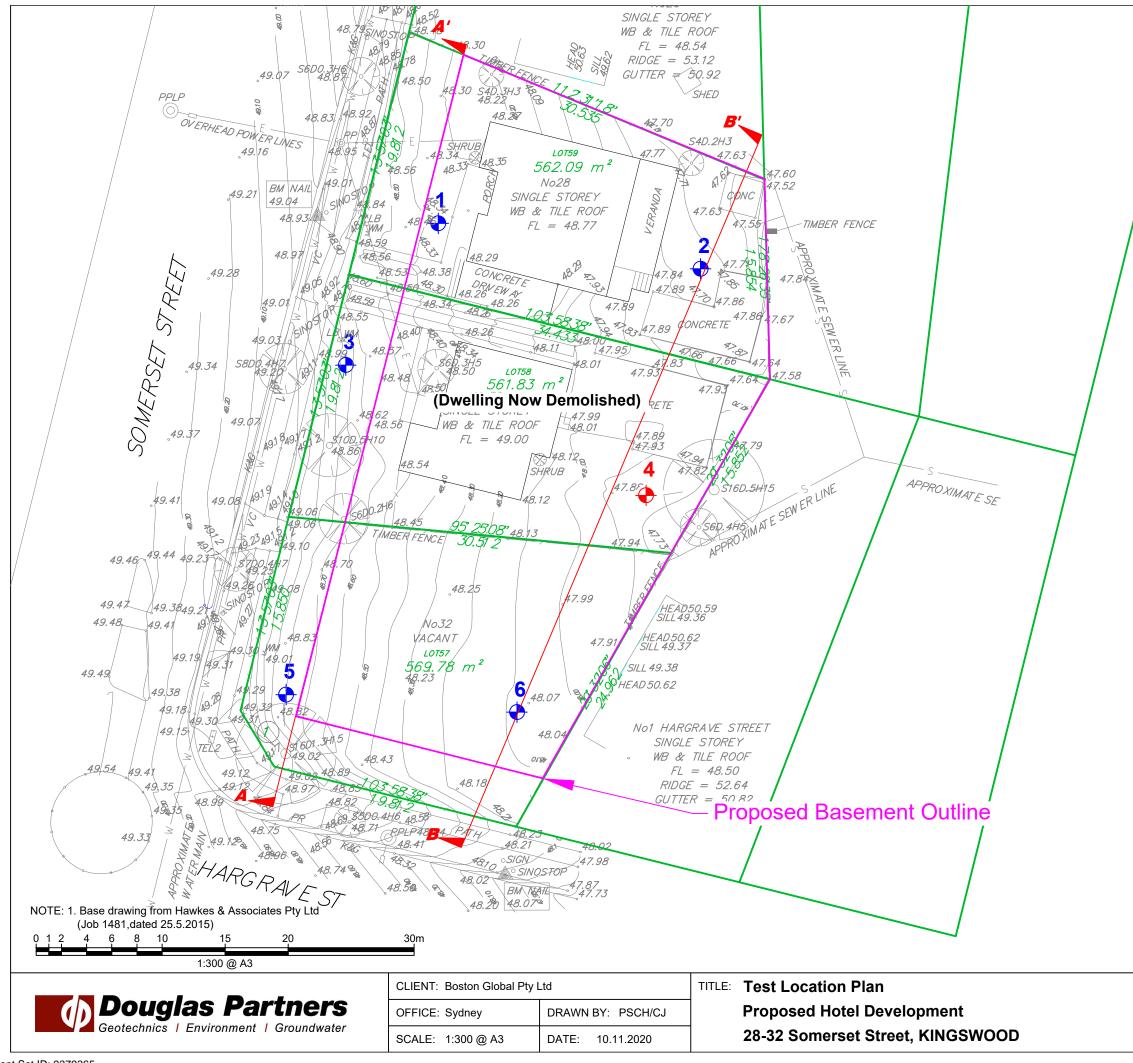
If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

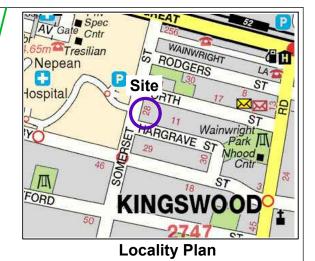
About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes


Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.


Site Inspection

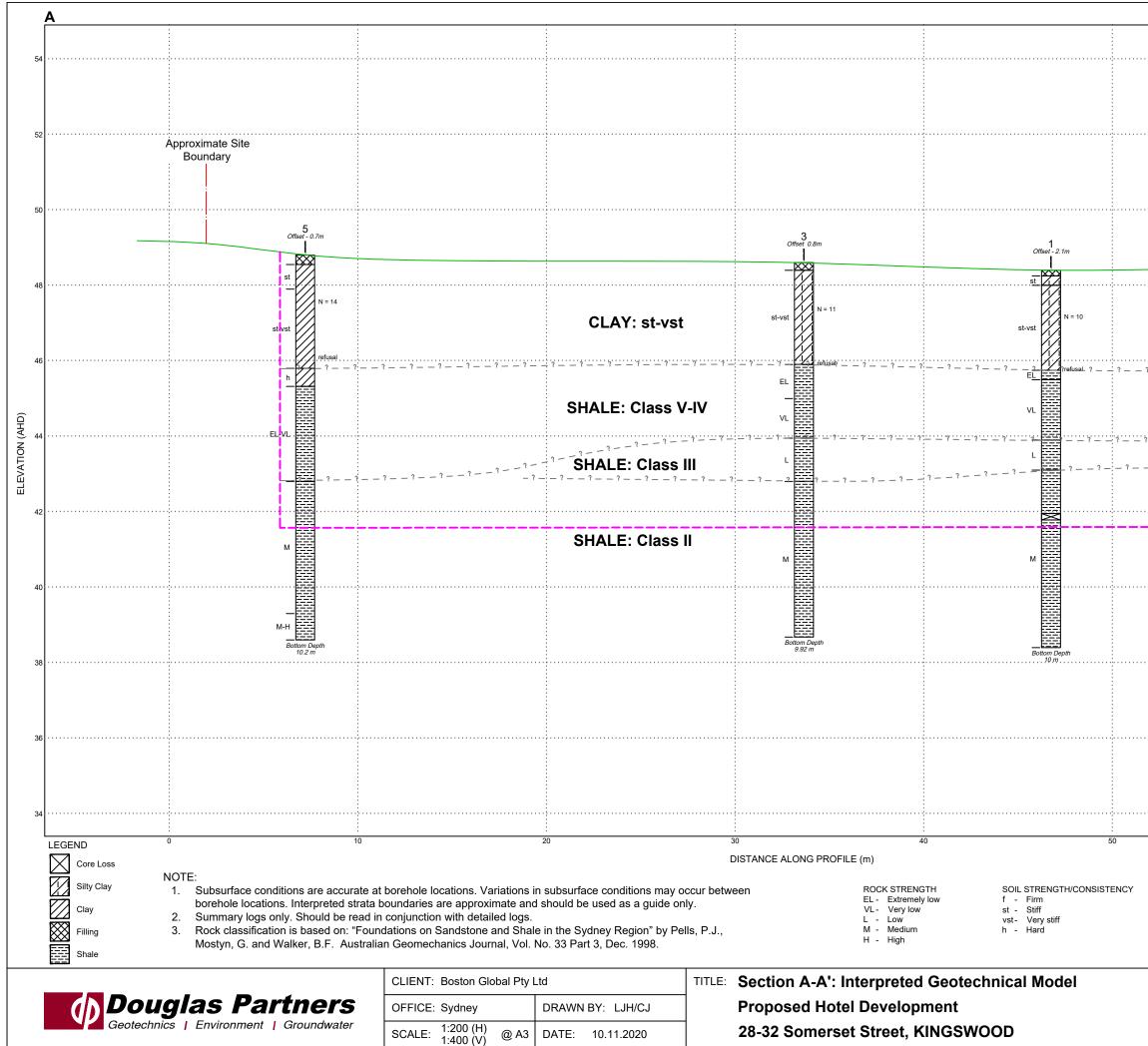
The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

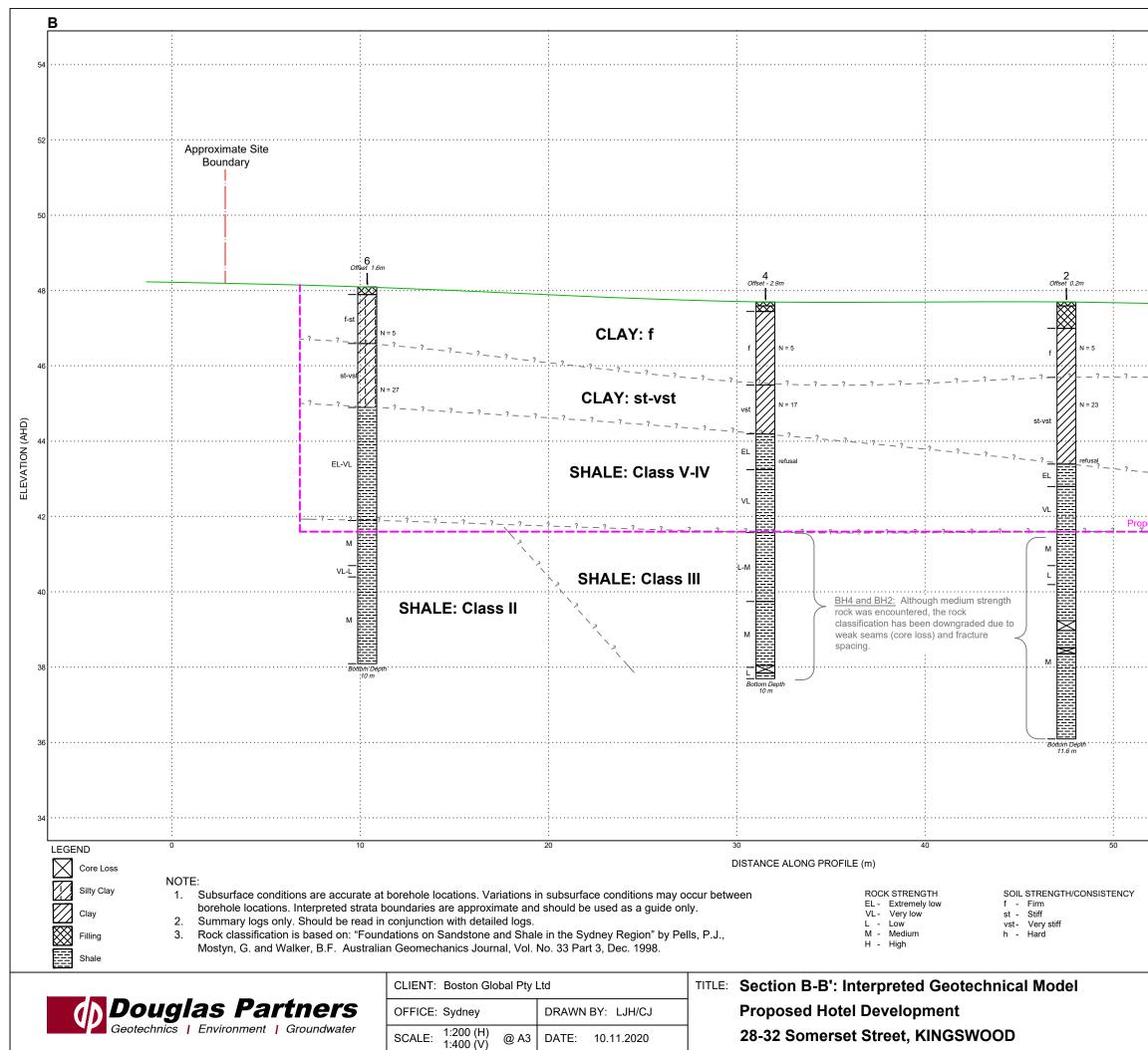
Appendix B

Drawings

LEGEND

Cored Borehole and Monitoring Well


Cored Borehole


Geotechnical Cross Section A-A

PROJECT No: 99851.00 DRAWING No: 1 REVISION: 0

				Α'	
		•••			4
					2
Appr B :	oxir Iour	na 1da	te Site ary		
					C
					8
· _ · · - · - · - · - · - · - · - · - ·					6
					4
				44	•
- ? - ? - ? - ? - ?					
Proposed Basement RL41.6m					2
				40	J
					8
					5
					4
6	0				
TESTS / OTHER N - Standard penetration tes 2 - Water level - ? Inferred Geology	t valı	ue	0	4	
money Scology				Scale (metres) aggeration = 2.0	0
		Т		00054.00	
		-	PROJECT No: DRAWING No:	99851.00 2	
		+	REVISION:	1	

				В'
Approxir	nate Site			
Bour	ndary			
				50
????				
				42
osed Basement RL41.6m				
				40
	:			
	:			
	:			
	:			
	•••••••••••••••••••••••••••••••••••••••			
	60			
TESTS / OTHER			0	4
N - Standard per ♀ - Water level - ? Inferred Geol	etration test v	/alue		
- 7 – - Interred Geol	ogy			Scale (metres)
			Vertical Exa	aggeration = 2.0
			PROJECT No:	99851.00
		╞	DRAWING No:	3
		ŀ	REVISION:	1

Appendix C

Results of Field Work

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

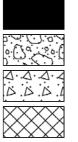
ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

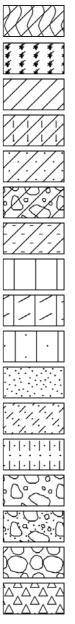

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General



Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

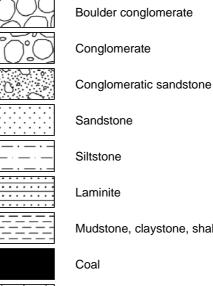
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

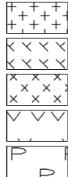
Cobbles, boulders

Talus

Sedimentary Rocks

Mudstone, claystone, shale

Limestone


Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 48.4 AHD **EASTING:** 288449 **NORTHING:** 6262070 DIP/AZIMUTH: 90°/--

BORE No: 1 **PROJECT No: 85085** DATE: 21 - 23/9/2015 SHEET 1 OF 1

П		Description	Degree of	0	Rock	Fracture	Discontinuities	Sa	mplir	ng &	In Situ Testing
님	Depth (m)	of	Weathering	raphi	Strength High Extend Medium High Extrige Addition Strength Medium	Spacing (m)	B - Bedding J - Joint	e	e %.	<u>م</u>	Test Results
	()	Strata	H M M M M M M M M M M M M M M M M M M M	ō		0.10	S - Shear F - Fault	Type	Rec C	RQD %	& Comments
48	0.15	FILLING - brown, silty clay (topsoil) filling with some rootlets, humid SILTY CLAY - stiff, brown mottled red-brown and grey, silty clay, MC <pl, apparently="" moderate="" to<br="">high plasticity</pl,>						E E			
47	1 	SILTY CLAY - stiff to very stiff, brown mottled red-brown, silty clay with a trace of ironstone gravel and rootlets, MC <pl, apparently<="" td=""><td></td><td></td><td></td><td></td><td></td><td>s</td><td>-</td><td></td><td>2,4,6 N = 10</td></pl,>						s	-		2,4,6 N = 10
46	-2 -2 -2 -2	moderate to high plasticity SHALE - extremely low strength,					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	S			10,25/90mm refusal
Ē	- - 2.9 -3	light grey-brown shale									
45	- - - - - - - - - - - -	SHALE - extremely low then very low strength, extremely then highly weathered, slightly fractured, light grey and red-brown, shale with some medium strength ironstone bands					3.2m: J70°, un, ro, fe 3.5m: J50° & 70°, st, ro, cly 3.7m: B0°, fe	с	100	0	pp >600
44	- 4.5 - 4.5 	SHALE - low strength, highly then slightly weathered, slightly fractured, grey-brown shale					4.28 & 4.5m: B (x2) 0°, cly				PL(A) = 0.2
43	- 5.3	SHALE - medium strength, slightly weathered and fresh, slightly fractured and unbroken, grey shale					5.2 & 5.26m: B (x2) 0°, cly, 5mm 5.26m: J80°, ti 5.46m: B0°, fe, cly, 5mm 5.61m: B5°, fe, cly 5.77m: J50°, pl, sm, cln	с	94	78	PL(A) = 0.4
42	- - - - - - 7						∖ 6.4-6.45m: Cs 6.45m: CORE LOSS: 170mm				PL(A) = 0.4
41	- - - - - -						7.4-7.46m: Cs				PL(A) = 0.4
40	8 - - - - - - -						8.62m: J80°, ti	с	100	92	PL(A) = 0.6
39	- 9 - - - - - - - - - - - - - - - - - -						9.45m: J85°, un, ro, cly 9.55m: J45°, pl, sm, cly				PL(A) = 0.4
TY W/	PE OF E	Bore discontinued at 10.0m d tools/DT100 DRILL BORING: Hand auger to 0.6m; S BSERVATIONS: No free groundwa G: Water loss from 4.0m to 5.0m	-	iger to	o 2.5m; Rotary to	GED: JS/SI 2.9m; NMI	CASING: HV LC-Coring to 10.0m	V to 2	2.5m		

SAMPLING & IN SITU TESTING LEGEND
 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U,
 Tube sample (x mm dia.)

 W
 Water sample

 D
 Vater seep

 S
 Standard penetration test

 ¥
 Water level

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Douglas Partners Geotechnics | Environment | Groundwater

Document Set ID: 9379365 Version: 1, Version Date: 17/11/2020

CLIENT: PROJECT:

Proposed Residential Development

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

SURFACE LEVEL: 47.7 AHD **EASTING:** 288470 **NORTHING:** 6262064 DIP/AZIMUTH: 90°/--

BORE No: 2 **PROJECT No: 85085** DATE: 17 - 21/9/2015 SHEET 1 OF 2

Image: Construction of the second s										-
0.1 FILLING - data boom and gray. Invoides and some fine gravel. Invoides and some fine gravel. Invoide the some		Description	Degree of Weathering	lic	Strength _	Discontinuities	Sa		-	-
0 FILLING - disk brown and gray. Protects and zone fine gravel. In the system of the torus, silv day gravel and a trace of codets, med gravel and a trace of codets, well DE DE DE I.2.3 N = 5 2 0.07 FILLING - disk brown, silv day with a trace of codets, well DE I.2.3 N = 5 I.2.3 N = 5 2 2.0m: stiff to very stiff I.2.3 N = 5 I.2.3 N = 5 I.2.3 N = 5 2 2.0m: stiff to very stiff I.2.3 N = 5 I.2.3 N = 5 I.2.3 N = 5 3 SHALE - extremely low strength, light gray-brown shale I.2.3 N = 5 I.2.3 N = 5 I.2.3 N = 5 4 4.3 SHALE - extremely low strength, light gray-brown shale I.2.3 N = 5 I.2.3 N = 5 I.2.3 N = 5 4 3 SHALE - way out strength, highly weathered, alightly fractured, light brown shale I.2.3 N = 5 I.2.3 N = 5 5 SHALE - medium strength, slightly rectured, gray shale with some clay bands I.2.4 N = 5 I.2.4 N = 25 I.2.5 N = 5 6 6.17 - 25/201 I.2.3 N = 5 I.2.4 N = 25 I.2.4 N = 25 I.2.4 N = 25 5 SHALE - way ow strength, slightly rectured gray shale with some clay bands I.2.4 N = 25		of	g	Log	Vate A	B - Bedding J - Joint	be	sre %	۵°	Test Results
PLLING - disk brown and grey, motel DE motel	(,	Strata	H M M M M M M M M M M M M M M M M M M M	Ū		S - Shear F - Fault	1	Rec	R0%	م Comments
20 CLAV - firm, grey and brown, clay with a trace of roolets, wet S N = 5 2 2.0m: stiff to very stiff S 4.9,14 3 SHALE - extremely low strength, lightly grey-town shale S 4.9,14 4.3 SHALE - extremely low strength, lightly tractured, light brown shale S 5.13-5.36m: J (x3) 40°-45°, un, no, dy C 100 10 5 4.9 SHALE - require strength, slightly tractured, light brown shale S 5.13-5.36m: J (x3) 40°-45°, un, no, dy C 100 10 5 SHALE - require strength, slightly tractured, light brown shale S S.13-5.36m: J (x3) 40°-45°, un, no, dy C 100 10 5 SHALE - require strength, slightly tractured, light brown shale S S.13-5.36m: J (x3) 40°-45°, un, no, dy C 100 10 5 SHALE - require strength, slightly tractured, light brown shale S S.13-5.36m: B0°, dy vn C 100 97 PL(A) = C 7 7.0-7.5.2m: low strength S S.5.75m: B0°, dy vn C 100 97 PL(A) = C 9 9.34 S.46m: CORE LOSS: 100mm C 80 mm 65 97 PL(A) =		sandy clay topsoil filling with some rootlets and some fine gravel, moist FILLING - dark brown, silty clay filling with some fine to medium					D/E			
13 SHALE - extremely low strength, lightly weathered, slightly fractured, light grey-brown shale S 4.3 SHALE - writemely low strength, lightly weathered, slightly fractured, light grey-brown shale S 6.17,25/12(strength) loghtly fractured, light brown shale 29 6 6.1 SHALE - medium strength, slightly weathered, slightly fractured, light brown shale S 5.13-6.35m; J (x3) 40°- 45°; un, ro, dy C 100 10 29 6 6.1 SHALE - medium strength, slightly weathered, slightly mediated, light brown shale S 5.13-6.35m; J (x3) 40°- 45°; un, ro, dy C 100 10 29 6 6.1 SHALE - medium strength, slightly weathered and fresh, slightly mediated and fresh, slig	-	From 0.4m: wet with slight odour CLAY - firm, grey and brown, clay with a trace of rootlets, wet					S	-		
-4 4.3 SHALE - extremely low strength, light gray-brown shale S 6.17.25/12(strength) low strength, light weathered, slightly tractured, light brown shale S 6.17.25/12(strength) low strength, light weathered, slightly tractured, light brown shale S 5.13-5.35m: J (x3) 40°-45°, un, no, dy C 100 10 -6 6.1 SHALE - very low strength, light weathered, slightly tractured, light brown shale S 5.13-5.35m: J (x3) 40°-45°, un, no, dy C 100 10 -7 7.0-7.52m: low strength C 100 10 S.8-5.85m: Cz S.92m: B0°, fe PL(A) = C -8 .446 .457 .457.55m: B (x2) 0°, cl C 100 97 -8 .466 .272 .906m: B0°, cly vn C 100 97 -9 .34 .466 .272 .467 .467 .475 (x 7.55m: B (x2) 0°, cl) .467 .458 -9 .34 .466 .272 .466 .276 .467 .475 (x 7.55m: B (x2) 0°, cl) .466 .476 .475 (x 7.55m: B (x2) 0°, cl) .468 .468 .468 .468 .468 .468 .476 (x 7.575) .476 (x 7.575) .476 (x 7.575)	-	2.0m: sun to very sun					s	-		4,9,14 N = 23
4.3 SHALE - extremely low strength, light grey-brown shale 5.13-5.35m: J (x3) 40°- 45°, un, ro, cly 5.13-5.35m: J (x3) 40°- 45°, un, ro, cly C 100 10 9 -6 6.1 SHALE - medium strength, slightly tractured, grey shale with some clay bands C 100 10 5.8-5.85m: C2 7 7.0-7.52m: low strength 10 10 10 10 10 10 9 9 9 9.34 6.95m: B0°, cly vn C 100 97 PL(A) = C 9 9.34 9.34 9.34 9.06m: B0°, cly co C 8.46m: CORE LOSS: 160mm 2.60mm 0.65 9.18m: CORE LOSS: 160mm 0.65 9.14m: CORE L						stated, rock is fractured	s	-		6,17,25/120mm
SHALE - Very low strength, night weathered, slightly fractured, light brown shale 5.13-5.35m: J (x3) 40° 6 6.1 SHALE - medium strength, slightly reactured, light brown shale C 7 7.0-7.52m: low strength 8 6.95m: B0°, cly vn 7 7.0-7.52m: low strength 9 9.34	43	light grey-brown shale				along rougn planar bedding dipping 0°- 10°		-		refusal
7 7.0-7.52m: low strength I I I I I I I I I I I I I I I I I I I	-5	weathered, slightly fractured, light brown shale SHALE - medium strength, slightly				45°, un, ro, cly	с	100	10	
8 Image: Construction of the second seco	-	fractured, grey shale with some clay bands				6.95m: B0°, cly vn	с	100	97	PL(A) = 0.5 PL(A) = 0.2
8.72 9 9.34 9.34 8.72 9.06m: B0°, cly co 9.18m: CORE LOSS: 160mm PL(A) = C	- 8					7.45 & 7.55m: B (x2) 0°, cly, 10mm				PL(A) = 0.9
PL(A) = C	® 8.72 -9					260mm 9.06m: B0°, cly co 9.18m: CORE LOSS:	с	80	65	
	-									PL(A) = 0.8

RIG: Hand tools/DT100 DRILLER: SM/JS LOGGED: AL/SI CASING: HW to 2.5m TYPE OF BORING: Hand auger to 1.0m; Solid flight auger to 2.5m; Rotary to 4.9m; NMLC-Coring to 11.6m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SHUD TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample PL(A) Point load axial test Is(50) (MPa) U Tube sample (x mm dia). PL(D) Point toad diametral test Is(50) (MPa) W Water sample P P Water sample Standard penetration test Is(50) (MPa) W Water seep Standard penetration test ¥ Water level V Douglas Partners Geotechnics | Environment | Groundwater

Zeftco Pty Ltd PROJECT:

Proposed Residential Development LOCATION: 28-32 Somerset Street, Kingswood

CLIENT:

SURFACE LEVEL: 47.7 AHD **EASTING:** 288470 NORTHING: 6262064 DIP/AZIMUTH: 90°/--

BORE No: 2 **PROJECT No: 85085** DATE: 17 - 21/9/2015 SHEET 2 OF 2

Rock Degree of Fracture Discontinuities Sampling & In Situ Testing Description Graphic Weathering Strength Spacing Depth Water 0 Test Results Core Rec. % % ROD % 님 of Low High Type B - Bedding J - Joint Very Lov Low Medium (m) (m) 8 High & S - Shear F - Fault Strata 98 88 ligh. S M M M M Comments S D SHALE - medium strength, slightly weathered and fresh, slightly 10.1m: B0°, cly co PL(A) = 0.4fractured, grey shale with some 10.3-10.34m: Cs clay bands (continued) 10.43-10.83m: B (x4) 0°, cly, 5-10mm 11 PL(A) = 1.411.05-11.33m: B (x3) 0°, cly, 10mm PL(A) = 0.511.6 Bore discontinued at 11.6m 8 1 1 12 1 35-13 4 14 2 15 1 16 17 - 8 18 50 19

RIG: Hand tools/DT100

DRILLER: SM/JS

LOGGED: AL/SI

CASING: HW to 2.5m

TYPE OF BORING: Hand auger to 1.0m; Solid flight auger to 2.5m; Rotary to 4.9m; NMLC-Coring to 11.6m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

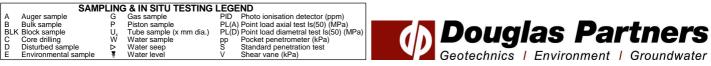
Auger sample Bulk sample Block sample Core drilling Disturbed sample Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample G P Ux W PID Photo ionisation detector (ppm) PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) R BLK DE Water seep Water level ₽

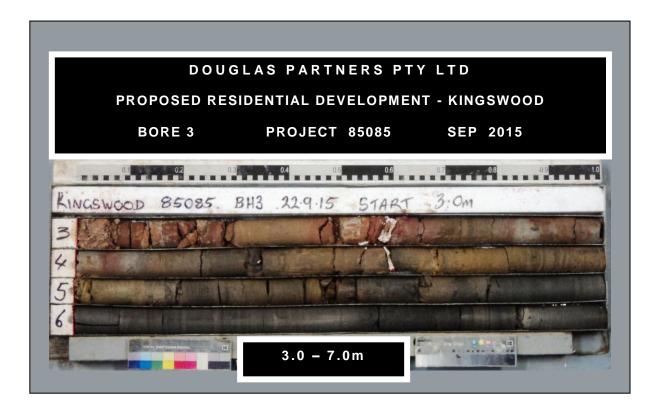
Zeftco Pty Ltd **PROJECT:** Proposed Residential Development LOCATION: 28-32 Somerset Street, Kingswood

CLIENT:

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood


Proposed Residential Development


CLIENT:

PROJECT:

SURFACE LEVEL: 48.6 AHD **EASTING:** 288443 **NORTHING:** 6262058 **DIP/AZIMUTH:** 90°/-- BORE No: 3 PROJECT No: 85085 DATE: 22/9/2015 SHEET 1 OF 1

	Description	Degree of Weathering ·읟	Rock Strength	Fracture	Discontinuities	Sa		-	n Situ Testing
교 Depth (m)	of Strata	Weathering	Kerv Low Very Low Very Low Very Low Very Ligh Kery High Kater	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	RQD %	Test Results
- 0.1	FILLING - brown, silty clay (topsoil) filling with some rootlets and a trace of gravel, humid SILTY CLAY - stiff to very stiff, brown mottled red-brown and grey, silty clay, MC <pl, apparently<="" td=""><td></td><td></td><td></td><td></td><td>E</td><td><u> </u></td><td></td><td>Comments</td></pl,>					E	<u> </u>		Comments
- 1 - - -	moderate to high plasticity					s			2,4,7 N = 11
-2					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
9 ⁴ 2. ⁻	strength, extremely low to very low				bedding dipping 0 - 10	S			13,22,15/30mn refusal
45 	weathered, fractured and slightly fractured, light grey-brown and red-brown, shale with some medium strength ironstone bands				3.07-3.21m: B (x3) 0°, cly, 10mm 3.29m: B0°, cly vn 3.45m: J45°, un, ro, fe	с	100	0	PL(A) = 0.5
-4-4				 	⁵ 3.5-3.55m: Cs	с	100	0	
4.6 -5	5 SHALE - low strength, highly and slightly weathered, slightly fractured, grey-brown shale	L , ; ; ; ; ; ; ; ; ; ;			4.68m: B5°, fe, cly				PL(A) = 0.2
	8 SHALE - medium strength, fresh, slightly fractured and unbroken, grey shale				5.15m: B0°, cly, 5mm ∖ 5.66-5.7m: Cs 5.70-5.72m: Cs 6m: J85°, pl, ro, cln	С	100	92	PL(A) = 0.5 PL(A) = 0.4
- 7					6.84m: B0°, cly, 10mm 7.13m: J, sv (85°- 90°) pl, ro, cln 7.75m: J60°, un, ro, cln	с	100	100	PL(A) = 0.4
- 9							400		PL(A) = 0.5
	9.6-9.7m: carbonaceous shale band				\9.69m: J35°, un, ro, cln →9.73m: B5°, cly, 10mm ∠	С	100	99	PL(A) = 0.4 PL(A) = 0.5
9.9	Bore discontinued at 9.92m	<u>╆╺╡╴</u>		<u> [®] </u>			1	l	
YPE OF	BORING: Hand auger to 0.5m; S DBSERVATIONS: No free groundwa		to 2.5m; Rotary to	GED: JS/SI 3.0m; NM	CASING: HV LC-Coring to 10.0m	V to 2	2.5m		

SURFACE LEVEL: 47.7 AHD **EASTING:** 288467 **NORTHING:** 6262048 DIP/AZIMUTH: 90°/--

BORE No: 4 **PROJECT No: 85085** DATE: 17/9/2015 SHEET 1 OF 1

0.1 - 0.25 -	damp		Graph Log	Strength Nedy Low Medium High Ex High	(m) Spacing	B - Bedding J - Joint S - Shear F - Fault		Core Rec. %	RQD %	Test Results & Comments
0.1	FILLING - dark brown, fine sand topsoil filling with some rootlets, damp		U U		0.05 0.10 .	S - Shear F - Fault		Rec	RC %	Comments
	topsoil filling with some rootlets, damp		\bowtie							
ŀ	FILLING - dark brown, fine sand						D/E A D/E A			
	filling with some medium gravel, damp CLAY - firm, brown clay, damp						DA			
	From 0.75m: brown-grey						S			2,2,3 N = 5
2.2	CLAY - very stiff, grey clay with some ironstone bands, damp									
							s			6,8,9 N = 17
35						Noto: Unloss otherwise				
5.0	SHALE - extremely low to very low strength, grey and brown shale					stated, rock is fractured along rough planar bedding dipping 0°- 10°				
4.45							s			10,18,25/130m refusal
	SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale					4.64m: B0°, fe, cly, 10mm	с	100	0	
						5.35m: B0°, cly co, 5mm	с	100	0	
6.12-	SHALE - low to medium strength, slightly weathered and fresh, fractured and slightly fractured, light grey to grey shale					5.7-5.72m: Cs 5.8m: B0°, fe, cly co 5.93m: B0°, fe, cly 6.12 & 6.19m: B (x2) 0°, fe, cly 6.5 & 6.89m: B0°, cly vn	С	100	90	PL(A) = 0.3
						7.0-7.1m: cly 7.4m: B0°, cly, 5mm 7.52-7.57m: cly				PL(A) = 0.3
7.95	SHALE - medium strength, fresh then slightly weathered, slightly fractured, grey shale					7.оют: во°, сіу, 10mm	с	100	80	PL(A) = 0.4
						8.8m: J30°, ti 8.92-8.95m: Cz 9m: B0°, cly co				
9.85	9.7-10.0m: low strength band					9.85-9.95m: B (x2) 0°, cly, 5mm 9.65m: CORE LOSS: 200mm	с	41	0	PL(A) = 0.5
9.85) 10.0			<u> </u>			20011111	Ľ		Ŭ	
	3.5 4.45 6.12 7.95 9.85	 3.5 SHALE - extremely low to very low strength, grey and brown shale 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 6.12 SHALE - low to medium strength, slightly weathered and fresh, fractured and slightly fractured, light grey to grey shale 7.95 SHALE - medium strength, fresh then slightly weathered, slightly fractured, lightly fractured, grey shale 9.7-10.0m: low strength band 	CLAY - very stirt, grey clay with some ironstone bands, damp 3.5 SHALE - extremely low to very low strength, grey and brown shale 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 6.12 SHALE - low to medium strength, slightly weathered and fresh, fractured and slightly fractured, light grey to grey shale 7.95 SHALE - medium strength, fresh then slightly weathered, slightly fractured, slightly fractured, light grey to grey shale 9.7-10.0m: low strength band	3.5 SHALE - extremely low to very low strength, grey and brown shale 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 6.12 SHALE - low to medium strength, slightly weathered and fresh, fractured and slightly fractured, light grey to grey shale 7.95 SHALE - medium strength, fresh then slightly weathered, slightly fractured, grey shale 9.7-10.0m: low strength band 9.7-10.0m: low strength band	 CLAY - Very Stiff, grey clay with some ironstone bands, damp 3.5 SHALE - extremely low to very low strength, grey and brown shale 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 6.12 SHALE - low to medium strength, slightly weathered and fresh, fractured and slightly fractured, light grey to grey shale 7.95 SHALE - medium strength, fresh then slightly weathered, slightly fractured, light grey to grey shale 9.7-10.0m: low strength band 	3.5 SHALE - extremely low to very low strength, grey and brown shale 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 6.12 SHALE - low to medium strength, fight grey to grey shale 7.95 SHALE - medium strength, fresh then slightly weathered, slightly fractured, grey shale 9.7-10.0m: low strength band	3.5 SHALE - extremely low to very low strength, grey and brown shale Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10° 4.46 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 4.64m: 80°, fe, dy, 10mm 6.12 SHALE - low to medium strength, resh then slightly weathered and fresh, fractured al slightly fractured, lightly fractured, lightly fractured, grey shale 5.7572m: Cs 7.96 SHALE - medium strength, fresh then slightly weathered, slightly fractured, lightly fractured, grey shale 7.97 9.86 9.7-10.0m: low strength band 9.7-10.0m: low strength band 9.7-10.0m: low strength band	3.6 SHALE - extremely low to very low strength, grey and brown shale S 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale Note: Unless otherwise stated. rock is fractured along rough planar beding dipping 0°- 10° 6.12 SHALE - low to medium strength, light grey to grey shale Image: strength of the str	3.5 SHALE - extremely low to very low strength, grey and brown shale Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10° 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 4.45 SHALE - low to medium strength, fractured, ight grey to grey shale 4.45 SHALE - low to medium strength, fractured, ight grey to grey shale 5.35m: B0°, ely co, 5mm C 8.12 SHALE - low to medium strength, fractured, ight grey to grey shale 7.577m: Cs S.35m: B0°, ely co, 5mm C 7.56 SHALE - nedium strength, fresh then slightly weathered, slightly Image: strength along the s	3.5 SHALE - extremely low to very low strength, grey and brown shale Note: Unless otherwise stated, rock is fractured along orogin planar bedding dpping 0°- 10° 4.45 SHALE - very low strength, highly weathered, slightly fractured, grey-brown shale 4.64m: B0°, fe, cly, 10m C 100 6.12 SHALE - low to medium strength, fractured and slightly fractured, ight grey to grey shale C 100 0 7.86 SHALE - medium strength, fractured, grey shale C 100 0 7.86 SHALE - medium strength, fractured, grey shale C 100 0 7.86 SHALE - nedium strength, fractured, grey shale C 100 0 7.86 SHALE - medium strength, fractured, grey shale C 100 0 8.10 SHALE - medium strength, fresh then slightly weathered, slightly fractured, grey shale C 100 0 9.86 9.7-10.0m: low strength band C 100 0 0

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) G P U_x W Douglas Partners ₽ Geotechnics | Environment | Groundwater

Document Set ID: 9379365 Version: 1, Version Date: 17/11/2020

Zeftco Pty Ltd

PROJECT:

CLIENT:

Proposed Residential Development LOCATION: 28-32 Somerset Street, Kingswood

SURFACE LEVEL: 48.8 AHD **EASTING:** 288438 **NORTHING:** 6262032 **DIP/AZIMUTH:** 90°/-- BORE No: 5 PROJECT No: 85085 DATE: 17/9/2015 SHEET 1 OF 2

						AZIWUTH:		SHE			
-		Description	Degree of Weathering	jc	Rock Strength	Fracture	Discontinuities	Sa		-	In Situ Testing
	Depth (m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ଛୁ ଝ ଝ	Graph Log	Very Low Very Low Medium High ExHigh ExHigh	Spacing (m) 50:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
- - - - - - - -	0.25-	FILLING - brown, silty, fine sand filling with some rootlets and some fine gravel, humid CLAY - stiff, red-grey clay, humid						D/E			
- - 1 - - - -		0.9m: stiff to very stiff						S	-		3,6,8 N = 14
2							Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				6,20,25/100mr
₽ - 3	3.0-							S			refusal
6 - - - - - - - - - - - - - - - - - - -	3.48	CLAY - hard, light grey and red-brown, clay with ironstone gravel, moist SHALE - extremely low to very low strength, extremely to highly weathered, slightly fractured, grey-brown shale					3.63 & 3.78m: B (x2) 5°, cly co	с	100	0	pp = 550
‡ -							4.45m: B0°, cly				
-5							5.22m: J40°, pl, ro, fe 5.5m: B0°, cly	с	100	10	
-6	6.0-	SHALE - medium then medium to high strength, slightly weathered and fresh, slightly fractured and unbroken, grey shale					6.18m: B0°, fe	с	100	100	PL(A) = 0.4
							7.1m: B0°, cly co 7.46-7.56m: fg 7.6-7.63m: Cs				PL(A) = 0.4
-8							8.38m: J85°, un, ro, cln	с	100	95	PL(A) = 0.4
		9.5-10.2m: interbedded shale/siltstone					9.12m: B0°, cly, 10mm				PL(A) = 0.6
'F				<u></u>							

RIG: Hand tools/DT100

CLIENT:

PROJECT:

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

DRILLER: AL/SM

LOGGED: AL/SI CASING: HW to 2.5m

TYPE OF BORING: Hand auger to 0.5m; Solid flight auger to 2.5m; Rotary to 3.0m; NMLC-Coring to 10.2m **WATER OBSERVATIONS:** No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U, Tube sample (k mm dia.) PL(D) Point load axial test Is(50) (MPa) C Core drilling W Water sample p Pocket penetrometer (kPa) D Disturbed sample P Water seep Standard penetration test E Environmental sample Water level V Shear vane (kPa)

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

CLIENT:

PROJECT:

 SURFACE LEVEL:
 48.8 AHD

 EASTING:
 288438

 NORTHING:
 6262032

 DIP/AZIMUTH:
 90°/-

BORE No: 5 PROJECT No: 85085 DATE: 17/9/2015 SHEET 2 OF 2

			Dograa of		Rock				-			
Ι.	Depth	Description	Degree of Weathering ≞ ≩ ≩ § ∞ ଝ	hic	Rock Strength	e	Fracture Spacing	Discontinuities				n Situ Testing
Ч	(m)	of		Log	[8] - [8] [8] [8] - [8] [8] [8]	Nat	(m)	B - Bedding J - Joint	Type	ore c. %	0% 0	Test Results &
		Strata	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	G	Strength		0.10	S - Shear F - Fault	Ê	ပိမ္ရွိ	RQD %	Comments
E	10.2								С	100	95	PL(A) = 1
E	10.2	Bore discontinued at 10.2m				7 G						
E	-											
-8												
1	- 11		iiiii			i	ii ii					
ŧ												
ŧ												
F	-											
£⊳	-					1 li						
Ł	- 12		<u> </u>			li						
ŧ	-											
ŧ	.					i						
F.,												
36	- 13											
Ł												
ŧ	-											
ŧ												
35												
F	- 14		iiiii			i	ii ii					
E	-											
Ł						i						
ŧ.												
-8	-					li						
F	- 15											
E												
ŧ	-											
-8												
F	- 16		İİİİİ			i						
F												
E												
ţ	.											
32-												
F	- 17											
E												
ŧ						i						
-5												
ţ	- 18											
ŧ												
Ē							11 11					
E												
-8	-											
ŧ	- 19		İİİİİ									
ŧ												
ŧ												
_ م	-											
-8- -	-											
Ľ												

RIG: Hand tools/DT100

DRILLER: AL/SM

LOGGED: AL/SI

CASING: HW to 2.5m

TYPE OF BORING: Hand auger to 0.5m; Solid flight auger to 2.5m; Rotary to 3.0m; NMLC-Coring to 10.2m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

SAMPLING & IN SITU TESTING LEGEND							
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Douglas Partners
BI	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)		Dollaise Partner
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	¥	Water level	V	Shear vane (kPa)	1	Geotechnics Environment Groundwate

Zeftco Pty Ltd

LOCATION: 28-32 Somerset Street, Kingswood

Proposed Residential Development

CLIENT:

PROJECT:

 SURFACE LEVEL:
 48.1 AHD

 EASTING:
 288455

 NORTHING:
 6262030

 DIP/AZIMUTH:
 90°/-

BORE No: 6 PROJECT No: 85085 DATE: 22/9/2015 SHEET 1 OF 1

-	Description	Degree of Weathering .≌		Rock Strength	Fracture	Discontinuities		Sampling & In Situ Testing			
Depth (m)	of	Weathering	Srapt Log	Very Low Very Low Medium Medium Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &	
	Strata	M H M S H H M S H H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M		Very Very Very ExH	0.05 0.10 1.00	S - Shear F - Fault		Сĝ	Ϋ́ς	Comments	
89- - 0.2 - 1 - 1	FILLING - brown, silty clay (topsoil) filling with some rootlets SILTY CLAY - firm to stiff, grey mottled brown, silty clay with a trace of ironstone gravel, MC~PL, apparently moderate to high plasticity		$\left \frac{1}{1} \right $				E E S	-		2,2,3 N = 5	
-2 -2	SILTY CLAY - stiff to very stiff, grey mottled red-brown, silty clay with some ironstone gravel bands, MC <pl, apparently="" moderate="" to<br="">high plasticity</pl,>		- - - - - - - - - - - - - - - - - - -			Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	s	-		7,10,17	
-3							5			N = 27	
64 - 3.2	extremely low to very low strength, extremely then extremely to highly						с	100	0		
	weathered, light grey-brown shale					5.07-5.09m: Cs	с	100	0		
-6 7-6 7-6.2	SHALE - medium strength, slightly weathered and fresh, slightly fractured then unbroken, grey shale with some siltstone laminations					5.7-6.2m: B (x8) 0°- 5°, cly co 6.7m: B0°, fe	С	100	65	PL(A) = 0.4	
-7 -7 -8 	7.4-7.68m: very low to low strength					7.4-7.68m: B's 0°, cly co 7.68m: J35°, pl, sm, cly				PL(A) = 0.4	
- 9 - 9 							С	100	93	PL(A) = 0.5 PL(A) = 0.4	
IG: DT1 YPE OF	Bore discontinued at 10.0m			ry to 3.2m; NMLC	GED: JS/SI C-Coring to 1	CASING: HV 0.0m	v to 2	2.5m			

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 PID
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U, Tube sample (k mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C Core drilling
 W Water sample (k mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 D Disturbed sample
 P Water seep
 S Standard penetration test

 E Environmental sample
 W Water seep
 S Standard penetration test

