

Soil Contamination Assessment V2

Lots 3003, 3004 and 3005 Lord Sheffield Circuit, Penrith NSW

Thornton Operations Pty Ltd September 2021

Client No: S0079

Job No: 98585S

Executive Summary

Prensa Pty Ltd (Prensa) was engaged by Thornton Operations Pty Ltd (Thornton) to conduct a Soil Contamination Assessment (SCA) of Lots 3003, 3004 and 3005 in Deposited Plan (DP) 1184498, Lord Sheffield Circuit, Penrith NSW (the Site). It is noted that this report is in reference to DA02 – Stage 2 (Lot 3004, 3005 and part 3003) as shown in **Plan 1** in the '**Figures**' section of this report. The location of the Site has been illustrated in **Figure 1** in the '**Figures**' section of this report.

It is understood that Thornton required a SCA to supplement their resubmission of a development application (DA) for the Site. Prensa previously undertook the following assessments of the Site:

- 55494 Penrith Lot 3003 ESA (December 2016);
- 55494 Penrith Lot 3004 and 3005 ESA (October 2016); and
- 55494 ESA Addendum Letter (July 2017).

The Environmental Site Assessment (ESA) Addendum Letter (the Letter), in conjunction with both ESA reports, concluded that soil contamination was not identified at the Site which would preclude the proposed development, and considered the chemical concentration identified in soil at the Site would not preclude the proposed ongoing uses, if the following conditions were met:

- Provided that all fill materials including bitumen and bedding sands are removed back to the soils identified in the ESA reports;
- No significant chemical spills occur from the ongoing use of the site as a carpark;
- No bulk storage of chemicals or products within the carpark area which may cause contamination; and
- No visual or olfactory evidence of contamination is identified following remediation/removal of the carpark gravels/bitumen layer.

It is understood that since 2017, the carpark had been deconstructed and the Site has been used as a lay down/storage area for unknown equipment and potential soil stockpiles (particularly noted within Lots 3004 and 3005).

This ongoing Site use had the potential to cause contamination from spills, materials movement and storage of equipment which were not considered within the previous investigation and summary letter document. As such, further assessment in the form of a walkover and surface sampling was recommended to confirm soil conditions have not been altered and are appropriate for the proposed development.

The objective of the SCA was to assess whether soil contamination may exist (from the recent use of the site as a storage/laydown area) that may preclude the development of the Site.

The assessment undertaken by Prensa identified the Site is currently being utilised in the north for storage of building materials and as a site office for a nearby construction. The remainder of the Site appeared to be relatively free of anthropogenic material on the surface and remained grass covered land. These observations were reflected within the soil profile where brown silty clay was encountered with road base gravels and minimal anthropogenic material noted at depth.

Concentrations of contaminants of potential concern (CoPC) analysed from the samples collected from the 20 grid based surface sample locations were less than the adopted health investigation and screening levels (HILs and HSLs, NEPM 2013), adopted for a conservative residential land use. Some

samples reported detectable CoPC concentrations above the laboratory limit of reporting (LOR) with these considered to be comparable to results from the previous assessments undertaken at the Site. Based on the findings of the SCA, Prensa concludes the following:

- Chemical analysis of soil samples did not identify concentrations of CoPCs above the adopted health investigation and screening levels (HILs/HSLs) for a residential land use and as such, the reported concentrations are unlikely to preclude the proposed redevelopment of the site for mixed use including high-density residential with basement car parking; and
- It is recommended that the road base gravels observed on the surface of Lot 3004 as well as the building materials stored on Lot 3005 and the northern portion of Lot 3004 are removed prior to development works.

Should soil staining or malodourous soil be encountered during development that has not been assessed as part of this SCA, then Prensa should be contacted as further assessment may be warranted.

Statement of Limitations

This document has been prepared in response to specific instructions from Thornton Operations Pty Ltd to whom the report has been addressed. The work has been undertaken with the usual care and thoroughness of the consulting profession. The work is based on generally accepted standards, practices of the time the work was undertaken. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The report has been prepared for the use by Thornton Operations Pty Ltd and the use of this report by other parties may lead to misinterpretation of the issues contained in this report. To avoid misuse of this report, Prensa advises that the report should only be relied upon by Thornton Operations Pty Ltd and those parties expressly referred to in the introduction of the report. The report should not be separated or reproduced in part and Prensa should be retained to assist other professionals who may be affected by the issues addressed in this report to ensure the report is not misused in any way.

Prensa is not a professional quantity surveyor (QS) organisation. Any areas, volumes, tonnages or any other quantities noted in this report are indicative estimates only. The services of a professional QS organisation should be engaged if quantities are to be relied upon.

Sampling Risks

Prensa acknowledges that any scientifically designed sampling program cannot guarantee all sub-surface contamination will be detected. Sampling programs are designed based on known or suspected site conditions and the extent and nature of the sampling and analytical programs will be designed to achieve a level of confidence in the detection of known or suspected subsurface contamination. The sampling and analytical programs adopted will be those that maximises the probability of identifying contaminants. Thornton Operations Pty Ltd must therefore accept a level of risk associated with the possible failure to detect certain sub-surface contamination where the sampling and analytical program misses such contamination. Prensa will detail the nature and extent of the sampling and analytical program used in the investigation in the investigation report provided.

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Soil contamination can be expected to be non-homogeneous across the stratified soils where present on site, and the concentrations of contaminants may vary significantly within areas where contamination has occurred. In addition, the migration of contaminants through groundwater and soils may follow preferential pathways, such as areas of higher permeability, which may not be intersected by sampling events. Subsurface conditions including contaminant concentrations can also change over time. For this reason, the results should be regarded as representative only.

Thornton Operations Pty Ltd recognises that sampling of subsurface conditions may result in some cross contamination. All care will be taken and the industry standards used to minimise the risk of such cross contamination occurring, however, Thornton Operations Pty Ltd recognises this risk and waives any claims against Prensa and agrees to defend, indemnify and hold Prensa harmless from any claims or liability for injury or loss which may arise as a result of alleged cross contamination caused by sampling.

Reliance on Information Provided by Others

Prensa notes that where information has been provided by other parties in order for the works to be undertaken, Prensa cannot guarantee the accuracy or completeness of this information. Thornton Operations Pty Ltd therefore waives any claim against the company and agrees to indemnify Prensa for any loss, claim or liability arising from inaccuracies or omissions in information provided to Prensa by third parties. No indications were found during our investigations that information contained in this report, as provided to Prensa, is false.

Recommendations for Further Study

The industry recognised methods used in undertaking the works may dictate a staged approach to specific investigations. The findings therefore of this report may represent preliminary findings in accordance with these industry recognised methodologies. In accordance with these methodologies, recommendations contained in this report may include a need for further investigation or analytical analysis. The decision to accept these recommendations and incur additional costs in doing so will be at the sole discretion of Thornton Operations Pty Ltd and Prensa recognises that Thornton Operations Pty Ltd will consider their specific needs and the business risks involved. Prensa does not accept any liability for losses incurred as a result of Thornton Operations Pty Ltd not accepting the recommendations made within this report.

Table of Contents

1	Ir	itrod	duction	1
2	В	ackg	ground	1
3	O)bjec	tive	2
4	S	cope	e of Works	2
	4.1	К	Key Undertakings	2
	4.2		Assessment Boundaries	
	4.3		Fechnical Framework	
5	Si		nspection	
6			ted Soil Assessment Criteria	
7			ssessment	
	7.1		Sampling Strategy	
	7.2		Soil Screening	
	7.3		Soil Sample Collection	
	7.4		Soil Analytical Schedule	
8			ts	
	8.1	F	Field Observations	5
	8.2		Analytical Results	
9			ty Assurance & Quality Control	
	9.1		Quality Control Sampling and Analysis	
		.1.1	Blind Replicate and Split Sample RPDs	
	9	.1.2	Rinsate, Field Blank and Trip Blanks	
	9.2	L	_aboratory Quality Assurance/Quality Control	
	9.3		Sample Preservation, Handling and Holding Times	
	9.4		Limits of Reporting	
	9.5	С	Data Validation	8
1()	Disc	cussion	8
1 '	1	Cor	nclusions and Recommendations	Q

List of Appendices

Abbreviations

Figures

Tables

Photographs

Appendix A: Adopted Soil Investigation Levels, Screening Levels and Criteria

Appendix B: Soil Borehole Logs

Appendix C: Equipment Calibration Certificates

Appendix D: Quality Assurance and Quality Control

Appendix E: NATA Accredited Laboratory Report & Chain of Custody Documentation

1 Introduction

Prensa Pty Ltd (Prensa) was engaged by Thornton Operations Pty Ltd (Thornton) to conduct a Soil Contamination Assessment (SCA) of Lots 3003, 3004 and 3005 in Deposited Plan (DP) 1184498 located at Lord Sheffield Circuit, Penrith NSW (the Site). It is noted that this report is in reference to DA02 – Stage 2 (Lot 3004, 3005 and part 3003) as shown in **Plan 1** in the '**Figures**' section of this report.

The location of the Site has been illustrated in Figure 1 in the 'Figures' section of this report.

The approximate areas of the Lots are as follows:

- Lot 3003, approximately 6,305 m² (0.63 ha);
- Lot 3004, approximately 3,235 m² (0.32 ha); and
- Lot 3005, approximately 1,490 m² (0.15 ha).

2 Background

It is understood that Thornton requires a SCA to supplement their resubmission of a development application (DA) for the proposed redevelopment of the Site for mixed use including high-density residential with basement car parking. Prensa previously undertook the following assessments of the Site:

- 55494 Penrith Lot 3003 ESA (December 2016);
- 55494 Penrith Lot 3004 and 3005 ESA (October 2016); and
- 55494 ESA Addendum Letter (July 2017).

The Environmental Site Assessment (ESA) Addendum Letter (the Letter), in conjunction with both ESA reports, concluded that soil contamination was not identified at the Site which would preclude the proposed development, and considered the contamination concentration identified in soil at the Site would not preclude the proposed ongoing uses, if the following conditions were met:

- Provided that all fill materials including bitumen and bedding sands are removed back to the soils identified in the ESA reports;
- No significant chemical spills occur from the ongoing use of the site as a carpark;
- No bulk storage of chemicals or products within the carpark area which may cause contamination;
 and
- No visual or olfactory evidence of contamination is identified following remediation/removal of the carpark gravels/bitumen layer.

It is understood that since 2017, the carpark had been deconstructed and the Site has been used as a lay down/storage area for unknown equipment and potential soil stockpiles (particularly noted within Lots 3004 and 3005).

This ongoing Site use has the potential to cause contamination from spills, materials movement and storage of equipment which were not considered within the previous investigation and summary letter document. As such, further assessment in the form of a walkover and surface sampling was recommended to confirm soil conditions have not been altered and are appropriate for the proposed development.

3 Objective

The objective of the SCA was to assess whether soil contamination may exist (from the recent use of the site as a storage/laydown area) that may preclude the development of the Site.

4 Scope of Works

4.1 Key Undertakings

To complete the SCA, Prensa undertook the following works:

- Desktop assessment, including:
 - o Review of previous reports; and
 - Review of historical aerial photographs.
- Prepared a relevant Safe Work Method Statements (SWMS) and reviewed Dial Before You Dig (DBYD) plans;
- Soil assessment, including:
 - Undertake a Site walkover of Lot 3003, 3004 and 3005;
 - Established twenty (20) gridded surface samples using hand tools, to a maximum depth of
 0.3 metres below ground level (mBGL);
 - Collected representative soil samples from each bore hole;
 - Collected one (1) sample from each of the two (2) stockpiles identified on Site (two samples total);
 - Collected representative samples of suspected asbestos-containing materials (if identified);
 - Logged the soil observed at each bore hole;
 - Conducted onsite screening of soil at each bore hole for potential volatile contamination using a photo-ionisation detector (PID);
 - Reinstated each bore hole using soil generated during establishment;
 - Arranged analysis of soil samples at a National Association of Testing Authorities (NATA),
 Australia accredited laboratory; and
 - Compared soil analytical results against relevant guidelines and criteria.
- Prepared this SCA report.

4.2 Assessment Boundaries

The assessment was limited to the soil within the Site to a maximum depth of 0.3 mBGL.

4.3 Technical Framework

The SCA was undertaken in general accordance with the following:

- NSW Work Health and Safety Act 2011 (WHS Act 2011);
- NSW Work Health and Safety Regulation 2017 (WHS Regulation 2017);
- Contaminated Land Management (CLM) Act, 1997 (CLM Act 1997);
- Environmental Planning and Assessment Act 1979;
- Environmental Planning and Assessment Amendment Act 2017;
- Protection of the Environment Operations (POEO) Act 1997 (POEO Act 1997);
- National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (April 2013) (NEPM 2013);

- NSW Environment Protection Authority (EPA) State Environmental Planning Policy 55 Remediation of Land (SEPP55), 1998;
- NSW Environmental Protection Authority (EPA), Guidelines for Consultants Reporting on Contaminated Sites, 2020 (EPA 2020);
- Australian Standard 4482.1, Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and semi-volatile compounds, 2005; and
- Australian Standard 4482.2, Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, 1999.

5 Site Inspection

A visual inspection of the Site was completed by Prensa on 16 September 2021. Detailed in **Table 1** below is a summary of observations made during the site inspection pertaining to the layout and current use of the Site.

Tal	ble 1: Site Layout and Current Use					
Site Layout and Use	Details					
Current use	The southern portion of the Site is currently unoccupied and remains grass covered land with some areas of surface gravels. A public walkway runs east to west through the central section of Lot 3003, allowing pedestrian access.					
	The northern portion of the Site is leased to an external contractor for use as a lay down/storage area of building materials (timber, scaffolding, metal sheets, cement mix etc.) for an adjacent development. Two (2) stockpiles were observed within the northern portion of the Site (SP1 and SP3).					
Surface cover type and condition	The majority of the Site was grass covered with some areas of gravel on the surface. The northern portion comprised bare clay material which had undergone mixing due to wet weather and the movement of plant.					
Site topography and surface water drainage systems	The Site was relatively flat with surface water likely flowing into the road way drainage system located on Lord Sheffield Circuit.					
Presence and location of groundwater monitoring wells, soil bores, vapour bores, etc.	No groundwater monitoring wells, soil bores, or vapour bores were observed.					
Staining/Odours	No staining or odours were identified during the assessment.					

6 Adopted Soil Assessment Criteria

To assess the significance of contaminant concentrations in soil, reference was primarily made to NEPM (2013), 'Schedule B1 Guideline on Investigation Levels for Soil and Groundwater' (Schedule B1), assessment criteria, where available. Schedule B1 provides a framework for the use of investigation and screening levels based on human health and ecological risks. Analytical results are compared to residential criteria due to the proposed development of high density residential apartment buildings.

A summary of the adopted guidelines for the soil assessment completed have been provided in **Table 2** below. Details pertaining to the derivation of these adopted guidelines have been provided in **Appendix A**.

	Table 2: Adopted Site Assessment Guidelines
Beneficial Use of Land	Adopted Guidelines
Human Health	 NEPC, NEPM 2013, Health Investigation Levels (HILs) and Health Screening Levels (HSLs) Residential A/B.
	NEPC, NEPM 2013, Management Limits for petroleum hydrocarbon compounds for residential land use.

7 Soil Assessment

7.1 Sampling Strategy

Prensa established twenty (20) sampling locations as part of this assessment. Sampling locations were established in a systematic gridded pattern, which was consistent with the minimum sampling density recommended in AS4482.1-2005 for a site of this size (approximately 0.9 ha) and was capable of detecting a hotspot diameter of 25.0 m with 95% confidence. It is considered that this sampling density is sufficient to achieve the stated project objectives at the Site and characterise soil contaminants from unknown sources.

One (1) additional sample was taken from each of the two (2) stockpiles identified on Site (SP1 with an estimated volume of 37.5 m³ and SP3 with an estimated volume of 16.0 m³) located within the south west corner of Lot 3005 and central north portion of Lot 3004.

All sampling locations were established with the use of a decontaminated hand auger. Soil samples were collected from the hand auger, taking care not to sample soils directly adhered to the auger. Hand auger locations were extended to a maximum depth of 0.3 mBGL or until refusal. As such depths ranged from 0.15 to 0.3 mBGL with soil samples generally collected from 0.1-0.2 mBGL depths.

Sampling locations are shown in Figure 1, in the 'Figures' section of this report.

7.2 Soil Screening

Soil samples were screened in the field using a photo-ionisation detector (PID) to provide an indication of the potential of volatile contamination within the samples. The PID was calibrated each day with isobutylene of a known concentration (100 parts per million (pm)). Calibration certificates have been provided as **Appendix C**.

7.3 Soil Sample Collection

Disposable nitrile gloves were worn during sample collection, which were replaced after the collection of each sample and between sampling locations to avoid cross-contamination. Collected soil samples

were placed in 250 mL glass jars with Teflon-lined lids that were prepared and supplied by a NATA accredited laboratory. Collected samples were stored in chilled ice chests and transported to the laboratory within specified holding times, along with chain of custody documentation. Upon completion of soil sampling, sampling locations were reinstated with soil cuttings.

7.4 Soil Analytical Schedule

Based on the previous site assessments and site use the following analytical schedule was adopted for the soil assessment works and has been summarised in **Table 3** below. The same analytes were used as those in the previous assessments to make comparisons were required.

	Table 3: Proposed Soil Analytical Schedule										
Samples	Domain	Samples Collected	Samples Analysed	Analytes							
Gridded Boreholes	Fill 20		20	Heavy metals ⁽¹⁾ , TRH ⁽²⁾ , BTEXN ⁽³⁾ , PAH ⁽⁴⁾							
Stockpile	Fill	2	2	Heavy metals, TRH, BTEXN, PAH							
	Duplicates	2	2	Heavy metals, TRH, BTEXN, PAH							
*QC Samples	Rinsate and Field Blank 1		1	Heavy metals, TRH, BTEXN, PAH							
	Trip Blank and Trip Spike	1	1	TRH C ₆ -C ₁₀ and BTEX							

⁽¹⁾ Heavy metals – arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc

Note: Visible evidence of asbestos was not identified during the assessment works. Therefore, no discrete analysis for bulk fragments or asbestos fines was undertaken as per the NEPM 2013 Guidelines.

8 Results

8.1 Field Observations

The subsurface lithology was noted to be relatively consistent across the Site during the soil assessment. A generalised subsurface profile has been summarised in **Table 4** below.

		Table 4: Generalised Subsurface Profile
Approximate Depth (m BGL)	Domain	Soil Description
0.0 - 0.3	Fill	Silty Clay: brown, soft, dry with road base gravels (5-10%, 10-20mm)
0.2 - 0.3	Natural	Silty Clay: light brown, slightly moist, trace ironstone gravel (<5%)

Further details are provided in the borehole logs provided in Appendix B of this report.

A number of other key field observations noted during the soil assessment works are summarised in **Table 5** on the following page.

⁽²⁾ TRH - Total Recoverable Hydrocarbons

⁽³⁾ BTEXN – Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene (including TRH fractions F1, F2 etc. as per NEPM 2013)

⁽⁴⁾ PAH – Polycyclic Aromatic Hydrocarbons

^{*} One (1) blind replicate, one (1) split sample, one (1) rinsate, one (1) trip blank and one (1) trip spike will be collected and analysed. One (1) field blank will also be collected and put on hold with its analysis subject to the atmospheric conditions onsite during sampling.

	Table 5: Field Observations
Staining	Staining was not observed on the surface of the Site or within the soil profile.
Odours	No odours were identified within soils during the assessment.
PID Readings	No elevated PID readings of soil samples were recorded during the assessment.
Waste/Rubble	Visible evidence of asbestos was not identified during the assessment works.
	Anthropogenic material, in the form of porcelain tile, was identified within the fill layer of
	BH11.
	Stockpile SP1, with an estimated volume of 37.5 m³, comprised red/brown clayey sand with
	20% anthropogenic materials including metal wire, concrete blocks and bricks.
	Stockpile SP3, with an estimated volume of 16.0 m ³ , was grass covered and comprised silty clay with shale gravels. Anthropogenic material was not identified within this stockpile.
	Hard building materials (timber, scaffolding, cement bags etc.) were observed to be stored
	across the surface of Lot 3005 and the northern portion of Lot 3004. During the Site
	walkover, Prensa did not observe visible evidence of liquid spills, significant storage of fuel
	or asbestos containing material stored in these areas.
	Remnants of carpark gravel appeared to remain on the surface in the south east portion of
	Lot 3003 and at the entry to Lot 3004, adjacent the north west gate.

8.2 Analytical Results

A summary of the soil analytical results compared to the adopted assessment criteria have been provided in **Table A1** in the '**Tables**' section of this report. The NATA endorsed laboratory results and chain of custody documentation is provided within **Appendix E.**

Review of the analytical results indicated the following:

- All twenty (22) soil samples analysed reported detectable concentrations of some heavy metals above the limit of reporting (LOR). However, the reported concentrations were below the adopted investigation levels for a residential land use A and B;
- Detectable concentrations of TRH were noted in six (6) soil samples, however were less than the adopted screening levels for a residential land use A and B; and
- The concentrations of PAHs and BTEXN were below the LOR in all samples analysed and therefore were below adopted investigation levels for residential land use A and B.

9 Quality Assurance & Quality Control

Prensa reviewed compliance with the procedures and acceptability limits specified in **Appendix D** of this report. The findings of the quality control and assurance review are presented below.

9.1 Quality Control Sampling and Analysis

9.1.1 Blind Replicate and Split Sample RPDs

Blind replicate and split samples were collected and analysed in accordance with the required frequency acceptability limits. The samples were analysed for the same parameters as the primary sample, as specified in **Section 7.4**. A large portion of the contaminants analysed reported concentrations less than the laboratory LOR, whereby relative percentage differences (RPDs) could not be calculated. RPDs were calculated for the quality control samples collected and analysed, where concentrations were reported greater than the laboratory LOR. All concentrations were noted to be

within the acceptability limits as outlined in **Table 6** below. Detailed results are provided in **Table A2** of the '**Tables**' section of this report.

1	Table 6: Blind Replicate and Split Sample RPD Results											
Quality Control Sample	Туре	Primary Sample	RPD Exceedances/Comments									
FD1	Blind Replicate	BH14_0.1-0.2	Concentrations within acceptability limits.									
FD2	Split Sample	BH14_0.1-0.2	Concentrations within acceptability limits, with the exception of PAH, Chromium and Zinc.									

It is noted that the elevated RPDs reported in the blind replicate samples were likely to be associated with some heterogeneity in the fill and therefore these elevated RPDs are not considered to impact upon the reliability of the analytical results provided by the primary laboratory.

9.1.2 Rinsate, Field Blank and Trip Blanks

Rinsate, field blank and trip blank samples were collected and analysed during the assessment works at a frequency consistent with the acceptability limits. A summary of the blank sampling and analysis is provided in **Table 7** below. The analysis of blank samples was reported to be within the acceptability limits. Detailed results are provided in **Table A3** of the '**Tables**' section of this report.

	Table 7: Blank Sample Results											
Туре	Blank Sample ID	Analysis	Results									
Rinsate	RB1 Heavy metals, BTEXN, TRH, PAHs		Concentrations less than LOR									
Field Blank	FB1	Heavy metals, BTEXN, TRH, PAHs	Concentrations less than LOR									
Trip Blank	TB1	BTEX and TRH	Concentrations less than LOR									
Trip Spike	TS1	BTEX and TRH	Concentrations within acceptability limits									

LOR: Limit of Reporting.

9.2 Laboratory Quality Assurance/Quality Control

Review of the reports provided from the primary (Eurofins) and secondary (Envirolab) laboratories indicated that NATA endorsed methods were used and the frequency and findings of laboratory quality control sampling were within the acceptability limits.

9.3 Sample Preservation, Handling and Holding Times

Review of sample receipt documentation provided by the laboratory indicated that:

- COC was completed correctly;
- Attempt to chill was evident;
- Appropriately preserved sample containers were used;
- All samples were received in good condition; and
- Sample containers for volatile analysis were received with zero headspace.

An evaluation of the laboratory sample extraction and analysis dates was also undertaken by Prensa. The review of the NATA laboratory reports indicated samples were extracted and analysed within the recommended holding times adopted by the laboratory.

9.4 Limits of Reporting

Laboratory limits of reporting (LORs) for inorganic, organic and semi-volatile chemicals of concern analysed were less than the adopted criteria for all soil samples analysed.

9.5 Data Validation

Based on the above, an assessment of the precision and accuracy of the analytical data has been made.

All of the quality control results indicate that precision and accuracy of the data was within acceptability limits and the results from blind replicate and split sample analysis are comparable.

The results are therefore considered representative of analyte concentrations in the media assessed and are suitable for evaluating its contamination status.

10 Discussion

The assessment undertaken by Prensa identified the Site was being utilised in the north for storage of building materials and as a site office for a nearby construction. The remainder of the Site appeared to be relatively free of anthropogenic material on the surface and remained grass covered land with some areas of surface gravels. These observations were reflected within the soil profile where brown silty clay was encountered with road base gravels and minimal anthropogenic material noted at depth.

Concentrations of contaminants of potential concern (CoPC) analysed from the samples collected were less than the adopted health investigation and screening levels (HILs and HSLs, NEPM 2013), adopted for a conservative residential land use A and B. Some samples reported detectable CoPC concentrations above the laboratory limit of reporting (LOR) with these were considered to be comparable to results from the previous assessments undertaken at the Site.

11 Conclusions and Recommendations

Based on the findings of the SCA, Prensa concludes the following:

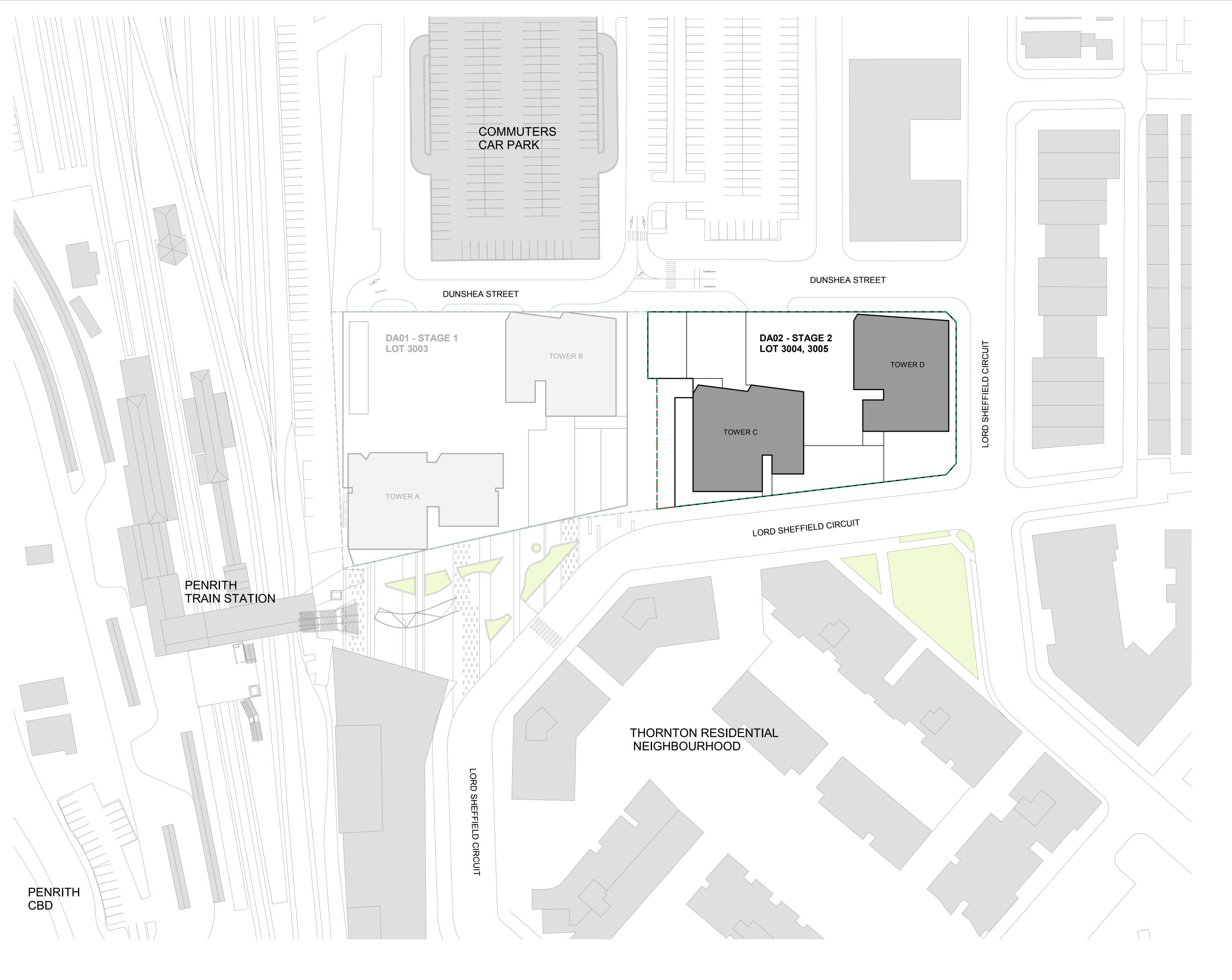
- Chemical analysis of soil samples did not identify concentrations of CoPCs above the adopted
 health investigation and screening levels (HILs/HSLs) for a residential land use and as such, the
 reported concentrations are unlikely to preclude the proposed redevelopment of the site for
 mixed use including high-density residential with basement car parking; and
- It is recommended that the road base gravels observed on the surface of Lot 3004 as well as the building materials stored on Lot 3005 and the northern portion of Lot 3004 are removed prior to development works.

Should soil staining or malodourous soil be encountered during development that has not been assessed as part of this SCA, then Prensa should be contacted as further assessment may be warranted.

Abbreviations

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Abbreviation	Definition
ВаР	Benzo(a)pyrene
BGL	Below Ground Level
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ESL	Ecological Screening Level
HIL	Health Investigation Level
HSL	Health Screening Level
m	Metres
m²	Square Metres (area)
mg/L	Milligrams per Litre
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
РАН	Polycyclic Aromatic Hydrocarbons
PPM	Parts Per Million
QA	Quality Assurance
QC	Quality Control
TRH	Total Recoverable Hydrocarbons
VOC	Volatile Organic Compounds



Figures

S0079:KLM:98585S DA02 Lots 3003 3004 3005 Lord Sheffield Circ

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

CRONE

ABCHI AILOIII **TECTS**

Crone Partners Pty Ltd
Level 18, 680 George Street,
Sydney, NSW 2000, Australia
Ph: +61 2 8295 5300
Fax:+61 2 8295 5301
ABN: 80 095 989 272
Nominated Architect: Greg Crone - NSW Reg. No. 3929

CLIENT

THORNTON OPERATIONS PTY LTD

COLLABORATORS

LANDSCAPE AND PLANNER Urbis Level 8/123 Pitt St, Sydney

SERVICES Level 5/309 George St, Sydney

STRUCTURAL ENGINEER Level 11/345 George St, Sydney

ACOUSTIG ENGINEER Acoustic Logic 9 Sarah St, Mascot NSW 2020

CIVIL ENGINEER 7/153 Walker St, North Sydney

GEOTECHNICAL ENGINEER

Douglas Partners 96-98 Hermitage Rd, West Ryde NSW 2114 BCA/ACCESS CONSULTANT BCA Logic Suite 302, Level 3/151 Castlereagh St,

BASIX CONSULTANT 75 Mary St, St Peters NSW 2044

TRAFFIC CONSULTANT GTA (STANTEC) 16/207 Kent St, Sydney NSW 2000

FIRE ENGINEER

Point NSW 2061 WASTE MANAGEMENT FOOT recycling solutions Elephant's Foot 44-46 Gibson Ave, Padstow

NSW 2211 REFLECTIVITY AND WIND 607 Forest Rd, Bexley NSW

Affinity Fire Suite 606/6A Glen St, Milsons

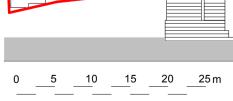
DISCLAIMER: All dimensions and selbuts to be verified prior to commencement, omissions or discrepancies to be notified to the architect. Do not scale from drawings. The Architect shall not be liable for any loss or claims from or in respect any errors existing or resulting from data howsover transferred from the computer system of the Architect to systems of the Client or other Consultants. Recipient of the data shall be responsible for checking accuracy and completeness of data received. Any use of the electronic data in part or whole shall be at the users risk. The CAD files and their contents are representative and cannot be relied upon beyond the information provided in the PDF drawing. COPYRIGHT:

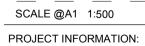
The copyright of this drawing together with any other documents prepared by crone partners architecture studios, pty ltd (cp) remains the property of cp. crone partners grants licence for the use of this document for the purpose for which they are intended. The licence is not transferable without the permission of cp.

A 17.11.2021

KEY PLAN:

NOTES:


ISSUED FOR DEVELOPMENT APPLICATION Revision Notes KEY SECTION:


NORTH

CHECKED BY:

J۷ REV:

CA3759

Thornton Central Village Lot 3003, 3004 and 3005 of DP 1184498 (184, 192 and 41 Lord Sheffield Circuit Penrith NSW

2750) DRAWING TITLE:

LOCATION AND SITE PLAN

SHEET STATUS: FOR APPROVAL DRAWING NUMBER:

DA-02-10001

Lot 3003, 3004, 3005 Lord Sheffield Circuit, Penrith NSW

Site Locality and Sampling Locations

Level 1, 71 Longueville Rd, Lane Cove NSW 2066

P: (02) 8968 2500 F: (02) 8968 2599

Client No: S0079

Job No:98585S

Client: St Hilliers Pty Ltd

Project: Soil Contamination Assessment

Address: Lot 3003, 3004, 3005 Lord Sheffield Circuit, Penrith NSW

Legend:

Site Boundary

Borehole Location

Stockpile Location

Index Location Map:

	Version:	•
	1	1
Date: Figure i	Figure numb	number:
27/09/2021	9/2021 1	1
	Ŭ	1 numbe 1

Tables

S0079:KLM:98585S DA02 Lots 3003 3004 3005 Lord Sheffield Circ

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

prensa 🙈

Client: St Hilliers Pty Ltd	Table	. Al. Janini	ary or mary	tical nesalts	,				
Site Address: Lot 3003,3004, 3005 Lord Sheffield Circuit, Penrith NSW				Heavy	Metal				Inorganic
	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Moisture Content (dried @
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
PQL	2	0.4	5	5	5	0.1	5	5	1
Intrusive Maintenance Worker - Direct Contact, CRC CARE (2011)									
Intrusive Maintenance Worker Clay 0-<2 m - Vapour Intrusion, CRC CARE (2011)									
NEPM 2013 Table 1A(1) HILs Res B Soil	500	150	500	30,000	1200	120	1200	60,000	
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay 0-1m									
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil									
Field ID	T	0.4	1.6	1 25	1 20	0.4	1.0	l 50	T 42
BH1_0.1-0.2	5.7	<0.4	16	25	20	<0.1	18	52	13
BH2_0.05-0.15	6.2	<0.4	24	21	16	<0.1	13	41	11
BH3_0.05-0.1	3.9	<0.4	17	25	13	<0.1	10	59	3.8
BH4_0.1-0.2	6.2	<0.4	18	23	12	<0.1	6	31	10
BH5_0.1-0.2 BH6_0.1-0.2	5.3 6.3	<0.4	21 18	24 25	17 21	<0.1 <0.1	12 13	35 56	15 7
BH7_0.1-0.2	8	<0.4	18	23	19	<0.1	9.4	48	6.3
BH8_0.1-0.2	6.5	<0.4	17	26	27	<0.1	13	67	8.1
BH9_0.1-0.2	6.7	<0.4	17	26	23	<0.1	12	51	15
BH10_0.1-0.2	11	<0.4	25	25	25	<0.1	9.9	48	5.1
BH11 0.1-0.2	8.2	<0.4	28	27	23	<0.1	13	59	4.7
BH12 0.1-0.2	6.2	<0.4	21	24	14	<0.1	10	36	6.4
BH13 0.1-0.2	8.2	<0.4	16	21	20	<0.1	9.4	40	6
BH14 0.1-0.2	6.9	<0.4	17	30	32	0.1	15	78	1.5
BH15 0.1-0.2	7.6	< 0.4	19	23	24	<0.1	10	45	5.6
BH16_0.1-0.2	15	<0.4	39	24	24	<0.1	11	43	12
BH17_0.1-0.2	8.8	< 0.4	27	25	26	< 0.1	15	50	<1
BH18_0.1-0.2	5.7	<0.4	12	14	11	< 0.1	5.6	24	6.7
BH19_0.1-0.2	6.4	<0.4	33	30	20	<0.1	30	49	6.9

36

3.8

19

130

25

9.5

16

10

24

16

< 0.1

< 0.1

< 0.1

10

<5

7.6

17

7.8

8.5

5.6

< 0.4

< 0.4

< 0.4

BH20_0.1-0.2

SP3

Project: 98585S Penrtih SCA

Client: St Hilliers Pty Ltd

Table A1: Summary of Analytical Results

prensa 🙈

52

102

<20

Client: St Hilliers Pty Ltd												
Site Address: Lot 3003,3004, 3005 Lord Sheffield Circuit, Penrith NSW	TRH											
	C10-C16	C16-C34	C34-C40	F2-NAPHTHALENE	62 - 93	C10 - C40 (Sum of total)	C6-C10 less BTEX (F1)	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	C6-C10
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PQL	50	100	100	50	20	100	20	20	50	50	50	20
Intrusive Maintenance Worker - Direct Contact, CRC CARE (2011)												82000
Intrusive Maintenance Worker Clay 0-<2 m - Vapour Intrusion, CRC CARE (2011)												
NEPM 2013 Table 1A(1) HILs Res B Soil												
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay 0-1m				280			50					
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil	1000	3500	10,000									800
Field ID BH1 0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH2 0.05-0.15	<50	140	<100	<50	<20	140	<20	<20	71	96	167	<20
BH3_0.05-0.1	<50	200	130	<50	<20	330	<20	<20	90	150	240	<20
BH4_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH5_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH6_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH7_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH8_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH9_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH10_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH11_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	61	61	<20
BH12_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH13_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH14_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH15_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH16_0.1-0.2	<50	<100	<100	<50	<20	<100	<20	<20	<50	<50	<50	<20
BH17_0.1-0.2	<50	<100	<100	<50	<20	<100	<21	<20	<50	77	77	<20
BH18_0.1-0.2	<50	<100	<100	<50	<20	<100	<22	<20	<50	<50	<50	<20
BH19_0.1-0.2	<50	<100	<100	<50	<20	<100	<23	<20	<50	68	68	<20
BH20_0.1-0.2	<50	<100	<100	<50	<20	<100	<24	<20	<50	<50	<50	<20
SP1	<50	<100	<100	<50	<20	<100	<25	<20	<50	<50	<50	<20

<100

<100

<50

<20

<100

<26

<20

50

Project: 98585S Penrtih SCA Client: St Hilliers Pty Ltd Table A1: Summary of Analytical Results

prensa 🙈

< 0.5

Client: St Hilliers Pty Ltd												
Site Address: Lot 3003,3004, 3005 Lord Sheffield Circuit, Penrith NSW						P/	AΗ					
	Benzo(a)pyrene TEQ (LOR)	Benzo(b+j)fluoranthene	Benzo(a)pyrene TEQ calc (Benzo(a)pyrene TEQ calc (Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene
noi	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PQL Intrusive Maintenance Worker Direct Contact CDC CARE (2011)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Intrusive Maintenance Worker - Direct Contact, CRC CARE (2011)												
Intrusive Maintenance Worker Clay 0-<2 m - Vapour Intrusion, CRC CARE (2011)			4									
NEPM 2013 Table 1A(1) HILs Res B Soil NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay 0-1m			4									
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil												
Field ID												
BH1 0.1-0.2	1.2	< 0.5	0.6	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
BH2 0.05-0.15	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH3_0.05-0.1	1.2	<0.5	0.6	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5
BH4_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH5_0.1-0.2	1.2	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
BH6_0.1-0.2	1.2	< 0.5	0.6	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
BH7_0.1-0.2	1.2	<0.5	0.6	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
BH8_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5
BH9_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
BH10_0.1-0.2	1.2	<0.5	0.6	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
BH11_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
BH12_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
BH13_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH14_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH15_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
BH16_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH17_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH18_0.1-0.2	1.2	<0.5	0.6	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH19_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH20_0.1-0.2	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SP1	1.2	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

0.6

< 0.5

< 0.5

<0.5

<0.5

< 0.5

< 0.5

Table A1: Summary of Analytical Results

prensa 🙈

,								
Site Address: Lot 3003,3004, 3005 Lord Sheffield Circuit, Penrith NSW				P/	AΗ			
	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	PAHs (Sum of total)	Phenanthrene	Pyrene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Intrusive Maintenance Worker - Direct Contact, CRC CARE (2011)					29000			
Intrusive Maintenance Worker Clay 0-<2 m - Vapour Intrusion, CRC CARE (2011)								
NEPM 2013 Table 1A(1) HILs Res B Soil								
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay 0-1m					5			
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil								
Field ID								
BH1_0.1-0.2	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
BH2_0.05-0.15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
BH3_0.05-0.1	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
BH4_0.1-0.2	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5
BH5_0.1-0.2	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
BH6_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH7_0.1-0.2	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
BH8_0.1-0.2	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
BH9_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
BH10_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH11_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH12_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH13_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH14_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH15_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH16_0.1-0.2	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
BH17_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH18_0.1-0.2	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
BH19_0.1-0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH20_0.1-0.2	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
SP1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

<0.5

Table A1: Summary of Analytical Results

Site Address: Lot 3003,3004, 3005 Lord Sheffield Circuit, Penrith NSW				BTEXN			
	Benzene	Ethylbenzene	Toluene	Xylene (m & p)	Xylene (o)	Naphthalene	Xylene Total
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PQL	0.1	0.1	0.1	0.2	0.1	0.5	0.3
Intrusive Maintenance Worker - Direct Contact, CRC CARE (2011)	1100	85000	120000			29000	130000
Intrusive Maintenance Worker Clay 0-<2 m - Vapour Intrusion, CRC CARE (2011)	350						
NEPM 2013 Table 1A(1) HILs Res B Soil							
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay 0-1m	0.7	NL	480			5	110
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil							

< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	< 0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	<0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	< 0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	<0.3
< 0.1	< 0.1	< 0.1	<0.2	< 0.1	<0.5	< 0.3
< 0.1	< 0.1	<0.1	<0.2	<0.1	<0.5	<0.3
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Project: 98585S Penrith SCA Client: St Hilliers Pty Ltd

Site Address: Lot 3003 3004 3005 Lord Sheffield Cct, Penrith NSW

			Field ID Sampled Date	BH14 16/09/2021	FD1 16/09/2021	RPD	BH14 16/09/2021	FD2 16/09/2021	RPD
			•						
Method	ChemName	Units	1						
PAH	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	0	1.2	<0.5	82
	Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	0.6	0.6	0	0.6	<0.5	18
	Benzo(a)pyrene TEQ calc (Zero)	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Acenaphthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Acenaphthylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Benz(a)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Benzo(a) pyrene		0.5 (Primary): 0.05 (Interlab)	<0.5	<0.5	0	<0.5	<0.05	0
	Benzo(g,h,i)perylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Benzo(k)fluoranthene	mg/kg		<0.5	<0.5	0	<0.5		
	Chrysene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Dibenz(a,h)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Fluoranthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Fluorene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Indeno(1,2,3-c,d)pyrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	PAHs (Sum of total)	mg/kg		<0.5	<0.5	0	<0.5		
	Phenanthrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Pyrene	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
									\perp
BTEXN	Benzene	_	0.1 (Primary): 0.2 (Interlab)	<0.1	<0.1	0	<0.1	<0.2	0
	Ethylbenzene	_	0.1 (Primary): 1 (Interlab)	<0.1	<0.1	0	<0.1	<1.0	0
	Toluene	J	0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
	Xylene (m & p))	0.2 (Primary): 2 (Interlab)	<0.2	<0.2	0	<0.2	<2.0	0
	Xylene (o))	0.1 (Primary): 1 (Interlab)	<0.1	<0.1	0	<0.1	<1.0	0
	Xylene Total	J	0.3 (Primary): 3 (Interlab)	<0.3	<0.3	0	<0.3	<3.0	0
	Naphthalene	mg/kg	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
Heavy Metal	Lead	ma/ka	5 (Primary): 1 (Interlab)	32.0	40.0	22	32.0	20.0	46
ricavy ivictai	Arsenic		2 (Primary): 4 (Interlab)	6.9	11.0	46	6.9	7.0	1
	Cadmium		i .	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium (III+VI)	mg/kg	5 (Primary): 1 (Interlab)	17.0	23.0	30	17.0	45.0	90
	Copper		5 (Primary): 1 (Interlab)	30.0	30.0	0	30.0	19.0	45
	Mercury	mg/kg		0.1	<0.1	0	0.1	<0.1	0
	Nickel	_	5 (Primary): 1 (Interlab)	15.0	19.0	24	15.0	9.0	50
	Zinc		5 (Primary): 1 (Interlab)	78.0	87.0	11	78.0	36.0	74
		mg/ng	o (Frinaly). F (monab)	7 0.0	07.0	<u> </u>	. 6.6	30.0	+
TRH	C10-C16	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	C6-C10 less BTEX (F1)		20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<25.0	0
	C16-C34	mg/kg		<100.0	<100.0	0	<100.0	<100.0	0
	C34-C40	mg/kg		<100.0	<100.0	0	<100.0	<100.0	0
	F2-NAPHTHALENE	mg/kg		<50.0	<50.0	0	<50.0	<50.0	0
	C6 - C9		20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<25.0	0
	C10 - C40 (Sum of total)		100 (Primary): 50 (Interlab)	<100.0	<100.0	0	<100.0	<50.0	0
	C6-C10	_	20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<25.0	0
	C10 - C14		20 (Primary): 50 (Interlab)	<20.0	<20.0	0	<20.0	<50.0	0
	C15 - C28		50 (Primary): 100 (Interlab)	<50.0	<50.0	0	<50.0	<100.0	0
	C29-C36		50 (Primary): 100 (Interlab)	<50.0	58.0	15	<50.0	<100.0	0
	+C10 - C36 (Sum of total)	mg/kg	, , , , , ,	<50.0	58.0	15	<50.0	<50.0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

Any methods in the row header relate to those used in the primary laboratory

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories.

			Field ID	TB1	TS1	FB1	RB1
			Sampled Date	16/09/2021	16/09/2021	16/09/2021	16/09/2021
F=							
Method_Type	ChemName	Units	EQL	mg/kg	%	mg/l	mg/l
T D	040.040		50			0.05	0.05
TRH	C10-C16	mg/kg				<0.05	<0.05
	C16-C34					<0.1	<0.1
	C34-C40	mg/kg	100			<0.1	<0.1
	F2-NAPHTHALENE	mg/kg	50			< 0.05	< 0.05
	Naphthalene	mg/kg	0.5	<0.5	88	<10	<10
	C6 - C9	mg/kg	20	<20	87	<20	<20
	C10 - C40 (Sum of total)	mg/kg	100			<100	<100
	C6-C10 less BTEX (F1)	mg/kg	20	<20		< 0.02	< 0.02
	C6-C10	mg/kg	20	<20	86	< 0.02	< 0.02
	C10 - C14	mg/kg	20			<50	<50
	C15 - C28	mg/kg	50			<100	<100
	C29-C36	mg/kg				<100	<100
	+C10 - C36 (Sum of total)	mg/kg	50			<100	<100
BTEX	Benzene	mg/kg	0.1	<0.1	94	<50	<50
	Ethylbenzene	mg/kg		<0.1	84	<100	<100
	Toluene	mg/kg		<0.1	87	<100	<100
	Xylene (m & p)	mg/kg		<0.2	83	<100	<100
	Xylene (o)	mg/kg		<0.1	84	<1	<1
	Xylene Total	mg/kg	0.3	< 0.3	84	<3	<3

Photographs

S0079:KLM:98585S DA02 Lots 3003 3004 3005 Lord Sheffield Circ

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

2. Overview of the central portion of the Site (Part Lot 3003/3004).

3. Overview of the northern portion of the Site (Lot 3005).

4. Hard building material stored in the northern portion of the Site.

5. Overview of Stockpile SP1 located in the northern portion of the Site.

6. Overview of Stockpile SP3 located in the central portion of the Site.

7. Surface gravels in the central portion of the Site adjacent gate entry on the western boundary.

8. Hard waste material stored within Lot 3004.

9. Overview of fill material – brown silty clay.

Appendix A: Adopted Soil Investigation Levels, Screening Levels and Criteria

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Environmental Value – Human Health

NEPM 2013 - Health Investigation Levels / Health Screening Levels

The NEPM 2013 provides HILs have been developed for a broad range of inorganic and organic substances. The HILs are applicable for assessing human health risk via relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3.0 m below the surface for residential use. Site-specific conditions should determine the depth to which HILs apply for other land uses. Investigation level values are provided for four (4) generic land use settings as follows:

- **HIL 'A':** Residential with garden/accessible soil (home-grown produce <10% fruit and vegetable intake (no poultry), also includes childcare day care centres, preschools and primary schools;
- **HIL 'B':** Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments;
- **HIL 'C':** Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate; and
- **HIL 'D':** Commercial/Industrial includes premises such as shops, offices, factories and industrial sites.

HSLs have been developed for petroleum compounds and fractions and are applicable to assessing human health risk via the vapour inhalation pathway. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types and depths extending from the ground surface to < 4 mBGL.

CRC CARE 2011 - Health Screening Levels

The CRC Care Technical Report No. 10, *Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater*, 2011 (CRC 2011) provides the framework for the conduct of petroleum vapour intrusion assessments resulting from contamination of soil and/or groundwater by petroleum hydrocarbons.

The NEPM 2013 HSLs for vapour intrusion were derived from this document. Prensa have also considered the HSLs prescribed in the CRC 2011 for assessing risks from petroleum hydrocarbons through the dermal contact exposure pathway. Based on the continued residential use of the Site and in consideration of unrestricted land use and the protection of construction/maintenance workers performing intrusive works at the Site, the application of HSL A and B were adopted for consideration of direct contact with soil.

NEPM 2013 - Management Limits

In addition to the application of the HSLs, the NEPM 2013 also provides Management Limits for TRH fractions (F1 to F4), which are used to consider the physical and aesthetic risks of light non-aqueous phase liquid (LNAPL) resulting from effects of petroleum hydrocarbons. Application of the Management Limits requires consideration of site-specific factors, such as depth of building basements, services and/or groundwater. Specifically, the management limits are intended to be used as a screening value to assess the likelihood of concentrations of contaminants resulting in:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons.

Therefore, the management limits are adopted, in part, to evaluate risks to human health.

Adopted Guideline Values

For the purpose of this assessment, the following HILs and HSLs are proposed to be adopted, based on the residential use of the Site:

- NEPM 2013 HIL Res A/B to assess whether contamination may be present that may pose a health risk to human receptors for the residential use of the Site;
- NEPM 2013 HSL Res A/B to assess whether petroleum hydrocarbon contamination may be present that may pose a risk to human receptor through the vapour inhalation exposure pathway for the residential use of the Site;
- CRC CARE Residential/Parkland to assess whether petroleum hydrocarbon contamination may be present that may pose a risk to human receptor through the dermal contact exposure pathway for the residential use of the Site;
- NEPM 2013 Management Limits for residential land use setting to assess for the potential generation of LNAPL and the associated potential health effects.

Appendix B: Soil Borehole Logs

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

BOREHOLE LOG BH01

Job Name: Soil Contamination Assessment

Client: St. Hilliers Depth of Hole: 0.3 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW

Drawn By: MXH Approved By:

COMMENTS:

COMM	IENTS:				
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID
	D		Fill: loose, soft, brown, silty CLAY, trace road base gravel (< 5%, 10-20mm)		
- 0.1				BH01_0.1_0.2	PID 0.0
- 0.2			Becoming soft at 0.25 meters below ground level (mBGL)		
0.0			Target depth reached End of hole (EOH) at 0.3 mBGL		

DocumentpSetIIDe4958E518g.ESdat.net on 30 Sep 2021 Version: 1, Version Date: 24/03/2022

BOREHOLE LOG BH02

Client: St. Hilliers Depth of Hole: 0.15 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMM	IENTS:				
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID
	D		Fill: soft, brown, silty CLAY, trace road base gravel (< 5%, 10-20 mm)		
- 0.1				BH02_0.05_0.15	0.0
			Refusal on concrete and EOH at 0.15 mBGL		
- 0.2			Telusal of consider and contact. To higher		
- 0.3					

DocumentpSetIIDe4958E518g.ESdat.net on 30 Sep 2021 Version: 1, Version Date: 24/03/2022

Client: St. Hilliers Depth of Hole: 0.1 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

соми	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
	D		Fill: loose, very soft, brown/grey silty CLAY with road base gravel (~10%, 10-20mm)				
- 0.1				BH03_0.05_0.1	PID 0.0		
0.1							
			Refusal on gravel and EOH at 0.15 mBGL				
- 0.2							
- 0.3							

Client: St. Hilliers Depth of Hole: 0.3 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Drawn By: MXH Approved By:

COMMENTS:

COMM	IENTS:				
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PIO
	D		Fill: Loose, soft, brown, silty CLAY, trace road base gravel (< 5%, 10-20mm)		
- 0.1				BH04_0.1_0.2	PID 0.0
- 0.2	SM		Becoming soft at 0.25 mBGL		
0.3			Target depth reached EOH at 0.3 mBGL		

Client: St. Hilliers Depth of Hole: 0.25 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMM	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
- 0.1 - 0.2	D		Fill: Firm, brown, silty CLAY with traces of road base gravel (< 5%, 10-20 mm)	BH05_0.1_0.2	PID 0.0		
- 0.3	imor Ti		Target depth reached EOH at 0.25 mBGL				

Client: St. Hilliers Depth of Hole: 0.3 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Excavation Method: Hand Auger

Drawn By: MXH Approved By:

COMM	COMMENTS:							
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID			
	D		Fill: Very loose, fine grained, grey, gravely SAND, contains road base gravel (~10 - 20%, 5 - 10 mm) Fill: Soft, brown, silty CLAY, traces of gravel (< 5%, 10 - 20 mm)					
- 0.1				BH06_0.1_0.2	PID 0.2			
0.2			Becoming firm at 0.25 mBGL					
			Target depth reached EOH at 0.3 mBGL					

Client: St. Hilliers Depth of Hole: 0.2 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Drawn By: MXH Approved By:

COMM	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
- 0.1	D		Fill: Soft, brown, silty CLAY, trace road base gravel (< 5%, 10 - 20 mm)	DUOZ O 4 O O			
				BH07_0.1_0.2	PID 0.0		
0.2			Refusal on gravel and EOH at 0.2 mBGL				
- 0.3							

Client: St. Hilliers Depth of Hole: 0.25 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMMENTS:

COMIN	MENTS:				1
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID
	D		Fill: Soft, brown, silty CLAY, traces of road base gravel (< 5%, 10 - 20 mm)		
- 0.1				BH08_0.1_0.2	PID 0.0
- 0.2	SM		Natural: Soft, light brown, Silty CLAY, with trace ironstone gravel (< 5%) Target depth reached EOH at 0.25 mBGL		
- 0.3					

Client: St. Hilliers Depth of Hole: 0.3 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMN	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
	D		Fill: Very loose, fine grained, grey, gravely SAND, with road base gravel (~10 - 20%, 10 - 20 mm) Fill: Soft, brown, silty CLAY, with traces of gravel (less than 5%, 10 - 20 mm)				
- 0.1				BH09_0.1_0.2	PID 0.2		
- 0.2							
0.3			Target depth reached				
			EOH at 0.3 mBGL				

Client: St. Hilliers Depth of Hole: 0.2 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COM	COMMENTS:					
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID	
- 0.1	D		Natural: Soft, orange, silty/CLAY, with trace ironstone gravel (< 5%)	BH10_0.1_0.2	PID 0.0	
0.3			Target depth reached EOH at 0.2 mBGL			

Documentpsett പിറ്റു ക്രോ Ag. ESdat.net on 30 Sep 2021

Version: 1, Version Date: 24/03/2022

Client: St. Hilliers Date of Sampling: 16/09/2021 Depth of Hole: 0.2 mBGL

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH
Site Location: Sheffield Circuit, Penrith, NSW Approved By:

Job Name: Soil Contamination Assessment

COMN	MENTS:	: Adjace	nt to stockpile (SP5)		
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	OIA
- 0.1	D		Fill: Soft, light brown, gravelly CLAY, with road base gravel (~10%, 10 - 20 mm) With silt, with roadbase gravel (~20%, 10 - 20mm) 1x porcelain tile fragment (10mm x 5mm)	BH11_0.1_0.2	0.0
0.2					
			Target depth reached EOH at 0.2 mBGL		
- 0.3					

Version: 1, Version Date: 24/03/2022

Client: St. Hilliers Date of Sampling: 16/09/2021 Depth of Hole: 0.25 mBGL

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By:

Job Name: Soil Contamination Assessment

COMM	COMMENTS:							
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID			
	D		Fill: Soft, brown, silty CLAY, with road base gravel (<10%, 10 - 20 mm)					
- 0.1				BH12_0.1_0.2	0.0			
			Target depth reached EOH at 0.25 mBGL					
- 0.3								

Client: St. Hilliers Depth of Hole: 0.2 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Drawn By: MXH Approved By:

COMMENTS:

COMN	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
- 0.1	D		Fill: Soft, brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm)				
0.1				BH13_0.1_0.2	0.0		
- 0.3			Target depth reached EOH at 0.2 mBGL				

Client: St. Hilliers Depth of Hole: 0.28 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Drawn By: MXH Approved By:

COMMENTS:

COMM	IENTS:				
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	DIO
- 0.1 - 0.2	D		Fill: Soft, brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm)	BH14_0.1_0.2 Field Duplicate 1 Field Duplicate 2	0.0
- 0.3			Target depth reached EOH at 0.28 mBGL		

Client: St. Hilliers Depth of Hole: 0.25 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMM	COMMENTS:								
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PIO				
- 0.1	D		Fill: Soft, brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm)	BH15_0.1_0.2	0.0				
0.2									
- 0.3			Target depth reached EOH at 0.25 mBGL						

Client: St. Hilliers Depth of Hole: 0.28 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Drawn By: MXH Approved By:

COMMENTS:

COMIN	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
- 0.1	D		Fill: Soft, brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm)	BH16_0.1_0.2	0.0		
- 0.2							
- 0.3			Target depth reached EOH at 0.28 mBGL				

Job Name: Soil Contamination Assessment

Client: St. Hilliers Depth of Hole: 0.25 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Site Location: Sheffield Circuit, Penrith, NSW

Drawn By: MXH Approved By:

COMMENTS:

COMN	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PIO		
	D		Fill: Soft, brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm)				
- 0.1				BH17_0.1_0.2	0.0		
- 0.2			Target depth reached EOH at 0.25 mBGL				
- 0.3							

Client: St. Hilliers Date of Sampling: 16/09/2021 Depth of Hole: 0.25 mBGL

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMM	COMMENTS:							
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID			
- 0.1	D		Fill: Soft, brown, silty CLAY, with road base gravel (~10%, 10 - 20 mm)	BH18_0.1_0.2	0.0			
- 0.2								
- 0.3			Target depth reached EOH at 0.25 mBGL					

Client: St. Hilliers Depth of Hole: 0.3 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Site Location: Sheffield Circuit, Penrith, NSW Job Name: Soil Contamination Assessment

Excavation Method: Hand Auger

Drawn By: MXH Approved By:

COMMENTS:

COMM	MMENTS:							
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID			
- 0.1	D		Fill: Soft, brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm)	BH19_0.1_0.2	0.0			
- 0.2								
-0.3								
0.0			Target depth reached EOH at 0.3 mBGL					

Client: St. Hilliers Depth of Hole: 0.2 mBGL Date of Sampling: 16/09/2021

Job Number: 98585S Excavation Method: Hand Auger Drawn By: MXH Site Location: Sheffield Circuit, Penrith, NSW Approved By: Job Name: Soil Contamination Assessment

COMM	COMMENTS:						
Depth (m)	Moisture	Graphic Log	Subsurface Profile	Samples	PID		
- 0.1	D		Fill: Soft, light brown, silty CLAY, with trace road base gravel (< 5%, 10 - 20 mm) and trace iron stones (< 5%, 5 - 10 mm)	BH20_0.1_0.2	0.0		
- 0.2							
0.2			Target depth reached EOH at 0.2 mBGL				
- 0.3							

Appendix C: Equipment Calibration Certificates

Calibration Certificate

AirMet Scientific P/L

Level 3, 18-26 Dickson Avenue Artarmon NSW 2064, Australia

Tel: 02 8425 8300 Fax: 02 8425 8399

This document certifies that the instrument detailed has been calibrated to the parameters

Certificate Print Date: 10-Jun-2021 Call ID / Order No: 250461

Calibration Date: 10-Jun-2021 Job No / Pack No: S2504610001

Next Calibration Due: 7-Dec-2021

Customer: Prensa-ID 202984 **Serial No**: 595-000852

Description: MINIRAE

Calibration Summary

Frequency: 180 Days Temp: 22°C As Found: In Tolerance Result: Pass

Humidity: 45% Certificate: S2504610001

<u>Desc</u>	As Found <u>Actual</u> <u>Result</u>	As Left (Cal Status) <u>Actual</u> <u>Result</u>
PID ISOBUTYLENE 100ppm	98.2 Pass	100.2 Pass

Standard Used						
Equip ID	Description	Valid Until	<u>Cert</u>			
SYFRESHAIR	Ambient Air	29-08-2028				
SY373	Zero Grade Air 20.9%VOL O2, N2 Balance	09-10-2025	400294110			
SY387	ISOBUTYLENE 100PPM AIR Balance	10-02-2026	400296268			

Completed By:	Jason Cheng	Signed:
---------------	-------------	---------

Page 1 of 1

eDoc V1R0

Appendix D: Quality Assurance and Quality Control

Quality Assurance/Quality Control

Adopted Guidelines

The data quality assurance and control (QA/QC) procedures adopted by Prensa enables for an evaluation to be made regarding the useability of the data collected. Specifically, the use of the data in terms of its accuracy and reliability in forming the conclusions on the condition of the environment being investigated. The approach was generally based on guidance presented in the following documents:

- Standards Australia, Australian Standard, Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile Compounds, 2005 (AS 4482.1-2005)¹;
- Standards Australia and Standards New Zealand, Australian/New Zealand Standard, Water Quality Sampling Part 1: Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples, 1998 (AS/NZS 5667.1-1998)²;
- Standards Australia and Standards New Zealand, Australian/New Zealand Standard, *Water Quality Sampling Part 11: Guidance on Sampling of Groundwaters*, 1998 (AS/NZS 5667.11-1998)³;
- Victorian EPA Industrial Waste Resource Guidelines (IWRG701), Sampling and Analysis of Waters, Wastewaters, Soils and Waste, June 2009;
- NEPC, National Environmental Protection (Assessment of Site Contamination) Measure 1999,
 May 2013;
- USEPA, Guidance on Systematic Planning Using the Data Quality Objectives Process, February 2006; and
- USEPA, Guidance on Environmental Data Verification and Data Validation, January 2008.

¹ AS 4482.1-2005 is only applicable to soil assessment works.

² AS/NZS 5667.1-1998 is only applicable to water assessment works.

³ AS/NZS 5667.11-1998 is only applicable to groundwater assessment works.

Quality Assurance Procedure

The following quality assurance procedures and acceptability limits have been adopted to verify the quality of the data collected during completion of the assessment.

		Data Assurance Pro	cedure	
Quality Assurance Process	Data Quality Indicators ⁽¹⁾	Description	Acceptability Limit(s)	Reference(s)
Sampling procedures	Precision, Comparability, Representativeness	Sampling conducted in accordance with Prensa work instructions and appropriate standards. Field forms used.	Adhere to standard procedures and forms.	AS/NZS 5667.11-1998 AS/NZS 5667.1-1998 EPAV, Publication 669 2000 Prensa work instructions HEPA NEMP 2018
Equipment calibration	Accuracy	Field equipment calibrated in accordance with the manufactures specifications.	Field equipment calibrated in accordance with the manufactures specifications.	EPAV, Publication 669 2000 Prensa work instructions
Analytical testing methods	Accuracy, Comparability	National Association of Testing Authorities (NATA) accredited methods to be used for analysis.	Primary and secondary laboratories are to use NATA accredited methods for analysis.	NEPM 2013 Prensa work instructions
Sample preservation, handling and holding times	Accuracy, Comparability, Representativeness	Samples appropriately preserved upon collection, stored, transported and analysed under recommended conditions within holding times.	Sample containers to be supplied by a NATA accredited laboratory. Appropriately preserved sampling containers to be used for the requested analysis. Samples stored and transported directly to the laboratory in chilled ice chests with completed chain of custody forms. Samples extracted and analysed within the recommended holding times specified by the NATA accredited laboratory.	AS/NZS 5667.1-1998 IWRG701 NEPM 2013 Prensa work instructions

	Data Assurance Procedure				
Quality Assurance Process	Data Quality Indicators ⁽¹⁾	Description	Acceptability Limit(s)	Reference(s)	
Data management and reporting	Accuracy	Potential for transcription errors.	Entry of field data is to be peer reviewed during an internal technical review of report and appendices.	Prensa work instructions.	
			Laboratory data requested in database format from the laboratory. Database files exported to create summary tables. At least 10% of data in the tables checked for inconsistencies.		
Data useability	Completeness	The sample volume and analytical methods enable for the limit of reporting for contaminants of concern to be less than the adopted investigation levels/criteria.	Limits of reporting less than the investigation levels/screening criteria adopted.	Prensa work instructions.	

⁽¹⁾ **Precision** - A measure of the variability (or reproducibility) of data, **Comparability** - The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event, **Representativeness** - The confidence (expressed qualitatively) that data is representative of each medium present on the site, **Accuracy (bias)** - A quantitative measure of the closeness of reported data to the true value and **Completeness** - A measure of the amount of usable data from a data collection activity.

Quality Control Sampling and Analysis

The following quality control sampling and analysis procedures and acceptability limits have been adopted to evaluate the validity of the analytical data.

	Quality Control Sampling and Analysis Procedure				
Quality Assurance Process	Data Quality Indicators ⁽¹⁾	Description	Acceptability Limit(s)	Reference(s)	
Quality control sampling and analysis frequency	Precision	Field quality control samples collected in accordance with Prensa work instructions and appropriate standards.	Blind replicate sample ≥1 in 20 primary samples Split sample ≥1 in 20 primary samples Rinsate ≥1 per piece of equipment per day Field blank ≥1 per day Trip blank ≥1 per ice chest containing samples to be analysed for volatile compounds	AS/NZS 5667.1-1998 AS 4482.1-2005 Prensa work instructions.	
Blind Replicate and split sample analysis	Precision, Accuracy	Blind replicate sample analysis used to quantitatively assess variability in the concentrations of analytes reported from samples collected from the same location. This provides insight into the reproducibility of the lab analysis. Split sample analysis used to assess variability in the analyte concentrations reported when a sample from the same location is analysed at a different laboratory. Used to assess the accuracy of the concentrations reported by the primary laboratory.	Analysed for the same contaminants of concern as the primary sample. RPD 4— non limiting when concentrations are <10×LOR RPD<30% of mean concentration when >20×LOR RPD<50% of mean concentration when 10- 20×LOR	AS 4482.1-2005 NATA laboratory procedures	
Rinsate preparation and analysis	Accuracy, Comparability, Representativeness	Used to evaluate the potential for contamination on sampling equipment to have cross contaminated a sample. Samples prepared in the field following decontamination of sampling equipment.	Concentrations of analytes below the LOR.	AS 4482.1-2005 Prensa work instructions.	

⁴ RPD (relative percentage differences are calculated by dividing the difference between the primary sample and quality control sample by the average of the two, as shown below:

RPD =
$$\frac{(X1 - X2)}{(X1 + X2)/2} \times 100\%$$

Where

X1 = Primary sample result

X2 = Replicate sample result

S0079:KLM:98585S DA02 Lots 3003 3004 3005 Lord Sheffield Circuit SCA V2

eptember 2021

		Quality Control Sampling and A	nalysis Procedure	
Quality Assurance Process	Data Quality Indicators ⁽¹⁾	Description	Acceptability Limit(s)	Reference(s)
Field blank preparation and analysis	Accuracy, Comparability, Representativeness	Used to evaluate the potential for contamination of a sample during the collection procedure. Samples prepared in the field.	Concentrations of analytes below the LOR.	AS/NZS 5667.1-1998 Prensa work instructions.
Trip blank preparation and analysis	Accuracy, Comparability, Representativeness	Used to evaluate cross contamination between samples in storage and transit as a product of handling. Samples prepared by the laboratory.	Concentrations of analytes below the LOR.	AS/NZS 5667.1-1998 AS 4482.1-2005 Prensa work instructions.
Laboratory quality control analysis	Precision, Accuracy	Duplicates – A second piece of analysis from the same sample and reported in the same units as the result to show comparison	RPD limits specified for blind replicate and split sample analysis.	As per blind replicate and split sample analysis.
		Spike – Addition of a known concentration of an analyte to a sample and reported as percentage recovery.	Recovery typically between 70-130% or 30-130% for phenols. Dynamic limits are typically set by the laboratory.	NATA laboratory procedures
		Method Blanks – Performed on laboratory certified sands (solids) and deionised water (water).	Concentrations below the laboratory's LOR.	NATA laboratory procedures
		Laboratory Control Samples (LCS) – Reported as percent recovery.	Recovery typically between 70-130% or 30-130% for phenols. Dynamic limits are typically set by the laboratory.	NATA laboratory procedures
		Certified Reference Material (CRM) – Use an analyte of known concentration and reported as percent recovery.	Dynamic limits are typically set by the laboratory.	NATA laboratory procedures
		Surrogates - added to all samples where appropriate and reported as a percentage recovery.	Dynamic limits are typically set by the laboratory.	NATA laboratory procedures

eptember 2021

Appendix E: NATA Accredited Laboratory Report & Chain of Custody Documentation

S0079:KLM:98585S DA02 Lots 3003 3004 3005 Lord Sheffield Circuit SCA V2

Prensa Pty Ltd NSW Level 1, 71 Longueville Road Lane Cove NSW 2066

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Darren Fernandez

 Report
 825574-S

 Project name
 PENRITH SCA

 Project ID
 98585S

 Received Date
 Sep 16, 2021

Client Sample ID			BH1	BH2	внз	BH4	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Se37330	S21-Se37331	S21-Se37332	S21-Se37333 Sep 16, 2021	
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021		
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons	•	·					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	71	90	< 50	
TRH C29-C36	50	mg/kg	< 50	96	150	< 50	
TRH C10-C36 (Total)	50	mg/kg	< 50	167	240	< 50	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	140	200	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	130	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	140	330	< 100	
ВТЕХ							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	54	74	85	51	
Polycyclic Aromatic Hydrocarbons		_					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	

Client Sample ID			BH1	BH2	внз	ВН4	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Se37330	S21-Se37331	S21-Se37332	S21-Se37333	
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	60	89	94	99	
p-Terphenyl-d14 (surr.)	1	%	66	90	93	90	
Heavy Metals							
Arsenic	2	mg/kg	5.7	6.2	3.9	6.2	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	16	24	17	18	
Copper	5	mg/kg	25	21	25	23	
Lead	5	mg/kg	20	16	13	12	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	18	13	10	6.0	
Zinc	5	mg/kg	52	41	59	31	
% Moisture	1	%	13	11	3.8	10	

Client Sample ID			BH5	вн6	ВН7	ВН8	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.	s		S21-Se37334	S21-Se37335	S21-Se37336	S21-Se37337	
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	85	90	84	77	

Client Sample ID			BH5	BH6	ВН7	ВН8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se37334	S21-Se37335	S21-Se37336	S21-Se37337
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	77	96	81	85
p-Terphenyl-d14 (surr.)	1	%	87	88	89	92
Heavy Metals						
Arsenic	2	mg/kg	5.3	6.3	8.0	6.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	18	18	17
Copper	5	mg/kg	24	25	21	26
Lead	5	mg/kg	17	21	19	27
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	13	9.4	13
Zinc	5	mg/kg	35	56	48	67
		1				
% Moisture	1	%	15	7.0	6.3	8.1

Client Sample ID Sample Matrix			BH9 Soil	BH10 Soil	BH11 Soil	BH12 Soil
Eurofins Sample No.			S21-Se37338	S21-Se37339	S21-Se37340	S21-Se37341
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	61	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	61	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			ВН9	BH10	BH11	BH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se37338	S21-Se37339	S21-Se37340	S21-Se3734
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	<u>'</u>	-				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX		199				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.1
o-Xylene	0.2	mg/kg	< 0.2	< 0.2	< 0.1	< 0.2
Xylenes - Total*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromofluorobenzene (surr.)	1	%	78	81	85	52
Polycyclic Aromatic Hydrocarbons		/0	76	01	65	32
	0.5		.0.5	.0.5	.0.5	.0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	102	100	97	81
p-Terphenyl-d14 (surr.)	1	%	107	107	97	80
Heavy Metals	ı					
Arsenic	2	mg/kg	6.7	11	8.2	6.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	17	25	28	21
Copper	5	mg/kg	26	25	27	24
Lead	5	mg/kg	23	25	23	14
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	9.9	13	10
Zinc	5	mg/kg	51	48	59	36

Client Sample ID			BH13	BH14	BH15	BH16
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Se37342	S21-Se37343	S21-Se37344	S21-Se37345
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
•	1.00	1.1	Sep 10, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20 < 20	< 20 < 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04} TRH >C10-C16	50	mg/kg	< 50	< 50	< 20	< 20 < 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50 < 50	< 50
TRH >C10-C16 less Naphthalene (F2)*** TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C16-C34 TRH >C34-C40	100	mg/kg mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX	100	IIIg/kg	V 100	V 100	V 100	V 100
Benzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.1
o-Xylene	0.2	mg/kg	< 0.1	< 0.1	< 0.1	< 0.2
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	110	51	82
Polycyclic Aromatic Hydrocarbons		70	- 55	110	01	02
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (inculari bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	83	96	88	84
p-Terphenyl-d14 (surr.)	1	%	66	100	59	87
Heavy Metals						
Arsenic	2	mg/kg	8.2	6.9	7.6	15
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	17	19	39
Copper	5	mg/kg	21	30	23	24

Client Sample ID			BH13	BH14	BH15	BH16
Sample Matrix			Soil	Soil	Soil S21-Se37344	Soil
Eurofins Sample No.			S21-Se37342	S21-Se37343		S21-Se37345
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	20	32	24	24
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	9.4	15	10	11
Zinc	5	mg/kg	40	78	45	43
% Moisture	1	%	6.0	1.5	5.6	12

Client Sample ID			BH17	BH18	BH19	BH20	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Se37346	S21-Se37347	S21-Se37348	S21-Se37349	
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons	·						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C29-C36	50	mg/kg	77	< 50	68	< 50	
TRH C10-C36 (Total)	50	mg/kg	77	< 50	68	< 50	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100	
BTEX	<u>.</u>						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	85	72	86	77	
Polycyclic Aromatic Hydrocarbons	<u>.</u>	_					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	

Client Sample ID			BH17	BH18	BH19	BH20	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.				S21-Se37347	S21-Se37348	S21-Se37349	
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	Sep 16, 2021	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	88	87	103	87	
p-Terphenyl-d14 (surr.)	1	%	92	96	97	87	
Heavy Metals							
Arsenic	2	mg/kg	8.8	5.7	6.4	36	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	27	12	33	130	
Copper	5	mg/kg	25	14	30	9.5	
Lead	5	mg/kg	26	11	20	24	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	15	5.6	30	10.0	
Zinc	5	mg/kg	50	24	49	17	
% Moisture	1	%	< 1	6.7	6.9	7.8	

Client Sample ID Sample Matrix			FD1 Soil	TRIP BLANK Soil	TRIP SPIKE Soil
Eurofins Sample No.			S21-Se37350	S21-Se38853	S21-Se38854
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	20	mg/kg	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	-
TRH C15-C28	50	mg/kg	< 50	-	=
TRH C29-C36	50	mg/kg	58	-	=
TRH C10-C36 (Total)	50	mg/kg	58	-	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	=
TRH C6-C10	20	mg/kg	< 20	< 20	=
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	=
TRH >C16-C34	100	mg/kg	< 100	-	=
TRH >C34-C40	100	mg/kg	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-
ВТЕХ					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	78	78	-

Client Sample ID			FD1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Se37350	S21-Se38853	S21-Se38854
Date Sampled			Sep 16, 2021	Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons	'				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	_	_
Acenaphthene	0.5	mg/kg	< 0.5	_	_
Acenaphthylene	0.5	mg/kg	< 0.5	_	_
Anthracene	0.5	mg/kg	< 0.5	_	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	_	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	_	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	
Chrysene	0.5	mg/kg	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	-	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-
Naphthalene	0.5		< 0.5	-	-
Phenanthrene		mg/kg		-	
	0.5	mg/kg	< 0.5		-
Pyrene Tatal BALL*	0.5	mg/kg	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	97	-	-
p-Terphenyl-d14 (surr.)	1	%	90	-	-
Heavy Metals	<u> </u>				
Arsenic	2	mg/kg	11	=	-
Cadmium	0.4	mg/kg	< 0.4	=	-
Chromium	5	mg/kg	23	-	-
Copper	5	mg/kg	30	=	-
Lead	5	mg/kg	40	-	-
Mercury	0.1	mg/kg	< 0.1	=	-
Nickel	5	mg/kg	19	-	-
Zinc	5	mg/kg	87	-	-
		1			
% Moisture	1	%	11	-	-
TRH C6-C10	1	%	-	-	86
Total Recoverable Hydrocarbons		T			
Naphthalene	1	%	-	-	88
TRH C6-C9	1	%	-	-	87
BTEX	T				
Benzene	1	%	-	-	94
Ethylbenzene	1	%	-	-	84
m&p-Xylenes	1	%	-	-	83
o-Xylene	1	%	-	-	84
Toluene	1	%	-	-	87
Xylenes - Total	1	%	-	-	84
4-Bromofluorobenzene (surr.)	1	%	-	_	71

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Sep 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 21, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Sep 21, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Sep 18, 2021	14 Days

- Method: LTM-GEN-7080 Moisture

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Prensa Pty Ltd NSW

Address:

Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.:

Report #: 825574

Phone: (02) 8968 2500

Fax:

Received: Sep 16, 2021 4:14 PM

Due: Sep 23, 2021

Priority: 5 Day

Contact Name: Darren Fernandez

Eurofins Analytical Services Manager: Ursula Long

NZBN: 9429046024954

		HOLD	Moisture Set	Eurofins Suite B7	Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
		ory - NATA # 12		4		.,			.,		
		- NATA # 1261				Х	Х	Х	Х	X	X
		y - NATA # 1261									
		/ - NATA # 1261 NATA # 2377 Sit		!							
	rnal Laboratory		.e # 2370								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	BH1	Sep 16, 2021		Soil	S21-Se37330		Х	Х			
2	BH2	Sep 16, 2021		Soil	S21-Se37331		Х	Х			
3	ВН3	Sep 16, 2021		Soil	S21-Se37332		Х	Х			
4	BH4	Sep 16, 2021		Soil	S21-Se37333		Х	Х			
5	BH5	Sep 16, 2021		Soil	S21-Se37334		Х	Х			
6	BH6	Sep 16, 2021		Soil	S21-Se37335		Х	Х			
7	BH7	Sep 16, 2021		Soil	S21-Se37336		Х	Х			
8	BH8	Sep 16, 2021		Soil	S21-Se37337		X	Х			
9 BH9 Sep 16, 2021 Soil S21-Se37338								Х			

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Prensa Pty Ltd NSW

Address:

Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.:

Report #:

825574

(02) 8968 2500

Phone: Fax:

Received: Sep 16, 2021 4:14 PM

Due: Sep 23, 2021 **Priority:** 5 Day

Darren Fernandez **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail								Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA # 12	61 Site # 125	4							
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126 ²	Site # 20794								
May	field Laboratory	y - NATA # 1261	Site # 25079								
Pert	h Laboratory - I	NATA # 2377 Sit	te # 2370								
Exte	rnal Laboratory	<u>/</u>									
10	BH10	Sep 16, 2021		Soil	S21-Se37339		Х	Х			
11	BH11	Sep 16, 2021		Soil	S21-Se37340		Х	Х			
12	BH12	Sep 16, 2021		Soil	S21-Se37341		Х	Х			
13	BH13	Sep 16, 2021		Soil	S21-Se37342		Х	Х			
14	BH14	Sep 16, 2021		Soil	S21-Se37343		Х	Х			
15	BH15	Sep 16, 2021		Soil	S21-Se37344		Х	Х			
16	BH16	Sep 16, 2021		Soil	S21-Se37345		Х	Х			
17	BH17	Sep 16, 2021		Soil	S21-Se37346		Х	Х			
18	BH18	Sep 16, 2021		Soil	S21-Se37347		Х	Х			
19	BH19	Sep 16, 2021		Soil	S21-Se37348		Х	Х			
20	BH20	Sep 16, 2021		Soil	S21-Se37349		Х	Х			

Version: 1, Version Date: 24/03/2022

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Prensa Pty Ltd NSW

Address: Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Report #: 825574

Phone: (02) 8968 2500

Fax:

Received:

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Perth

Sep 16, 2021 4:14 PM

Sep 23, 2021 Due: **Priority:** 5 Day

Darren Fernandez **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail							Eurofins Suite B7	Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4							
Sydı	ney Laboratory	- NATA # 1261 :	Site # 18217			Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 20794	l .							
May	field Laboratory	/ - NATA # 1261	Site # 25079								
Pert	h Laboratory - N	NATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory	,									
21	FD1	Sep 16, 2021		Soil	S21-Se37350		Х	Х			
22	RB1	Sep 16, 2021		Water	S21-Se37351				Х		
23	FB1	Sep 16, 2021		Water	S21-Se37352				Х		
24	SP1	Sep 16, 2021		Soil	S21-Se37353	Х					
25	SP3	Sep 16, 2021		Soil	S21-Se37354	Х					
26	TRIP BLANK	Sep 16, 2021		Soil	S21-Se38853					Х	
27	27 TRIP SPIKE Sep 16, 2021 Soil S21-Se38854										Х
Test	est Counts							21	2	1	1

Version: 1, Version Date: 24/03/2022

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	, 5 5	·			
Total Recoverable Hydrocarbons					
TRH C6-C9	%	88	70-130	Pass	

Tes	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	92		70-130	Pass	
Naphthalene			%	108		70-130	Pass	
Naphthalene			%	96		70-130	Pass	
TRH C6-C10			%	85		70-130	Pass	
TRH C6-C10			%	75		70-130	Pass	
TRH >C10-C16			%	94		70-130	Pass	
LCS - % Recovery								
ВТЕХ								
Benzene			%	94		70-130	Pass	
Toluene			%	90		70-130	Pass	
Ethylbenzene			%	91		70-130	Pass	
m&p-Xylenes			%	92		70-130	Pass	
o-Xylene			%	93		70-130	Pass	
Xylenes - Total*			%	92		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarb	ons							
Acenaphthene			%	92		70-130	Pass	
Acenaphthylene			%	87		70-130	Pass	
Anthracene			%	90		70-130	Pass	
Benz(a)anthracene			%	81		70-130	Pass	
Benzo(a)pyrene			%	72		70-130	Pass	
Benzo(b&j)fluoranthene			%	72		70-130	Pass	
Benzo(g.h.i)perylene			%	104		70-130	Pass	
Benzo(k)fluoranthene			%	72		70-130	Pass	
Chrysene			%	82		70-130	Pass	
Dibenz(a.h)anthracene			%	83		70-130	Pass	
Fluoranthene			%	121		70-130	Pass	
Fluorene			%	79		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	87		70-130	Pass	
Naphthalene			%	119		70-130	Pass	
Phenanthrene			%	70		70-130	Pass	
Pyrene			%	89		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	105		80-120	Pass	
Cadmium			%	104		80-120	Pass	
Chromium			%	104		80-120	Pass	
Copper			%	103		80-120	Pass	
Lead			%	102		80-120	Pass	
Mercury			%	108		80-120	Pass	
Nickel			%	104		80-120	Pass	
Zinc			%	103		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbor		1	1	Result 1				
TRH C10-C14	S21-Se34877	NCP	%	76		70-130	Pass	
TRH >C10-C16	S21-Se34877	NCP	%	76		70-130	Pass	
Spike - % Recovery					1			
Heavy Metals				Result 1				
Arsenic	S21-Se37331	CP	%	98		75-125	Pass	
Cadmium	S21-Se37331	CP	%	91		75-125	Pass	
Chromium	S21-Se37331	CP	%	97		75-125	Pass	
Copper	S21-Se37331	CP	%	91		75-125	Pass	
Lead	S21-Se37331	CP	%	93		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Mercury	S21-Se37331	CP	%	99			75-125	Pass	
Nickel	S21-Se37331	CP	%	89			75-125	Pass	
Zinc	S21-Se37331	CP	%	107			75-125	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	3			Result 1					
Acenaphthene	S21-Se37337	CP	%	80			70-130	Pass	
Acenaphthylene	S21-Se37337	CP	%	84			70-130	Pass	
Anthracene	S21-Se37337	CP	%	77			70-130	Pass	
Benz(a)anthracene	S21-Se37337	CP	%	86			70-130	Pass	
Benzo(a)pyrene	S21-Se37337	CP	%	97			70-130	Pass	
Benzo(b&j)fluoranthene	S21-Se37337	CP	%	103			70-130	Pass	
Benzo(g.h.i)perylene	S21-Se37337	CP	%	111			70-130	Pass	
Benzo(k)fluoranthene	S21-Se37337	CP	%	72			70-130	Pass	
Chrysene	S21-Se37337	CP	%	82			70-130	Pass	
Dibenz(a.h)anthracene	S21-Se37337	СР	%	130			70-130	Pass	
Fluoranthene	S21-Se37337	CP	%	83			70-130	Pass	
Fluorene	S21-Se37337	CP	%	81			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se37337	СР	%	105			70-130	Pass	
Naphthalene	S21-Se37337	СР	%	81			70-130	Pass	
Phenanthrene	S21-Se37337	СР	%	76			70-130	Pass	
Pyrene	S21-Se37337	СР	%	83			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	3			Result 1					
Acenaphthene	S21-Se37347	СР	%	84			70-130	Pass	
Acenaphthylene	S21-Se37347	СР	%	81			70-130	Pass	
Anthracene	S21-Se37347	СР	%	77			70-130	Pass	
Benzo(a)pyrene	S21-Se37347	СР	%	87			70-130	Pass	
Benzo(g.h.i)perylene	S21-Se37347	СР	%	110			70-130	Pass	
Benzo(k)fluoranthene	S21-Se37347	СР	%	99			70-130	Pass	
Chrysene	S21-Se37347	СР	%	87			70-130	Pass	
Fluoranthene	S21-Se37347	СР	%	83			70-130	Pass	
Fluorene	S21-Se37347	CP	%	77			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se37347	CP	%	124			70-130	Pass	
Naphthalene	S21-Se37347	CP	%	88			70-130	Pass	
Phenanthrene	S21-Se37347	CP	%	77			70-130	Pass	
Pyrene	S21-Se37347	CP	%	83			70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Duplicate	•	Source					Limits	Limits	Code
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se37330	СР	mg/kg	5.7	6.6	15	30%	Pass	
Cadmium	S21-Se37330	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se37330	CP		16	22	35	30%	Fail	Q15
Copper	S21-Se37330	CP	mg/kg	25	23	6.0	30%	Pass	QIS
		CP	mg/kg						
Lead	S21-Se37330 S21-Se37330	CP	mg/kg	20	18	11	30%	Pass	
Mercury			mg/kg	< 0.1	< 0.1	<1	30%	Pass	045
Nickel	S21-Se37330	CP	mg/kg	18	12	39	30%	Fail	Q15
Zinc	S21-Se37330	CP	mg/kg	52	41	25	30%	Pass	
Duplicate Heavy Metals				Descrit 4	Descrit 0	DDD			
Heavy Metals	004.0-07000	00	N	Result 1	Result 2	RPD	2007	Deri	
Arsenic	S21-Se37332	CP	mg/kg	3.9	4.7	18	30%	Pass	
Cadmium	S21-Se37332	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se37332	CP	mg/kg	17	21	25	30%	Pass	21-
Copper	S21-Se37332	CP	mg/kg	25	42	49	30%	Fail	Q15
Lead	S21-Se37332	CP	mg/kg	13	17	31	30%	Fail	Q15

Dunlicate									
Duplicate Heavy Metals				Dogult 4	Beaute 0	DDD			
Heavy Metals	004.0-07000	0.0	c: # : -:	Result 1	Result 2	RPD	000/	De :	
Mercury	S21-Se37332	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Se37332	CP	mg/kg	10	12	17	30%	Pass	000
Zinc	S21-Se37332	CP	mg/kg	59	89	41	30%	Fail	Q02
Duplicate Table 1 Duplicate				Door It 4	D 11 0	DDD			
Total Recoverable Hydrocarbons	C04 C-27224	CD		Result 1	Result 2	RPD	200/	Dana	
TRH C6-C9	S21-Se37334	CP CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Se37334	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Se37334	L CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				Daguit 4	Daguit 0	DDD			
BTEX	C04 C-27224	CD		Result 1	Result 2	RPD	200/	Dana	
Benzene	S21-Se37334	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Se37334	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Se37334	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Se37334	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Se37334	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Se37334	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Table 1 Duplicate				Docute 4	D 11 0	DDD	1		
Total Recoverable Hydrocarbons	004.0-07005	OD		Result 1	Result 2	RPD	000/	D	
TRH C10-C14	S21-Se37335	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Se37335	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Se37335	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Se37335	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Se37335	CP	mg/kg	< 100	< 100	<1	30%	Pass Pass	
TRH > C34-C40									
Duplicate				D 11.4		DDD	l	T	
Polycyclic Aromatic Hydrocarbon		OD		Result 1	Result 2	RPD	000/	D	
Acenaphthene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene Indeno(1.2.3-cd)pyrene	S21-Se37335	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
\ /1 <i>/</i>	S21-Se37335		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Se37335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate Total Resoverable Hydrogerbane				Descrit 4	Dogult 0	DDD			
Total Recoverable Hydrocarbons		CD	no e://::	Result 1	Result 2	RPD	200/	Desa	
TRH C10-C14	S21-Se37336	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Se37336	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Se37336	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Se37336	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Se37336	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Se37336	CP	mg/kg	< 100	< 100	<1	30%	Pass	

Duplicate Technique									
Polycyclic Aromatic Hydrocarbons	.			Result 1	Result 2	RPD			-
Acenaphthene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Se37336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Se37336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Se37336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Se37336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Se37336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Se37336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Se37339	CP	%	5.1	5.7	11	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Se37347	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Se37347	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Se37347	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Se37347	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Se37347	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Se37347	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Se37349	CP	%	7.8	6.6	17	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (If used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted Nο

Qualifier Codes/Comments

Description Code

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C8-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C8-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

002The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) John Nauven Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson

General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Prensa Pty Ltd NSW Level 1, 71 Longueville Road Lane Cove NSW 2066

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Page 1 of 8

Report Number: 825574-W

Attention: Darren Fernandez

 Report
 825574-W

 Project name
 PENRITH SCA

 Project ID
 98585S

 Received Date
 Sep 16, 2021

Client Sample ID			RB1	FB1
Sample Matrix			Water	Water
Eurofins Sample No.			S21-Se37351	S21-Se37352
Date Sampled			Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1
ВТЕХ				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	125	134

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 20, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 18, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 20, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			

Date Reported: Sep 24, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022 Page 2 of 8 Report Number: 825574-W

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Prensa Pty Ltd NSW

Address:

Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.:

Report #:

825574

(02) 8968 2500

Phone: Fax:

Received: Sep 16, 2021 4:14 PM Due:

Sep 23, 2021 **Priority:** 5 Day

Contact Name: Darren Fernandez

Eurofins Analytical Services Manager: Ursula Long

		HOLD	Moisture Set	Eurofins Suite B7	Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
		ory - NATA # 12		4		.,			.,		
		- NATA # 1261				Х	Х	Х	Х	X	X
		y - NATA # 1261									
		/ - NATA # 1261 NATA # 2377 Sit		!							
	rnal Laboratory		.e # 2370								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	BH1	Sep 16, 2021		Soil	S21-Se37330		Х	Х			
2	BH2	Sep 16, 2021		Soil	S21-Se37331		Х	Х			
3	ВН3	Sep 16, 2021		Soil	S21-Se37332		Х	Х			
4	BH4	Sep 16, 2021		Soil	S21-Se37333		Х	Х			
5	BH5	Sep 16, 2021		Soil	S21-Se37334		Х	Х			
6	BH6	Sep 16, 2021		Soil	S21-Se37335		Х	Х			
7	BH7	Sep 16, 2021		Soil	S21-Se37336		Х	Х			
8	BH8	Sep 16, 2021		Soil	S21-Se37337		X	Х			
9 BH9 Sep 16, 2021 Soil S21-Se37338								Х			

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Prensa Pty Ltd NSW

Address:

Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.:

Report #:

825574

(02) 8968 2500

Phone: Fax:

Received: Sep 16, 2021 4:14 PM

Sep 23, 2021 Due: **Priority:** 5 Day

Darren Fernandez **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

NZBN: 9429046024954

	Sample Detail								Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA # 1261	1 Site # 125	4							
Sydı	ney Laboratory	- NATA # 1261 Si	ite # 18217			Х	Χ	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261 \$	Site # 20794								
May	field Laboratory	· - NATA # 1261 S	Site # 25079								
Pert	h Laboratory - N	NATA # 2377 Site	# 2370								
Exte	rnal Laboratory				1						
10	BH10	Sep 16, 2021		Soil	S21-Se37339		Χ	Х			
11	BH11	Sep 16, 2021		Soil	S21-Se37340		Χ	Х			
12	BH12	Sep 16, 2021		Soil	S21-Se37341		Χ	Х			
13	BH13	Sep 16, 2021		Soil	S21-Se37342		Χ	Х			
14	BH14	Sep 16, 2021		Soil	S21-Se37343		Χ	Х			
15	BH15	Sep 16, 2021		Soil	S21-Se37344		Χ	Х			
16	BH16	Sep 16, 2021		Soil	S21-Se37345		Χ	Х			
17	BH17	Sep 16, 2021		Soil	S21-Se37346		Χ	Х			
18	BH18	Sep 16, 2021		Soil	S21-Se37347		Χ	Х			
19	BH19	Sep 16, 2021		Soil	S21-Se37348		Χ	Х			
20	BH20	Sep 16, 2021		Soil	S21-Se37349		Χ	Χ			

Version: 1, Version Date: 24/03/2022

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Fax:

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Prensa Pty Ltd NSW

Address:

Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.:

Report #:

825574 (02) 8968 2500

Phone:

Received: Sep 16, 2021 4:14 PM

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Sep 23, 2021 Due: **Priority:** 5 Day

Darren Fernandez **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

Sample Detail								Eurofins Suite B7	Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254											
Sydr	ney Laboratory	- NATA # 1261 \$	Site # 18217			Х	Х	Х	Х	Х	Х
Brisl	oane Laboratory	y - NATA # 1261	Site # 20794	ı							
Mayf	ield Laboratory	- NATA # 1261	Site # 25079								
Perti	n Laboratory - N	IATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory										
21	FD1	Sep 16, 2021		Soil	S21-Se37350		Х	Х			
22	RB1	Sep 16, 2021		Water	S21-Se37351				Х		
23	FB1	Sep 16, 2021		Water	S21-Se37352				Х		
24	SP1	Sep 16, 2021		Soil	S21-Se37353	Х					
25	SP3	Sep 16, 2021		Soil	S21-Se37354	Χ					
26	TRIP BLANK	Sep 16, 2021		Soil	S21-Se38853					Х	
27	TRIP SPIKE	Sep 16, 2021		Soil	S21-Se38854						Х
Test	Fest Counts							21	2	1	1

Version: 1, Version Date: 24/03/2022

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Total Recoverable Hydrocarbons									
TRH C10-C14			mg/L	< 0.05			0.05	Pass	
TRH C15-C28			mg/L	< 0.1			0.1	Pass	
TRH C29-C36			mg/L	< 0.1			0.1	Pass	
TRH >C10-C16			mg/L	< 0.05			0.05	Pass	
TRH >C16-C34			mg/L	< 0.1			0.1	Pass	
TRH >C34-C40			mg/L	< 0.1			0.1	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons									
TRH C10-C14			%	110			70-130	Pass	
TRH >C10-C16			%	107			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	N21-Se28389	NCP	%	104			70-130	Pass	
TRH >C10-C16	N21-Se28389	NCP	%	102			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Se37352	CP	%	105			70-130	Pass	
Naphthalene	S21-Se37352	CP	%	106			70-130	Pass	
TRH C6-C10	S21-Se37352	CP	%	113			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S21-Se37352	CP	%	100			70-130	Pass	
Toluene	S21-Se37352	CP	%	110			70-130	Pass	
Ethylbenzene	S21-Se37352	CP	%	112			70-130	Pass	
m&p-Xylenes	S21-Se37352	CP	%	122			70-130	Pass	
o-Xylene	S21-Se37352	CP	%	112			70-130	Pass	
Xylenes - Total*	S21-Se37352	CP	%	118			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	N21-Se35424	NCP	mg/L	0.06	0.06	1.0	30%	Pass	
TRH C15-C28	N21-Se35424	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	N21-Se35424	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	N21-Se35424	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	N21-Se35424	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	N21-Se35424	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Date Reported: Sep 24, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Comments

Sample Integrity

Custody Seals Intact (If used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Description Code

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Analytical Services Manager Ursula Long Andrew Sullivan Senior Analyst-Organic (NSW) Senior Analyst-Volatile (NSW) Roopesh Rangarajan

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Date Reported: Sep 24, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Eurofins | mgt Laboratory Use Only Quote ID Ne BH1 - BH26 SPS Prensa Pty Ltd L1/71 Longueville Rd, Lane Cove 0451 348 489 Kelsie McGillen Courier (# Received By Received By 12/6/91 = Total Counts ☐ Hand Delivered Σ 02 9900 8400 EnviroSampleNSW@eurotins.com X X X B1 (TRH BTEX) Postal 98585S Penrith SCA × × Name Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request 07 3902 4600 Enviro Signature Esdat Darren Fernandez 500mL Plastic Email for Invo Sampler(s) 250mL Plastic Kelsie.McGillen@prensa.com.au, Darren.fernandez Kelsie.McGillen@prensa.com.au Kelsie McGillen Kelsie McGillen 500mL PFAS Bottle 03 8564 5000 EnviroSampleVic@eurolins.com 5 days (Standard) □ Overnight (reporting by 9am) ☐ Other(Same day ♦ □ 1 day ♦ 2 days • Time Default will be 5 days if not licked. □ 3 days •

CHAIN OF CUSTODY RECORD

Sydney Laboratory

Bld.F 16 Mars Road Lane Cove West NSW 2066

Brisbane Laboratory

☐ Perth Laboratory

ay Kewdale WA 6105

☐ Melbourne Laboratory

6 Monterey Road Dandenong South VIC 3175

Unit 1 21 Smallwood Place Murarrie QLD 4172

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

DESCRIPTION OF BUILDING

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Eurofins | mgt Laboratory Use Only Quote ID Ne BH1 - BH26 SPS **CHAIN OF CUSTODY RECORD** Prensa Pty Ltd L1/71 Longueville Rd, Lane Cove 0451 348 489 Kelsie McGillen Courier (# Received By Received By 12/6/91 Total Counts ☐ Hand Delivered Σ 02 9900 8400 EnviroSampleNSW@eurotins.com X B7 Bld.F 16 Mars Road Lane Cove West NSW 2066 X X B1 (TRH BTEX) Postal 98585S Penrith SCA × × Name Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt. Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt. Standard Terms and Conditions is available on reques 07 3902 4600 Enviro Unit 1 21 Smallwood Place Murarrie QLD 4172 Signature Esdat Darren Fernandez ay Kewdale WA 6105 500mL Plastic Email for Invo Sampler(s) 250mL Plastic Date Kelsie.McGillen@prensa.com.au, Darren.fernandez Kelsie.McGillen@prensa.com.au Kelsie McGillen Kelsie McGillen 500mL PFAS Bottle 03 8564 5000 EnviroSampleVic@eurolins.com 6 Monterey Road Dandenong South VIC 3175 ☐ Overnight (reporting by 9am)+ ☐ Other(5 days (Standard) Same day ♦ □ 1 day ♦ 2 days • ime Default will be 5 days if not ticked □ 3 days•

Sydney Laboratory

Brisbane Laboratory

☐ Perth Laboratory

☐ Melbourne Laboratory

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

DESCRIPTION OF BUILDING

Eurofins Environment Testing Australia Pty Ltd trading Eurofins | mgt Laboratory Use Only Quote ID Ne DESCRIPTION OF BUILDING BH1 - BH26 SPS **CHAIN OF CUSTODY RECORD** Prensa Pty Ltd L1/71 Longueville Rd, Lane Cove 0451 348 489 Kelsie McGillen Courier (# Received By Received By 12/6/91 Total Counts ☐ Hand Delivered 02 9900 8400 EnviroSampleNSW@eurotins.com X B7 Bld.F 16 Mars Road Lane Cove West NSW 2066 X X B1 (TRH BTEX) 98585S Postal Penrith SCA 000 × × 07 3902 4600 Enviro Unit 1 21 Smallwood Place Murarrie QLD 4172 Signature Esdat Darren Fernandez 08 9251 9600 Enviro vay Kewdale WA 6105 500mL Plastic Email for Invol 250mL Plastic Kelsie.McGillen@prensa.com.au, Darren.fernandez Kelsie.McGillen@prensa.com.au Kelsie McGillen Kelsie McGillen 500mL PFAS Bottle 6 Moniterey Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVic@eurofins.com MA Guis.

San.

San.

Sdays (c. ☐ Other(☐ Overnight (reporting by 9am)+ 5 days (Standard) Same day ♦ □ 1 day ♦ □ 3 days ♦

Sydney Laboratory

Brisbane Laboratory

☐ Perth Laboratory

☐ Melbourne Laboratory

Prensa Pty Ltd NSW Level 1, 71 Longueville Road Lane Cove NSW 2066

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Kelsie McGillen

 Report
 827665-S

 Project name
 PENRITH SCA

 Project ID
 98585S

 Received Date
 Sep 16, 2021

Client Sample ID			SP1	SP3
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-Se37353	S21-Se37354
Date Sampled			Sep 16, 2021	Sep 16, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	50
TRH C29-C36	50	mg/kg	< 50	52
TRH C10-C36 (Total)	50	mg/kg	< 50	102
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
ВТЕХ				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	118	119
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SP1 Soil S21-Se37353 Sep 16, 2021	SP3 Soil S21-Se37354 Sep 16, 2021
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	91	116
p-Terphenyl-d14 (surr.)	1	%	88	114
Heavy Metals				
Arsenic	2	mg/kg	3.8	19
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	13	25
Copper	5	mg/kg	16	9.9
Lead	5	mg/kg	18	16
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	7.6	< 5
Zinc	5	mg/kg	33	68
% Moisture	1	%	8.5	5.6

Date Reported: Sep 30, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 29, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 29, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 29, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 29, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 29, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Sep 29, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Sep 27, 2021	14 Days

- Method: LTM-GEN-7080 Moisture

Page 3 of 9 Report Number: 827665-S

Date Reported: Sep 30, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Prensa Pty Ltd NSW

Address:

Level 1, 71 Longueville Road

Lane Cove

NSW 2066

Project Name:

PENRITH SCA

Project ID:

98585S

Order No.: Report #:

827665

(02) 8968 2500

Phone: Fax:

Received: Sep 27, 2021 3:58 PM

Perth

46-48 Banksia Road

Welshpool WA 6106

Due: Sep 30, 2021

Priority: 3 Day Kelsie McGillen **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

Sample Detail	Moisture Set	Eurofins Suite B7
Melbourne Laboratory - NATA # 1261 Site # 1254		
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794		
Mayfield Laboratory - NATA # 1261 Site # 25079		
Perth Laboratory - NATA # 2377 Site # 2370		
External Laboratory		
No Sample ID Sample Date Sampling Matrix LAB ID		
1 SP1 Sep 16, 2021 Soil S21-Se37353	Х	Х
2 SP3 Sep 16, 2021 Soil S21-Se37354	Х	Х
Test Counts	2	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Where a moisture has been determined on a solid sample the result is expressed on a dry basis Dry

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Duplicate

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version СР Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

Toxic Equivalency Quotient TEQ

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Date Reported: Sep 30, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		10.0		1	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	IIIg/kg			1 433	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	103	70-130	Pass	
Naphthalene	%	99	70-130	Pass	
TRH C6-C10	%	101	70-130	Pass	
LCS - % Recovery	70	101	1 10-130	1 000	
BTEX					
Benzene	%	105	70-130	Pass	
Toluene	%	100	70-130	Pass	
	%	102	70-130	Pass	
Ethylbenzene					
m&p-Xylenes	%	105	70-130	Pass	

Page 6 of 9 Report Number: 827665-S

Date Reported: Sep 30, 2021 Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

Te	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
o-Xylene			%	104		70-130	Pass	
Xylenes - Total*			%	105		70-130	Pass	
LCS - % Recovery				•				
Polycyclic Aromatic Hydrocar	bons							
Acenaphthene			%	72		70-130	Pass	
Acenaphthylene			%	75		70-130	Pass	
Anthracene			%	73		70-130	Pass	
Benz(a)anthracene			%	75		70-130	Pass	
Benzo(a)pyrene			%	74		70-130	Pass	
Benzo(b&j)fluoranthene			%	74		70-130	Pass	
Benzo(g.h.i)perylene			%	93		70-130	Pass	
Benzo(k)fluoranthene			%	72		70-130	Pass	
Chrysene			%	74		70-130	Pass	
Dibenz(a.h)anthracene			%	72		70-130	Pass	
Fluoranthene			%	76		70-130	Pass	
Fluorene			%	75		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	71		70-130	Pass	
Naphthalene			%	72		70-130	Pass	
Phenanthrene			%	76		70-130	Pass	
Pyrene			%	77		70-130	Pass	
LCS - % Recovery			70			70 130	1 433	
Heavy Metals					T T			
Arsenic			%	101		80-120	Pass	
Cadmium			%	103		80-120	Pass	
			%	103		80-120	Pass	
Conner			%	107		80-120	Pass	
Copper				109		80-120	Pass	
Lead			%					
Mercury			%	110		80-120	Pass	
Nickel			%	109		80-120	Pass	
Zinc			%	105		80-120	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1	1		
Total Recoverable Hydrocarbo	ons			Result 1				
TRH C6-C9	S21-Se55405	NCP	%	106		70-130	Pass	
Naphthalene	S21-Se55405	NCP	%	103		70-130	Pass	
TRH C6-C10	S21-Se55405	NCP	%	104		70-130	Pass	
Spike - % Recovery								
BTEX			1	Result 1				
Benzene	S21-Se55405	NCP	%	106		70-130	Pass	
Toluene	S21-Se55405	NCP	%	104		70-130	Pass	
Ethylbenzene	S21-Se55405	NCP	%	107		70-130	Pass	
m&p-Xylenes	S21-Se55405	NCP	%	110		70-130	Pass	
o-Xylene	S21-Se55405	NCP	%	110		70-130	Pass	
Xylenes - Total*	S21-Se55405	NCP	%	110		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	N21-Se46251	NCP	%	82		75-125	Pass	
Cadmium	N21-Se46251	NCP	%	89		75-125	Pass	
Chromium	N21-Se46251	NCP	%	84		75-125	Pass	
Copper	N21-Se46251	NCP	%	98		75-125	Pass	
	N21-Se46251	NCP	%	113		75-125	Pass	
Lead	NZ 1-3640231							1
		†		97		75-125	Pass	
Lead Mercury Nickel	N21-Se46251 N21-Se46251 N21-Se46251	NCP NCP	% %	97 101		75-125 75-125	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Se55404	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Se55404	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Se55404	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S21-Se55404	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Se55404	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Se55404	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Se55404	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Se55404	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Se55404	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	N21-Se46251	NCP	%	21	22	6.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Se37354	CP	mg/kg	19	21	9.0	30%	Pass	
Cadmium	S21-Se37354	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Se37354	CP	mg/kg	25	28	9.0	30%	Pass	
Copper	S21-Se37354	CP	mg/kg	9.9	11	8.0	30%	Pass	
Lead	S21-Se37354	CP	mg/kg	16	18	8.0	30%	Pass	
Mercury	S21-Se37354	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Se37354	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S21-Se37354	CP	mg/kg	68	74	8.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (If used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Description Code

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson

General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 278456

Client Details	
Client	Prensa Pty Ltd
Attention	Kelsie McGillen
Address	Ground Floor, 5 Burwood Road, HAWTHORN, VIC, 3122

Sample Details	
Your Reference	<u>98585S</u>
Number of Samples	1 soil
Date samples received	20/09/2021
Date completed instructions received	20/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	27/09/2021					
Date of Issue	24/09/2021					
NATA Accreditation Number 2901. This	NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Dragana Tomas, Senior Chemist Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 278456 Revision No: R00

VTDU/CC C40\/BTEVN in Coil		
vTRH(C6-C10)/BTEXN in Soil Our Reference		278456-1
Your Reference	UNITS	FD2
Date Sampled		16/09/2021
Type of sample		soil
Date extracted	-	21/09/2021
Date analysed	-	22/09/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	93

Envirolab Reference: 278456 Revision No: R00

Page | 2 of 9

svTRH (C10-C40) in Soil		
Our Reference		278456-1
Your Reference	UNITS	FD2
Date Sampled		16/09/2021
Type of sample		soil
Date extracted	-	21/09/2021
Date analysed	-	22/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	72

Envirolab Reference: 278456 Revision No: R00

Page | 3 of 9

Moisture		
Our Reference		278456-1
Your Reference	UNITS	FD2
Date Sampled		16/09/2021
Type of sample		soil
Date prepared	-	21/09/2021
Date analysed	-	22/09/2021
Moisture	%	12

Envirolab Reference: 278456 Revision No: R00

Page | 4 of 9

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Envirolab Reference: 278456 Revision No: R00

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			21/09/2021	[NT]		[NT]	[NT]	21/09/2021	
Date analysed	-			22/09/2021	[NT]		[NT]	[NT]	22/09/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	94	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	106	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	95	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	88	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	90	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	96	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	94	[NT]		[NT]	[NT]	77	

Envirolab Reference: 278456 Revision No: R00

Page | 6 of 9

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			21/09/2021	[NT]			[NT]	21/09/2021	[NT]
Date analysed	-			22/09/2021	[NT]			[NT]	22/09/2021	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]			[NT]	91	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]			[NT]	83	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]			[NT]	79	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]			[NT]	91	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]			[NT]	83	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]			[NT]	79	[NT]
Surrogate o-Terphenyl	%		Org-020	75	[NT]	[NT]	[NT]	[NT]	96	[NT]

Envirolab Reference: 278456 Revision No: R00

Page | 7 of 9

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 278456
Revision No: R00

Page | 8 of 9

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 278456 Page | 9 of 9

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

R00

Revision No:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 278456-A

Client Details	
Client	Prensa Pty Ltd
Attention	Kelsie McGillen
Address	Ground Floor, 5 Burwood Road, HAWTHORN, VIC, 3122

Sample Details	
Your Reference	<u>98585S</u>
Number of Samples	additional analysis
Date samples received	20/09/2021
Date completed instructions received	24/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	29/09/2021		
Date of Issue	29/09/2021		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

Envirolab Reference: 278456-A Revision No: R00

PAHs in Soil		
Our Reference		278456-A-1
Your Reference	UNITS	FD2
Date Sampled		16/09/2021
Type of sample		soil
Date extracted	-	28/09/2021
Date analysed	-	29/09/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	105

Envirolab Reference: 278456-A Revision No: R00

Page | 2 of 8

Acid Extractable metals in soil				
Our Reference		278456-A-1		
Your Reference	UNITS	FD2		
Date Sampled		16/09/2021		
Type of sample		soil		
Date prepared	-	29/09/2021		
Date analysed	-	29/09/2021		
Arsenic	mg/kg	7		
Cadmium	mg/kg	<0.4		
Chromium	mg/kg	45		
Copper	mg/kg	19		
Lead	mg/kg	20		
Mercury	mg/kg	<0.1		
Nickel	mg/kg	9		
Zinc	mg/kg	36		

Envirolab Reference: 278456-A Revision No: R00

Page | 3 of 8

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>

Envirolab Reference: 278456-A Page | 4 of 8 Revision No: R00

QUALITY CONTROL: PAHs in Soil						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	[NT]
Date extracted	-			28/09/2021	[NT]		[NT]	[NT]	28/09/2021	
Date analysed	-			29/09/2021	[NT]		[NT]	[NT]	29/09/2021	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	113	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	120	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	121	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	118	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	126	[NT]		[NT]	[NT]	131	

Envirolab Reference: 278456-A Revision No: R00

Page | **5 of 8**

QUALITY CONTROL: Acid Extractable metals in soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			29/09/2021	[NT]		[NT]	[NT]	29/09/2021	
Date analysed	-			29/09/2021	[NT]		[NT]	[NT]	29/09/2021	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	91	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	89	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	94	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	92	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	80	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	86	

Envirolab Reference: 278456-A Revision No: R00

Page | 6 of 8

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 278456-A Revision No: R00

Page | 7 of 8

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 278456-A Page | 8 of 8

Document Set ID: 9958148 Version: 1, Version Date: 24/03/2022

R00

Revision No: