

Legacy Property Environmental Site Assessment Report

> Stage 2 Development Caddens, NSW

> > 27 October 2016

52116-105322

JBS&G

Legacy Property Environmental Site Assessment Report

Stage 2 Development Caddens, NSW

27 October 2016 52116-105322 JBS&G

Table of Contents

Abbr	eviatio	nsvi
Execu	ıtive Sı	ummaryvii
1.	Intro	duction1
	1.1	Background1
	1.2	Objectives1
	1.3	Scope of Work
2.	Site C	ondition and Surrounding Environment2
	2.1	Site Identification and Previous Assessments2
	2.2	Surrounding Land-Use3
	2.3	Geology3
	2.4	Topography3
	2.5	Hydrology3
	2.6	Hydrogeology3
	2.7	Acid Sulfate Soils4
3.	Site H	listory5
	3.1	Aerial Photographs5
	3.2	EPA Records5
	3.3	Australian and NSW Heritage Register6
	3.4	Council Information6
	3.5	Integrity Assessment6
4.	Conce	eptual Site Model7
	4.1	Areas of Environmental Concern7
	4.2	Potentially Contaminated Media7
	4.3	Potential for Migration, Exposure Pathways and Receptors
	4.4	Potential Exposure Pathways8
	4.5	Receptors8
	4.6	Preferential Pathways8
5.	Previo	ous Investigations9
	5.1	Summary Previous Investigations9
	5.2	QA/QC Data Evaluation11
	5.3	Assessment of Historical Data against Current Guidelines
	5.4	Data Gaps12
6.	Suppl	ementary Investigation (Lots 1, 2 and 6)13
	6.1	Sampling and Analysis Plan13
	6.2	Assessment Criteria

		6.2.1	Regulatory Guidelines	14
		6.2.2	Assessment Criteria Selection	14
		6.2.3	Derivation of Site Specific Ecological Investigation Levels	14
	6.3	Results		15
		6.3.1	Quality Assurance/Quality Control	15
		6.3.2	Soil Observations	15
		6.3.3	Soil Contamination Analytical Results	16
	6.4	Discussio	n	16
		6.4.1	Potential Risks to Future Onsite Receptors	16
		6.4.2	Background Soil Contamination	17
		6.4.3	Chemical Mixtures	17
		6.4.4	Aesthetic Issues	17
		6.4.5	Potential Migration of Contaminants	17
		6.4.6	Site Management Strategy	17
7.	Concl	usions and	d Recommendations	18
8.	Limita	itions		19
List	of Tal	bles		
Table	2.1: Si	te Identifi	cations	2
Table	2.2: Si	te Bore D	etails	4
Table	3.1: A	erial Phot	ograph Observations	5
Table	4.1: Aı		vironmental Concern and Associates Contaminants of Potential	7
Table	5.1: In	vestigatio	n Summary	9
Table	6.2: Aı	nalytical S	chedule	13
Table	6.5: D	erivation (of EILs	15

List of Figures

Figure 1 Site Location
Figure 2 Site Layout
Figure 2 Site Features
Figure 4 Test Pit Locations

Appendices

Soil Analytical Results – Table A

Appendix A Bore Search Results

Appendix B Aerial Photographs

Appendix C EPA Records

Appendix D Australian and NSW Heritage Information

Appendix E Data Quality Objectives

Appendix F Detailed Laboratory Documentation

Appendix G Quality Assurance / Quality Control

Appendix H Field Borehole Logs

Appendix I Calibration and Decontamination Records

Appendix J Detailed Quality Assurance / Quality Control

Abbreviations

A list of common abbreviations used throughout this report is provided below.

As Arsenic

AST Aboveground Storage Tank

Cd Cadmium
Cr Chromium

Cu Copper

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

B(a)P Benzo (a) pyrene

EPA NSW Environment Protection Authority

DO Dissolved oxygen

DPE NSW Department of Planning and Environment

DQO Data Quality Objectives

DP Deposited Plan

EC Electrical conductivity

EH Redox potential

EPA New South Wales Environment Protection Authority

Hg Mercury

HIL Health Based Investigation Level

LOR Limit of Reporting

MAH Monocyclic Aromatic Hydrocarbon

Ni Nickel

OCP Organochlorine Pesticide

SAR Site Audit Report

SAS Site Audit Statement

PAH Polycyclic Aromatic Hydrocarbons

Pb Lead

PIL (Provisional) Phytotoxicity Based Investigation Level

PCB Polychlorinated Biphenyls

QA/QC Quality Assurance/Quality Control

RPD Relative Percentage Difference

TPH Total Petroleum Hydrocarbons (C6-C9 and C10-C36)

UST Underground Storage Tank

Zn Zinc

Executive Summary

JBS&G Australia Pty Ltd (JBS&G) was engaged by Legacy Property (Legacy, the client) to complete an Environmental Site Assessment (ESA) for properties located between Caddens Road and O'Connell Street, Caddens, NSW (the site). Currently the site (see **Figure 1**) is largely vacant and was previously used for rural residential purposes. The site is made up of a number of lots (see **Figure 2**) and these lots have been the subject of a series of environmental site assessments undertaken by the various land owners.

Legacy has consolidated the site under one ownership and it is understood is seeking a consolidated ESA to support an application to Penrith City Council for development of the land consistent with the current R1 – General Residential (Penrith LEP 2010) zoning.

The scope of the assessment included a site inspection, desktop review of available environmental site assessment reports, site history and background information to identify potential areas of environmental concern and associated contaminants of potential concern, the development and documentation of a conceptual site model based on the available information. In order to address a data gap identified in the review, intrusive sampling was undertaken on Lots 1, 2 and 6.

Based on the review of available information and investigations no contamination was identified which would preclude the residential development of the site. However, based on the scope of work completed for this assessment and subject to the limitations in **Section 8**, it is recommended that work, health, safety and environmental management controls (including protocols to manage unexpected finds) should be implemented during the development earthworks phase.

Introduction 1.

Background 1.1

JBS&G Australia Pty Ltd (JBS&G) was engaged by Legacy Property (Legacy, the client) to complete an Environmental Site Assessment (ESA) for properties located between Caddens Road and O'Connell Street, Caddens, NSW (the site). Currently the site (see Figure 1) is largely vacant and was previously used for rural residential purposes. The site is made up of a number of lots (see Figure 2 and Section 2) and these lots have been the subject of a series of environmental site assessments undertaken by the various land owners. Legacy has brought the site under one ownership and has commissioned the consolidated ESA to support an application to Penrith City Council for development of the land consistent with the current R1 – General Residential (Penrith LEP 2010) zoning¹.

This assessment has been conducted in accordance with guidelines made or approved by the NSW Environment Protection Authority (EPA) and relevant Australian Standards.

1.2 Objectives

The objective of the assessment is to assess the potential for contamination based on historical and current site activities and the environmental assessments undertaken to date. For the purpose of supporting a Development Application for the site, the ESA draws preliminary conclusions regarding the potential soil and groundwater issues which may affect the site's use for residential purposes.

1.3 Scope of Work

The following scope of works was undertaken:

- A site inspection and desktop review of available environmental site assessments, site history and background information to identify potential areas of environmental concern (AECs) and associated contaminants of potential concern (COPC);
- Development and documentation of a conceptual site model (CSM) based on the available information;
- Identification of potential data gaps based on the CSM;
- Undertaking intrusive investigations to address data gaps;
- Preparation of an ESA report in general accordance with relevant EPA Guidelines; and
- Assessment of whether the site is suitable, from a site contamination perspective, for the proposed land use.

©JBS&G Australia Pty Ltd | 52116-105322

1

¹ Penrith City Council (2010), Local Environmental Plan (LEP) 2010, accessed on 7 July 2016, http://legislation.nsw.gov.au/#/view/EPI/2010/540

2. Site Condition and Surrounding Environment

2.1 Site Identification and Previous Assessments

The site details are summarised in Table 2.1, and shown on Figures 1 and 2.

Table 2.1: Site Identifications

Identification		Description				
Lot 11 DP522660	Lot 11 DP522660					
Address	117 O'Connell Street, Caddens, NSW	Previously drive-in garden centre. Site buildings				
Site Area	Approximately 2.6 hectares (ha)	now demolished to ground level with some				
Current Land Use	Vacant land	demolition stockpiles remaining. Asphalt, concrete,				
Former Land Use	Agriculture and later garden centre	paving and gravel is also present. An irrigation dam is located in the southwest corner of the property.				
Lot 12 DP 522660						
Address	141 O'Connell Street, Caddens, NSW					
Site Area	Approximately 2.83 ha	Open sparsely vegetated paddock used for cattle grazing. Some hard rubbish (e.g. drums and baths)				
Current Land Use	Vacant land	previously identified.				
Former Land Use	Agriculture	previously identified.				
Lot 51 DP 1189505						
Address	143 O'Connell Street, Caddens, NSW					
Site Area	Approximately 8 ha	Agricultural land uses, including a dam which				
Current Land Use	Vacant land	appears to be filled.				
Former Land Use	Agriculture					
Lot 101 DP 564332						
Address	185 Caddens Road, Caddens, NSW					
Site Area	Approximately 3.41 ha	Open paddock with small pond/farm dam and fill in				
Current Land Use	Vacant land, with limited sheep grazing.	the north west corner and various.				
Former Land Use	Agriculture					
Lot 1 DP 515678						
Address	187 Caddens Road, Caddens, NSW					
Site Area	Approximately 2.1 ha	Rural residential, including remains of derelict brick				
Current Land Use	Vacant land	building.				
Former Land Use	Agriculture					
Lot 6 DP 502333						
Address	189 Caddens Road, Caddens, NSW					
Site Area	Approximately 0.07 ha	Road easement for access to rural residential				
Current Land Use	Road access	property.				
Former Land Use	Agriculture / orchards					
Lot 2 DP 502333						
Address	189 Caddens Road, Caddens, NSW					
Site Area	Approximately 1.75 ha	Rural residential with possible agricultural				
Current Land Use	Rural residential	cultivation.				
Former Land Use	Agriculture					
Lot 755 DP 1180111	Lot 755 DP 1180111					
Address	207-213 Caddens Road, Caddens, NSW					
Site Area	Approximately 5.3 ha	Formerly comprised predominantly open farm land				
Current Land Use	Vacant land	and orchard with occasional clusters of trees.				
Former Land Use	Agriculture					

2.2 Surrounding Land-Use

The surrounding land uses have been identified as follows:

- North Immediately bordered by O'Connell Street, and thence rural residential land which is part of the University Western Sydney campus;
- East Western Sydney Records Centre in the north and rural residential land in the south;
- South Immediately bordered by Caddens Road and thence rural residential land in the east and rural residential land in the west; and
- West Immediately bordered by existing and developing residential areas in the south, and rural residential in the north.

2.3 Geology

Reference to the 1:100 000 Geology of the Penrith Sheet 9030 (1991) indicates the site is underlain by Bringelly Shale of mid Triassic age, the uppermost unit of the Wianamatta Group. The Bringelly Shale is composed of interbedded shale, carbonaceous claystone, laminate, fine to medium grained lithic sandstone and some coal and tuff. The site is located geologically towards the central part of the Penrith Basin where the Bringelly Shale is up to 90 metres thick and underlain by the Hawkesbury Sandstone².

The Soil Landscape Map of Penrith (Soil Landscape Series Sheet 9030, Scale 1:100,000, 1989), prepared by the Soil Conservation Service of NSW, indicates that the site is located within the Luddenham landscape area, with undulating to rolling low hills on Wianamatta Group shale, often associated with Minchinbury Sandstone and typically consists of localised impermeable, moderately reactive, highly plastic subsoil³.

2.4 Topography

The site slopes from a high in the northwest and central area of the site towards the west, south and northeast. Site elevations are between 44 m Australian Height Datum (AHD) and 70 m AHD.

2.5 Hydrology

The site is predominantly surfaced with grass cover, whereby it is anticipated that surface water generated during periods of rainfall is likely to result in infiltration of the ground surface at a rate reflective of the clayey topsoil permeability. In periods of heavy or prolonged rainfall, excess water is expected to result in limited runoff collected by natural drainage channels that extend to the west towards Werrington Creek 80 m west of the site, and northeast and southeast of site that finally drain into Claremont Creek located approximately 750 m to the east of the site.

The two creeks drain into the Hawkesbury River, approximately 21 km north of the site.

2.6 Hydrogeology

Groundwater within the Bringelly Shale is located within a deep regional confined aquifer. Minor perched groundwater is also present within the weathered shale profile however these lenses are discontinuous and do not form an aquifer.

Registered groundwater bore information was obtained from the NSW Office of Water database on 20 September 2016⁴ (Error! Reference source not found.). A review of the registered bore information indicated that there were no bores located within a 500 m radius of the site.

Parsons Brinkerhoff (PB) (2009), Phase 2 Environmental Site Assessment Caddens Release, Kingswood, NSW, 2747, July 2009, Ref No. PR 9627 Rev B

³ Preliminary Contamination Assessment, Geotechnique Pty Ltd 28 June 2011 (12486/1-AA)

⁴ NSW Government Office of Water (OW) (2016), accessed 20 September 2016, http://allwaterdata.water.nsw.gov.au/water.stm

Groundwater monitoring wells have been previously installed on Lot 12 (MW5), Lot 1 (MW6) and Lot 755 (MW4). Bore details are provided in Table 2.2 (PB 2009⁵).

Table 2.2: Site Bore Details

Bore	Geology intersected	Screened interval (m BGL)	Standing Water Level (m BTOC	Groundwater Elevation (m AHD)	Date groundwater level was recorded
MW4	Weathered sandstone	4.0-6.9	1.615	47.185	01/06/2009
MW5	Sandy clay/ weathered sandstone	8.0-11.0	8.325	59.225	01/06/2009
MW6	Sandy clay/ weathered sandstone/shale	5.0-8.0	8.240	53.045	01/06/2009

2.7 Acid Sulfate Soils

The site is reported to be within an area with 'no known occurrences of acid sulfate soil materials' (PB 2009), as such no further consideration of potential requirements for management of such conditions is required.

Parsons Brinkerhoff (PB) (2009), Phase 2 Environmental Site Assessment Caddens Release, Kingswood, NSW, 2747, July 2009, Ref No. PR_9627 Rev B

3. Site History

3.1 Aerial Photographs

Aerial photographs from 1947, 1965, 1986, 2004 and 2014 were presented in MCE (2014). A summary of the findings from the review of these photographs, as well as the 2010 and 2016 aerial photographs (NearMap 2016⁶), is presented below.

Table 3.1: Aerial Photograph Observations

Year	Description	Surrounding Land Use	
1947	The site appears to have been utilised for agricultural purposes, including orchards, grazing and possibly market gardens. A dwelling is noted at the centre of the site on Lot 1. A treed area is evident in the western area of Lot 755.	The site is surrounded by rural residential / agricultural properties including possible uses as market gardens and orchards. A house and large shed is located on the western boundary of Lot 11. The roads of O'Connell Street and Caddens Road are present.	
1961	The site is under similar land use, with a treed area in the northeastern corner of Lot 12, and possibly a dwelling.	Similar to earlier aerial photography.	
1978	A garden centre appears to be operating on predominately the northern half of Lot 11, a house and sheds have been constructed on Lot 2 and an orchard is present on the northwest corner of Lot 755.	The State archives development appears to be under construction east of Lot 51 and a house and cultivated fields are south of Lot 2.	
1986	Similar to 1978, although the garden centre on Lot 11 now appears to operate over the whole lot, and the eastern area of Lot 2 appears to be under active cultivation.	The footprint of the State Archives development has been expanded, and the building west of Lot 11 has been enlarged.	
1998	Similar to 1986, although the dwelling on Lot 1 appears to have been demolished.	The footprint of the State Archives has been further expanded. The cultivated fields south of Lot 2 has been replaced by orchard plantings on the western half.	
2011	Similar to 1998, however, active cultivation on Lot 2 has reduced.	The footprint of the State Archives has been further expanded.	
2014	There appears to be no orchards or cultivated fields within the site, and the area is likely to be used for grazing only. The garden centre on Lot 11 appears inactive.	Similar to 2011, however, the area west of Lots 2 and 6 has been or is the progress of being developed for residential uses.	
2016	Similar to 2014.	Similar to 2014, residential development complete.	

Copies of the aerial photographs are included as Appendix B.

3.2 EPA Records

A search of the NSW EPA's public register maintained under the *Protection of the Environment Operations Act 1997 (POEO Act)* was undertaken on 20 September 2016 for the subject site and surrounding properties. The results of the search are presented in **Appendix C**. The search identified that there were no current or former prevention, clean-up or prohibition notices for the site and immediate surrounds. Further the site or adjoining properties have not been notified to the NSW EPA under Section 60 of the *Contaminated Lands Management Act* (1997) as contaminated land.

In addition, the search of the EPA's public register for current and historical environmental protection license (EPL) records issued under the POEO Act has not identified any documents associated with the site or surrounding properties.

⁶ Nearmap (2016), 5 May 2016 aerial photograph, accessed 7 July 2016, http://maps.au.nearmap.com/

3.3 Australian and NSW Heritage Register

A search of the Australian Heritage Trust database and the NSW Heritage Inventory was undertaken and records are included in **Appendix D**. The search did not identify the presence of any items of national or state significance in the vicinity of the site.

3.4 Council Information

The site is zoned as R1 (General Residential) under the Penrith City Council LEP 2010. Under the LEP, permissible uses (with consent) for land zoned as R1 includes (but is not limited to) attached dwellings, bed and breakfast accommodation, boarding houses, child care centres, community facilities, dwelling houses, emergency services facilities, exhibition homes / villages, flood mitigation works, group homes, home businesses, hostels, information and education facilities, multi dwelling housing, neighbourhood shops, places of public worship, recreation areas, roads, and semi-detached dwellings.

Penrith City Council Development Control Plan 2014 (DCP) for Caddens states that a 'Phase 2 Environmental Site Assessment' must be lodged with a Development Application (DA) on any land identified as 'potentially contaminated'. The Figure E1.20 – Potentially Contaminated Land in the DCP indicates the site is potentially contaminated with the exception of Lot 51 DP 1189505.

3.5 Integrity Assessment

The information obtained from formal published sources noted above has been found to be in general agreement with the known history of the site.

Based on the range of sources and the general consistency of the historical information, it is considered that the historical assessment has an acceptable level of accuracy with respect to the potentially contaminating activities that historically occurred on site.

4. Conceptual Site Model

4.1 Areas of Environmental Concern

Based on the site history review, areas of environmental concern and associated potential contaminants of concern have been identified at the site, as noted in **Table 4.1**.

Table 4.1: Areas of Environmental Concern and Associates Contaminants of Potential Concern

Areas of Environmental Concern (AEC)	Contaminants of Potential Concern (COPC)
Potential impacts associated with the storage of drums, use and leakage of machinery associated with historic agricultural activities	Metals, TPH, BTEX, PAHs, VOCs, pesticides
Application of pest control chemicals during site agricultural and maintenance activities	Pesticides
Hazardous building materials	Asbestos and lead
Landfilling with soil and wastes derived from site activities	Metals, TPH, BTEX, PAHs, VOCs, pesticides, asbestos

4.2 Potentially Contaminated Media

It is considered that there is the potential for the natural soils to be impacted as a result previous / current site activities including the storage / spillage of chemicals. Near surface natural materials around areas where historic structures were located have the potential to be impacted by asbestos and / or lead paint. This may have resulted from the deterioration of structures and / or the demolition of structures without appropriate controls to minimise the potential for contamination of surface soils with material debris. Furthermore, surface soils have the potential to have been impacted based on the historical use of the site for agricultural purposes.

The is also the potential for filling to have taken place to level areas in the footprints of the site features and in the construction of dams, and the fill to include wastes generated on the site (e.g. agricultural, garden nursery, ash on-site burning, and demolition waste).

Within dams there is the potential for contaminants to accumulate in water and sediment from surface water run-off.

Dependent upon the leachability of potential contaminants within surface soils, the migration of contaminants into the underlying subsurface soils and groundwater may occur.

4.3 Potential for Migration, Exposure Pathways and Receptors

Contaminants generally migrate away from a site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site history review are generally in either a solid form (e.g. metals, asbestos, etc) or liquid form (e.g. fuel, pesticides, etc).

The site is predominantly vegetated which significantly reduces the potential for windblown contaminants to migrate from the site.

The potential for contamination migration via infiltration of water and subsequent migration through the soil profile is possible as the site is predominantly unsealed. Migration of contaminants via surface water movement is possible in around the site exhibiting low lying areas proximate to the site boundaries.

Given the unsealed nature of the site, there is potential for migration of contamination to groundwater although this potential is mitigated dependent on depth to groundwater and permeability of overlying soils.

4.4 Potential Exposure Pathways

Based on the COPC identified in various media as discussed above, the exposure pathways for the site include:

- Dermal;
- Ingestion; and
- Inhalation.

Due to the potential presence of impacted soil on ground surfaces in areas of the site that may be accessed by future residents, potential exposures to be considered include dermal, inhalation and ingestion exposure pathways.

As groundwater is not anticipated to be extracted under the proposed land use, dermal contact and ingestion of groundwater is considered to be unlikely. However, dependent on the depth to groundwater and the extent of contamination in near surface soils, there is a potential for exposure to groundwater during future subsurface activities. Furthermore, dermal contact and ingestion of potentially impacted surface water are considered to be potential exposure pathways.

4.5 Receptors

Potential receptors of environmental impact present within the site which will be required to be addressed with respect to the suitability of the site for the proposed use include:

- Excavation / construction / maintenance workers conducting activities at the site, who may
 potentially be exposed to COPCs through direct contact with impacted soils and / or
 groundwater present within excavations and / or inhalation of dusts / fibres associated with
 impacted soils;
- Future occupants/users of the site may potentially be exposed to COPCs through direct contact with impacted soils and / or ingestion of impacted soils and / or inhalation of dusts / fibres associated with impacted soils; and / or
- Offsite sensitive receptors of groundwater; and / or
- Onsite ecological receptors on vegetated areas of the site.

4.6 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and / or man-made pathways that result in the preferential migration of COPCs as either liquids or gases.

Man-made preferential pathways may be present at the site, generally associated with services that may be present beneath the existing ground surface near the area where former dwellings were located. Service lines are anticipated to have a higher permeability than the underlying natural soils.

5. Previous Investigations

The investigations which have been undertaken on the various lots now consolidated into the site are summarised below and assessed against the Conceptual Site Model presented in **Section 4**. Where previous investigations have not adequately assessed the potential complete pathways to the identified receptors, further investigation may be warranted.

5.1 Summary Previous Investigations

A brief summary of the previous investigations completed at the site is provided below.

Table 5.1: Investigation Summary

able 5.1: Investigation Summary					
Existing Environmental	Scope	Findings			
Reports					
Lot 11 DP522660					
Preliminary	The scope included the	Laboratory analysis indicated analytes were either not present (i.e.			
Contamination	collection and analysis of	concentrations less than laboratory LOR), or present in the			
Assessment,	discrete and composited	sampled soils at concentrations that do not pose a risk of hazard to			
Geotechnique Pty Ltd 28	soil samples from 28 test	human health or the environment, under a "residential with access			
June 2011 (12486/1-AA)	pits and one augered	to soil" form of development.			
Detailed Contamination	location, with	The exceptions were elevated concentrations of Cu, Ni, and Zn that			
Assessment &	subsequent delineation	could potentially impact on the growth of certain plant species.			
Remediation Action Plan,	sampling in the detailed	Based on the soil type typical of the site (sandy clay), the revised			
Geotechnique Pty Ltd, 10	assessment. Samples	phytotoxicity criteria adopted by the NSW EPA in 2013 would mean			
October 2011 (12486/2-	were selectively analysed	that there would be only some minor exceedances of the current			
AA)	for metals (arsenic (As),	criteria for Zn.			
	cadmium (Cd), chromium	Scattered bonded asbestos-cement pieces were also encountered			
	(Cr), copper (Cu), lead	on the ground surface at a localised area, and in test pits during the			
	(Pb), mercury (Hg), nickel	detailed assessment. Fill materials were encountered at depths to			
	(Ni) and zinc (Zn), total	about 2.8m below the existing ground level.			
	petroleum hydrocarbons	The Detailed Contamination Assessment included a remediation			
	(TPH), benzene, toluene,	strategy for the identified impacts.			
	ethylbenzene and				
	xylenes (BTEX), polycyclic				
	aromatic hydrocarbons				
	(PAHs), polychlorinated				
	biphenyls (PCB), and				
	asbestos.				

Existing Environmental	Scope	Findings
Reports		
Lot 12 DP 522660 Phase 2 Environmental Site Assessment, Parsons Brinkerhoff (PB), July 2009 (2116943A PR_9627 RevB.doc). Preliminary Contamination Assessment, Geotechnique Pty Ltd 28 June 2011 (12486/1-AA)	The PB scope included the collection and analysis of 29 surface soil samples and 5 test pit soil sample locations, as well as one groundwater sample (MW5). Samples were analysed for organochlorine pesticides (OCPs), metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and asbestos. The Geotechnique scope included assessing the same analytes as PB (except including PCB and omitting VOCs) at 39 test pit locations.	PB found the site to be generally underlain by natural material or reworked natural material. Elevated Cu and Zn concentrations relative to the phytotoxicity criteria were considered to represent natural soils. It was also noted, the current and past land uses as agricultural land indicated no adverse impact on flora and no signs of plant stress were observed during site inspections. No subsurface fibrous cement sheeting was found and no soil samples detected any asbestos containing materials. However, some isolated fibrous cement fragments were observed at the surface at two locations in the upper area of the lot. The isolated fragments were bonded and non-friable in nature, therefore the likelihood of the small fragments impacting the underlying soils was considered very low. The source of the isolated fragments was considered as probably from buildings on the site. No visual observations of contamination from former or present land uses or aesthetic degradation was noted. Groundwater was found to be free from significant contamination with the exception of dissolved copper and zinc that was considered to represent background levels in the area. The lot was considered by PB to be suitable for the proposed residential land use with gardens and accessible soil. An audit of the lot conducted by an EPA Accredited Auditor (Roger Parker) concluded in September 2009 that the site was suitable for residential land use with accessible soil, including gardens (minimal home-grown produce contributing less than 10% fruit and vegetable intake), excluding poultry. Geotechnique assessment of Lot 12 was consistent with PB.
Preliminary Environmental Site Assessment, JBS&G Pty Ltd, 29 November 2013 (43123-56143 (Rev 0))	The JBS&G scope included a review of the available information, including Council documentation, aerial photographs, WorkCover NSW records, NSW EPA records and Heritage records, as well as a detailed site inspection, to identify potential areas of environmental concern (AECs) and associated contaminants of potential concern (COPCs).	Based on the review it was considered unlikely that activities at the site would have contaminated the land to a degree that could not be readily managed/remediated to enable future residential land use. In relation to contamination warranting further investigation, the finding was consistent with the DCP.
Lot 101 DP 564332 Phase 2 Environmental Site Assessment, Parsons Brinkerhoff, July 2009 (2116943A PR_9627 RevB.doc). Preliminary Contamination Assessment, Geotechnique Pty Ltd 28 June 2011 (12486/1-AA).	The PB scope included the collection and analysis of 26 surface soil samples and 4 test pit sample locations, as well as one groundwater sample (MW6). Samples were analysed for OCPs, metals, TPH, benzene, BTEX, PAHs, VOCs, and asbestos. The Geotechnique scope included assessing the same analytes as PB (except including PCB and omitting VOCs) at 45 test pit locations.	PB found Lot 101 to have similar characteristics as Lot 12. However, no surface or subsurface fibrous cement sheeting was found and no soil samples detected any asbestos containing materials. For groundwater there was elevated dissolved chromium as well as copper and zinc, the concentrations were considered to represent background levels in the area. The lot was considered to be suitable for the proposed residential land use with gardens and accessible soil. An audit of the lot conducted by an EPA Accredited Auditor (Roger Parker) concluded in September 2009 that the site was suitable for residential land use with accessible soil, similar to Lot 12. Geotechnique assessment of Lot 101 was consistent with PB.

Existing Environmental	Scope	Findings	
Reports Lot 1 DP 515678			
JBS&G completed a Preliminary Environmental Site Assessment for Legacy Property in September 2016.	The JBS&G scope included a review of previous reports on adjacent properties, aerial photographs, NSW EPA records and Heritage records.	Based on the review it was considered unlikely that potential contamination (if any) associated with prior land uses would preclude the residential development of the lot.	
Lot 6 DP 502333			
JBS&G completed a Preliminary Environmental Site Assessment for Legacy Property in September 2016.	The JBS&G scope included a review of previous reports on adjacent properties, aerial photographs, NSW EPA records and Heritage records.	Based on the review it was considered unlikely that potential contamination (if any) associated with prior land uses would preclude the residential development of the lot.	
Lot 2 DP 502333			
JBS&G completed a Preliminary Environmental Site Assessment for Legacy Property in September 2016.	The JBS&G scope included a review of previous reports on adjacent properties, aerial photographs, NSW EPA records and Heritage records.	Based on the review it was considered unlikely that potential contamination (if any) associated with prior land uses would preclude the residential development of the lot.	
Lot 755 DP 1180111			
Phase 2 Environmental Site Assessment, Parsons Brinkerhoff, July 2009 (2116943A PR_9627 RevB.doc).	The PB scope included the collection and analysis of 43 surface soil samples and 11 test pit soil sample locations, as well as one groundwater sample (MW4). Samples were analysed for OCPs, metals, TPH, benzene, BTEX, PAHs, VOCs, and asbestos.	PB found Lot 755 to have similar characteristics as Lot 12. However, no surface or subsurface fibrous cement sheeting was found and no soil samples detected any asbestos containing materials. Groundwater was found to be free from significant contamination with the exception of dissolved copper and zinc that was considered to represent background levels in the area The lot was considered to be suitable for the proposed residential land use with gardens and accessible soil. An audit of the site conducted by an EPA Accredited Auditor (Roger Parker) concluded in 2011 the site was suitable for residential with accessible soil, including gardens (minimal home-grown produce, excluding poultry), day care centre, preschool, primary school etc.	

5.2 **QA/QC Data Evaluation**

The investigations outlined in Section 5.1 referenced the use of guidelines made or approved by the NSW Environment Protection Authority (EPA). Where intrusive investigation programs were undertaken a Data Quality Objective (DQO) process was applied to the investigation activities for the areas subject to investigation, including incorporation of a QA/QC program. The adherence to the program was assessed by the consultants as satisfactory and that the results of the investigation could be relied upon.

5.3 **Assessment of Historical Data against Current Guidelines**

Available data from the previous investigations were re-assessed against the health-based and environmental investigation and screening levels presented in the amended National Environment Protection (Assessment of Site Contamination) Measure (NEPM) (NEPC 2013⁷).

National Environment Protection Council (NEPC) 2013, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, amended April 2013

Based on this review, it was noted that concentrations of copper and zinc from some soil samples analysed from the site were greater than the environmental investigation / screening levels as presented in the NEPM. It is noted however, that the concentrations reported for these metals are within the range of background concentrations as presented in the Contaminated Sites Monograph Series 1995 (Olszowy, et. al. 1995⁸).

5.4 Data Gaps

In an area which shares a similar rural residential land use history, contamination related investigations have been conducted over time and have encompassed much of the site. The scope of the investigations has been consistent with the Conceptual Site Model developed for the site. In the investigation no contamination has been identified which would preclude the residential development of the site.

The vast majority of laboratory results from the intrusive investigations have been lower than detection limits or lower than the adopted assessment criteria. The consistency of the results indicates the level of uncertainty in the assessments is low and the probability that contamination may be present that has not been detected is also considered to be low.

However, three lots (Lot 1, Lot 2 and Lot 6) have had no reported contamination investigations as required by Penrith City Council's DCP for Caddens which requires a Phase 2 Environmental Site Assessment to accompany DAs for these lots. In order to address this data gap, supplementary intrusive contamination investigations have been undertaken. The investigations and results are provided in **Section 6**.

8

Olszowy, H. Torr, P., and Imray, P. (Olszowy, et. al.) (1995), Trace Element Concentrations in Soils from Rural and Urban Areas of Australia, Contaminated Sites Monograph Series No. 4, 1995

6. Supplementary Investigation (Lots 1, 2 and 6)

Three lots within the site (Lot 1 in DP 515678, Lot 2 in DP 502333 and Lot 6 in DP 502333) have not been the subject of intrusive contamination investigations.

In order to complete contamination investigations to a similar level as investigations on other lots within the site, as well as satisfy the Penrith City Council's DCP for Caddens which requires a Phase 2 Environmental Site Assessment to accompany DAs, a program of soil sampling was completed for the Lots 1, 2 and 6.

6.1 Sampling and Analysis Plan

A Sampling and Analysis Plan was developed for the Lots 1, 2 and 6 based on the Conceptual Site Model presented in **Section 4** and the Data Quality Objectives (DQOs) presented in **Appendix E**.

6.1: Proposed Supplementary Investigations

Site	Site Usage	Intrusive Site Investigations
Lot 1 DP 515678 Address: 187 Caddens Road Site Area: Approx. 2.1 ha	Rural residential, including remains of derelict brick building.	Fifteen locations were subject to intrusive investigation. The level of assessment was based on the low risk of contamination and was half the sampling density tabulated in EPA guidance. This reduced sampling density is consistent with the density of investigation adopted for other lots within the site (PB, 2009). The program of investigation targeted areas of potential concern identified in the desktop review and inspection, as well as grid sampling in remaining areas.
Lot 2 DP 502333 Address: 189 Caddens Road Site Area: Approx. 1.75 ha	Rural residential with possible agricultural cultivation.	Based on the likely low risk of contamination, 14 locations sampled based on the reduced sampling density adopted elsewhere, targeting areas of potential concern as well as grid sampling in remaining areas.
Lot 6 DP 502333 Address: 189 Caddens Road Site Area: Approx. 0.07 ha	Road easement for access to rural residential properties.	Based on the likely low risk of contamination, 3 locations sampled based on the reduced sampling density adopted elsewhere, targeting areas of potential concern.

JBS&G contracted Eurofins MGT (Eurofins) as the primary laboratory for the required chemical analyses. The secondary laboratory was Envirolab Services Pty Ltd (Envirolab). Both laboratories are NATA accredited for the required analyses. In addition, the laboratories were required to meet JBS&G's internal quality assurance/quality control (QA/QC) requirements. The completed analysis schedule is summarised in **Table 6.2.**

Table 6.2: Analytical Schedule

Sample Type	Sample Type	No. of Sampling Locations	Analyses (exc. QA/QC)
Lot 1 DP 515678 Address: 187 Caddens Road	Soil	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 18 samples PAH – 7 samples TRH/BTEX – 20 samples Asbestos Identification – 1 Sample OCPs – 8 samples	
	Material	1 Surficial Fibrous Cement Sheeting Fragment	Physical Parameters (CEC, pH and % Clay) – 2 samples Asbestos Identification – 1 Sample
Lot 2 and 6 DP Soil 17 Test Pit Locat		17 Test Pit Locations and 3 Surficial Samples	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 20 samples PAH – 8 samples TRH/BTEX – 22 samples Asbestos Identification – 4 Sample OCPs – 9 samples Physical Parameters (CEC, pH and % Clay) – 2 samples

In addition to the above primary analyses, to address the DQIs, field duplicate and triplicate soil samples were analysed at a rate of one per 20 primary samples for contaminants of concern. A rinsate sample was obtained from non-disposable soil sampling equipment, plus a single trip spike and single trip blank accompanied the sample batch.

6.2 Assessment Criteria

6.2.1 Regulatory Guidelines

Development of site assessment criteria and the associated scope of investigation was undertaken with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council (NEPC 2013);
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW OEH, 2011 (OEH 2011); and
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition, NSW EPA, 2006 (DEC 2006).

6.2.2 Assessment Criteria Selection

As per the decision process for assessment of urban development site (DEC 2006), a set of health and ecological assessment thresholds derived from NEPC (2013) was used for evaluation of site contamination data collected for the assessment. The site is zoned R1 – General Residential (Penrith LEP 2010). The soil data were therefore compared against NEPM (NEPC 2013) land use criteria consistent with residential scenario with accessible soils, less than 10% home grown fruit and vegetable intake but no poultry, and also includes childcare centres, preschools and primary schools.

Should a more sensitive land use be proposed, such as a residential land use with an anticipated consumption of >10% of home grown fruit and vegetable intake and / or poultry, it is recommended that a site specific risk assessment be undertaken to determine the suitability of the site for these uses.

The adopted site criteria are presented in **Table A**, the soil analytical summary tables. Relevant guidelines are presented below:

- Health based Investigation Levels (HILs) for residential with garden/accessible soils (home grown produce <10% fruit and vegetable intake and no poultry) and also includes childcare centres, preschools and primary schools (HIL-A);
- Health Screening Levels (HSLs) for petroleum hydrocarbons considering potential for vapour intrusion within fine grained soils for low-high density residential land use (HSL A & HSL B);
- Ecological Investigation/Screening Levels (EILs/ESLs) for urban residential land use; and
- Health screening levels for asbestos contamination in soil for residential land use with garden/accessible soils including children's day care centres, preschools and primary schools (HSL A).

Where there are no NSW EPA endorsed thresholds for individual COPC the laboratory limit of reporting (LOR) was adopted as an initial screening value for the purposes of this assessment.

6.2.3 Derivation of Site Specific Ecological Investigation Levels

Site specific EILs were derived in accordance with the methodology outlined within NEPM (NEPC 2013). Four representative soil samples (TP01 0-0.1, TP11 0.2-0.3, TP18 0.2-0.3 and TP32 0.2-0.3) were submitted for laboratory analysis to determine physiochemical parameters including Cation

Exchange Capacity (CEC), pH and % Clay. Detailed laboratory reports and chain of custody documentation is provided in **Appendix F**.

Values for Average Background Concentrations (ABCs) were obtained from Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (Olzworthy *Et Al.* 1995).

Table 6.5 details ABCs, Added Contaminant Limits and derived EILs. All values are in mg/kg unless otherwise specified.

Table 6.5: Derivation of EILs

able to the termination of Eles						
	Physical Parameters					
Cation Exchange (Capacity (meq/100g)	pH (pH units)	% Clay			
	16	6.7	33			
	19	7.9	25			
	14	7.3	33			
	15	6.9	33			
16 (A	verage)	7.2 (Average)	32 (Average)			
EILS						
Contaminant	ABC	ACL	EIL			
Zinc	142	400	542			
Copper	49	190	239			
Chromium (III)	12	400	412			
Nickel	6	170	176			
Lead	303	1100	1403			
Arsenic	8	100	108			
DDT	Ε.	180	180			
Naphthalene	8	170	170			

6.3 Results

6.3.1 Quality Assurance/Quality Control

A detailed Quality Assurance/Quality Control (QA/QC) analysis was undertaken on the analytical data set pertaining to the data gap investigation and is presented in **Appendix G.** Based on the results of the field and laboratory QA/QC program, the soil data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site.

6.3.2 Soil Observations

Soil sampling was conducted on 10 October 2016 at the sampling locations shown on **Figure 4**. Borehole logs are included in **Appendix H**.

The majority of the investigation area was unsealed ground covered grass tussocks and larger vegetation, with the remainder of the unsealed surfaces either exposed or occupied by some small shrubs and larger trees.

A summary of soil conditions present at the site is presented as follows. A total of 31 test pits and one hand auger borehole were advanced from the ground surface to natural material. Test pits generally encountered natural clays and silty clays at the ground surface with the exception of three locations. At two locations (TP13 and TP16) shallow fill (0.2 m bgs) was encountered and at one location (TP26) deep fill was encountered (0.8 m bgs). Fill material at all three locations encountered was the result of anthropogenic items mixed with natural soils being laid in small stockpiles, slightly elevated from the surrounding ground surface. No burial of fill material was encountered at any of the test pit locations. Fill material generally comprised site won natural materials (clayey silts and silty clays varying in colour, primarily brown, red and orange with low to no plasticity and varying in consistency from soft to hard) silty clay with inclusions of anthropogenic materials in the form of bricks, tiles, sandstone, concrete cobbles, glass, igneous gravels and concrete boulders. No ACM, odours or staining was observed within the soil profile at any investigation location.

Surficial ACM was observed at some locations within the rubble from an historical demolition of onsite structures as indicated on **Figure 3**. Odourous surficial soil was observed within the vicinity of the septic tank identified to the east of the residence on Lot 2.

Surficial staining was observed surrounding a fence post to the southeast of the residence, the current site occupant advised JBS&G that the staining was from the application of sump oil to the fence post. Minor areas of burnt rubbish were observed as indicated on **Figure 3** and rubbish was observed on site surfaces in several locations. No odours or staining were observed within the soil profile at any investigation location. No PID readings above the instrument's level of detection were observed during field screening for volatiles during soil sampling.

6.3.3 Soil Contamination Analytical Results

Detailed laboratory reports and chain of custody documentation are provided in **Appendix F**. Summarised soil analytical data for COPCs are presented in **Table A** and are discussed in the following sections.

6.3.3.1 Metals

All individual heavy metals concentrations were reported at concentrations less than the adopted health and ecological based assessment criteria.

6.3.3.2 PAHs

Total PAH, B(a)P and carcinogenic PAHs as B(a)P Toxic Equivalence Quotient (TEQ) values for all analysed samples were reported at concentrations less than the adopted site assessment criteria.

6.3.3.3 TRH and BTEX

Concentrations of all TRH were reported below the laboratory LOR and the adopted health and ecological site assessment criteria in all soil samples selected for analysis.

Concentrations of all BTEX were reported below the laboratory LOR and the adopted health and ecological site assessment criteria in all soil samples selected for analysis.

6.3.3.4 OCPs/PCBs

Concentrations of OCP compounds were reported below the adopted health and ecological assessment criteria for all soil samples selected for analysis.

Concentrations of total PCB compounds were reported below the laboratory LOR and the adopted health and ecological assessment criteria for all soil samples selected for analysis

6.3.3.5 Asbestos

Bonded ACM was observed on site surfaces during investigation within the vicinity of the demolished residential structure present on Lot 1. An asbestos fragment was also detected in the surface soil sample submitted for analysis from location TP16 0-0.1 on Lot 2.

6.4 Discussion

Based on the decision making process for assessing urban redevelopment sites detailed in DEC (2006) and discussed in **Appendix E**, the decisions required to be made are discussed below.

6.4.1 Potential Risks to Future Onsite Receptors

Concentrations of COPC in all samples analysed were reported below the adopted site criteria. Asbestos containing material (ACM) was observed on site surfaces within the vicinity of the demolished residential structure in Lot 6, as shown in **Figure 3**, which constitutes an exceedance of the HSL criterion for visible ACM. With the appropriate removal of incidental finds of ACM, there are no unacceptable risks to future human site occupants or ecological receptors under the proposed land use scenario.

6.4.2 Background Soil Contamination

Metals concentrations within soil samples analysed were within published background ranges as outlined in **Section 6.2**.

6.4.3 Chemical Mixtures

There were no soils identified with significant concentrations of more than one contaminant of concern and so no potential chemical mixtures identified during the investigation that may pose an unacceptable contamination risk at the site with respect to future site users.

6.4.4 Aesthetic Issues

As discussed in **Section 6.3.2**, surficial staining was observed surrounding a fence post to the south east of the residence on Lot 2. Minor areas of rubbish, in addition to incinerated rubbish, were observed in several locations. This may pose an unacceptable aesthetic issue requiring management prior to the site being occupied for the proposed land use.

Odourous surficial soil was observed within the vicinity of the septic tank identified to the east of the residence on Lot 2. No other odourous soils were observed during the site inspection and sampling activities.

Visible ACM in the form of fibre cement fragments were observed in the vicinity of the demolished residential building. This poses an unacceptable aesthetic issue which will require management prior to the site being utilised for the proposed land use.

6.4.5 Potential Migration of Contaminants

Based on the absence of significant contaminant mass in soils, unacceptable contaminant migration risks are not apparent for the investigation area.

6.4.6 Site Management Strategy

Aesthetic risks can be addressed prior to the investigation area being utilised for the proposed land use by an emu pick of visible ACM from site surfaces, the disposal of surficial rubbish and disposal of the incinerated rubbish. Odourous soils within the vicinity of the septic tank, if identified as posing an unacceptable aesthetic risk, should be disposed of or otherwise controlled to limit their odour emission.

Typical site management controls including protocols to manage unexpected finds should be implemented during any ground disturbance works associated with site development.

7. Conclusions and Recommendations

Based on the review of available information, site inspection and supplementary intrusive investigations, no contamination which would preclude the residential development of the site has been identified.

It is recommended that the RAP developed for Lot 11 DP522660 is implemented prior to redevelopment of the lot.

For the overall site, and based on the scope of work completed for this assessment and subject to the limitations in **Section 8**, it is recommended that work, health, safety and environmental management controls (including protocols to manage unexpected finds) should be implemented during any future ground disturbance works.

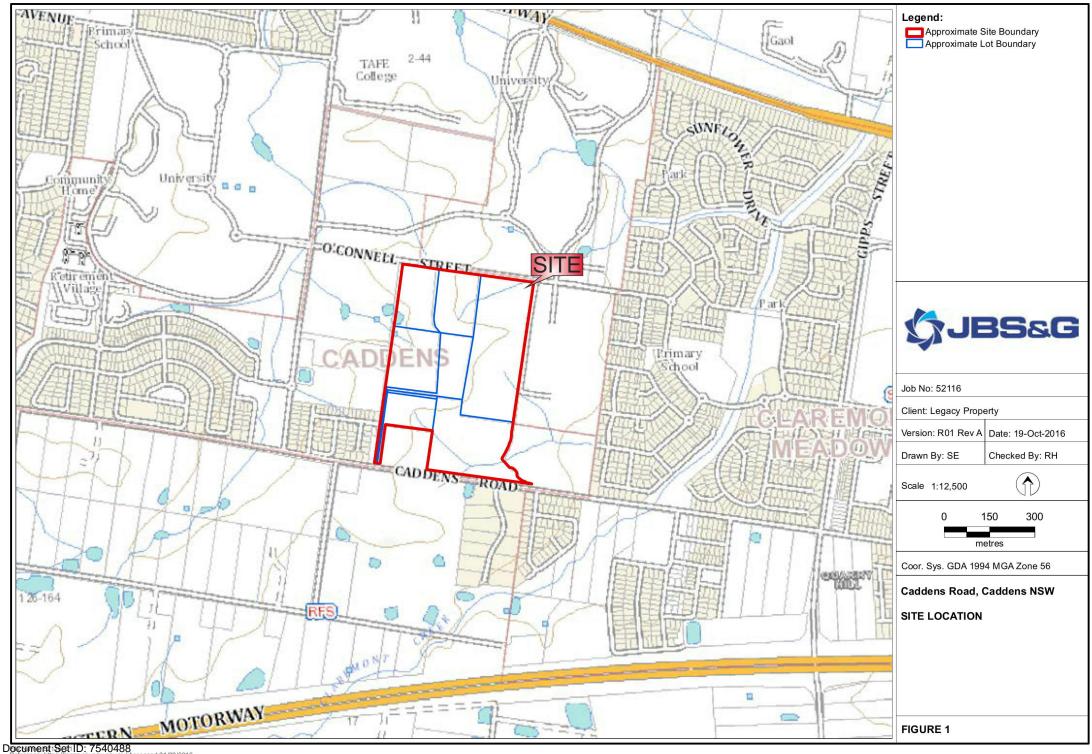
8. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

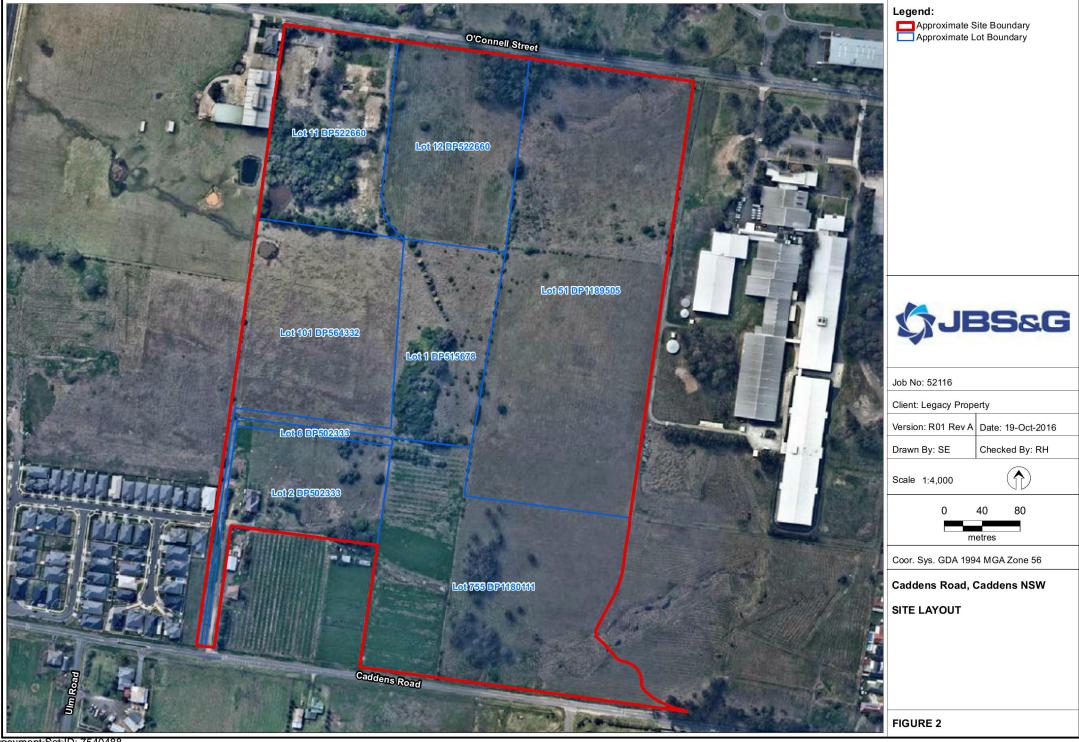
The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquires.

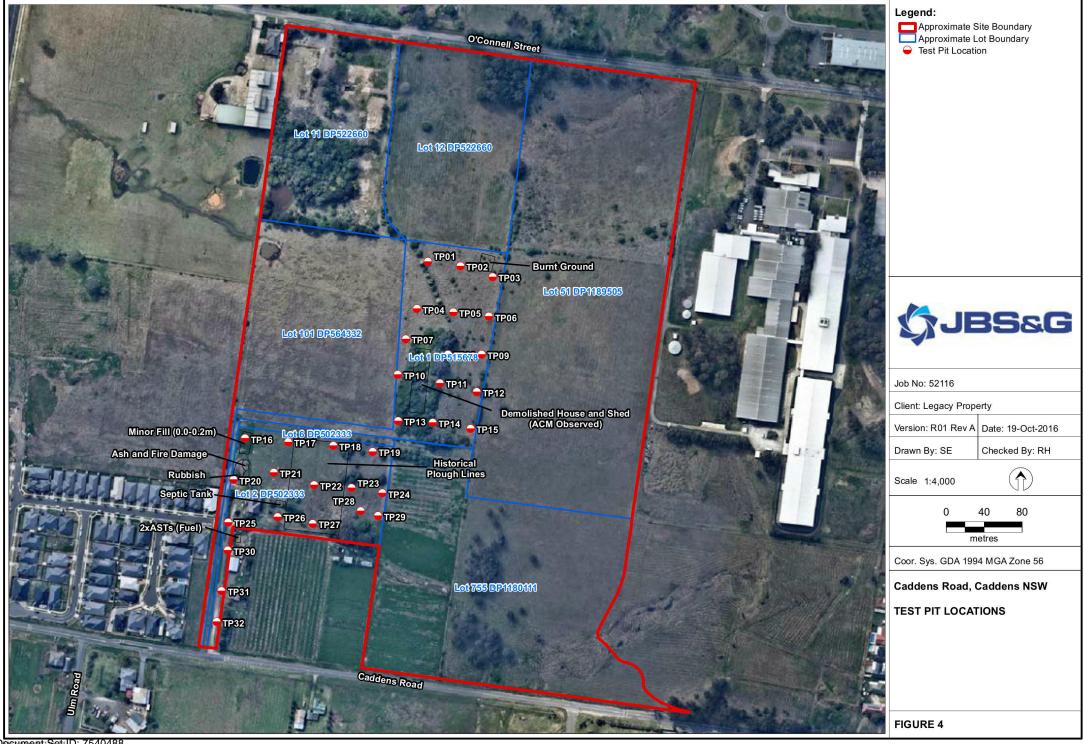
Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.


This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.

Figures


Reference: https://maps.six.nsw.gov.au/Accessed 21/09/2016 Version: 1, Version Date: 22/02/2017

Document SetzID: 7540488 Reference: https://maps.six.nsw.gov.au/.Accessed 21/09/2016 Version: 1, Version Date: 22/02/2017

Document Set ID: 7540488 Reference: https://maps.six.nsw.gov.au/Accessed 21/09/2016 Version: 1, Version Date: 22/02/2017

Document Set ID: 7540488 Reference: https://maps.six.nsw.gov.au/Accessed 21/09/2016 Version: 1, Version Date: 22/02/2017

Soil Analytical Results - Table A

©JBS&G Australia Pty Ltd | 52116-105322

And the second second	Metals & Metalloids	TPHs (NEPC 1999) TRHs (NEPC 2013)	BTEX Polycyclic Aromatic Hydrocarbons Chlorinated Benzenes
JBS&G			
		ce c se	
		(F) c c x de	
	on organ	tion tion section sect	Partitude Partit
	Tots	2.4 Fract 2.8 Fract 3.6 Fract 3.6 Fract C.16 Frac C.10 Frac C.10 Frac C.10 Frac C.10 Frac C.10 Frac	
	enic omit omit cury cel	10-C14 10-C36 10-C36 110-C1 116-C3 110-C1 110-C1	hylben; hylben; here (f hene (
	Ce Zinc Me Lea Cop Chr Cad		
FOI		kg mg/kg mg/	
NEPC 2013 EIL, EILs Aged Sediment	108 239 1403 176 542		170
NEPM 2013 ESL Urban Residential and Public Open Space, Fine Soil			65 125 106 45 0.7
NEPM 2013 Mgnt Limits - Residential, Parkland and Public Open Space, Fine NEPM 2013 Soil HIL A	100 20 100 6000 300 40 400 7400	1000 3500 10000 800	560 300 10
NEPM 2013 Soil HSL A - Sensitive Setting	200 200 3000 400 4000 7400	45 110 0.	
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Clay 0 to <1m		50 280 0.	
Sample ID Location Sample Depth Sample Date Matrix Type Lithological Type Lab Report Number			
TP01_0-0.1 TP01 0-0.1 10/10/2016 Soil Natural 519296	13 <0.4 23 36 20 <0.1 23 56 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <	01 01 01 02 01 03
TP02_0-0.1 TP02 0-0.1 10/10/2016 Soil Natural 519296	8.7 <0.4 21 37 17 <0.1 23 57 <20		41 41 41 42 41 43
TP02_0.2-0.3 TP02 0.2-0.3 10/10/2016 Soil Natural 519296 TP03_0-0.1 0-0.1 10/10/2016 Soil Natural 519296	8.4 <0.4 20 41 18 <0.1 21 64 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <50 <	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
QC01 TP03 0 - 0.1 0-0.1 10/10/2016 Soil Natural 519296			0.1 0.1 0.1 0.2 0.1 0.3 · · · · · · · · · · · · · · · · · · ·
QC01A 0-0.1 10/10/2016 Soil Natural 155048	5 <0.4 11 29 13 <0.1 15 42 <25		42 4 45 4 4
TP03_0.2-0.3 TP03 0.2-0.3 10/10/2016 Soil Natural 519296 TP04_0-0.1 TP04 0-0.1 10/10/2016 Soil Natural 519296	7.1 <0.4 21 42 16 <0.1 21 59 <20 8.1 <0.4 24 31 15 <0.1 20 45 <20		401 401 401 402 401 403 · · · · · · · · · · · · · · · · · · ·
TP04_0-0.1 TP04 0-0.1 10/10/2016 Soil Natural 519296 TP05_0-0.1 TP05 0-0.1 10/10/2016 Soil Natural 519296	200 000 000 000 000 000 000 000 000		401 401 401 402 401 403 · · · · · · · · · · · · · · · · · · ·
TP06_0-0.1 TP06 0-0.1 10/10/2016 Soil Natural 519296			40.1 40.1 40.2 40.1 40.3
TP07_0.0-0.1 TP07 0-0.1 10/10/2016 Soil Natural 519296 TP07_0.2-0.3 TP07 0.2-0.3 10/10/2016 Soil Natural 519296			01 01 01 02 01 03 · · · · · · · · · · · · · · · · · ·
TP07_0.2-0.3 TP07 0.2-0.3 10/10/2016 Soil Natural 519296 TP08_0-0.1 TP08 0-0.1 10/10/2016 Soil Natural 519296	9.3 <0.4 24 34 18 <0.1 21 60 <20		401 401 402 401 403 - <td< td=""></td<>
TP08_0.2-0.3 TP08 0.2-0.3 10/10/2016 Soil Natural 519296			· · · · · · 405 405 405 405 405 405 405 405 405 405
TP09_0-0.1 TP09 0-0.1 10/10/2016 Soil Natural 519296			401 401 401 402 401 403 405 405 405 405 405 405 405 405 405 405
TP10_0-0.1 TP10 0-0.1 10/10/2016 Soil Natural 519296 TP11_0-0.1 TP11 0-0.1 10/10/2016 Soil Natural 519296	11 <0.4 23 35 27 <0.1 23 75 <20 11 <0.4 26 37 23 <0.1 28 72 <20		01
TP11_0.2-0.3 TP11 0.2-0.3 10/10/2016 Soil Natural 519296	9.7 <0.4 24 37 21 <0.1 29 72 <20		41 41 41 42 41 43 .
TP12_0-0.1 TP12 0-0.1 10/10/2016 Soil Natural 519296	6 <0.4 28 33 20 <0.1 32 64 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	401 401 402 401 403 405 405 405 405 405 405 405 06 12 405 405 405 405 405 405 405 405 405 405
TP13_0-0.1 TP13 0-0.1 10/10/2016 Soil Fill 519296 TP14_0-0.1 TP14 0-0.1 10/10/2016 Soil Natural 519296	8.1 <0.4 29 34 27 <0.1 29 76 <20	0 <20 <50 <50 <50 <100 <100 <20 <20 <50 <50 <	0.1 0.1 0.2 0.1 0.3 0.2 0.1 0.3 0.5 0
TP14_0.2-0.3 0.2-0.3 10/10/2016 Soil Natural 519296			d1 d1 d2 d2 d1 d3 · · · · · · · · · · · · · · · · · ·
QC02 TP14 0.2-0.3 0.2-0.3 10/10/2016 Soil Natural 519296			01 01 01 02 01 03
QC02A 0.2-0.3 10/10/2016 Soil Natural 155048 TP15_0-0.1 TP15 0-0.1 10/10/2016 Soil Natural 519296	8 <0.4 25 28 20 <0.1 23 56 <25 7.5 <0.4 24 30 21 <0.1 26 66 <20		401 401 401 402 401 403 · · · · · · · · · · · · · · · · · · ·
TP16_0-0.1 TP16 0-0.1 10/10/2016 Soil Fill 519296	8.6 <0.4 30 16 21 <0.1 21 33 <20		41 41 41 42 41 03 45 45 45 45 45 45 45 45 45 45 45 45 45
TP16_0.2-0.3 TP16 0.2-0.3 10/10/2016 Soil Natural 519296			01 01 01 02 01 03
TP17_0-0.1 TP17 0-0.1 10/10/2016 Soil Natural 519296 TP17_0.2-0.3 TP17 0.2-0.3 10/10/2016 Soil Natural 519296	10 <0.4 23 33 22 <0.1 27 64 -	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	0.1 (0.1 (0.1 (0.2 (0.1 (0.3 (0.1 (0.3 (0.1 (0.3 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1
TP18_0-0.1 TP18 0-0.1 10/10/2016 Soil Natural 519296		0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	40.1 40.1 40.1 40.2 40.1 40.3 · · · · · · · · · · · · · · · · · · ·
TP18_0.2-0.3 TP18 0.2-0.3 10/10/2016 Soil Natural 519296			
TP19_0-0.1 TP19 0-0.1 10/10/2016 Soil Natural 519296 TP19_0.2-0.3 TP19 0.2-0.3 10/10/2016 Soil Natural 519296		0 <20 <50 <50 <50 <100 <100 <20 <20 <50 <0	01 01 01 02 01 02 01 03 05 05 05 05 05 05 05 05 05 05 05 05 05
TP20_0-0.1 TP20 0-0.1 10/10/2016 Soil Natural 519296	50 <0.4 30 45 9.9 <0.1 6.4 82 <20	0 <20 <50 <50 <50 <100 <100 <20 <20 <50 <0	d1 d1 d2 d1 d2 d1 d3 · · · · · · · · · · · · · · · · · ·
TP21_0-0.1 TP21 0-0.1 10/10/2016 Soil Natural 519296			01 01 02 01 02 01 03
TP21_0.2-0.3 TP21 0.2-0.3 10/10/2016 Soil Natural 519296 TP22_0-0.1 TP22 0-0.1 10/10/2016 Soil Natural 519296	7.9 <0.4 19 23 21 <0.1 16 54 <20		01
TP23_0-0.1 TP23 0-0.1 10/10/2016 Soil Natural 519296			d1 d01 d0
TP23_0.2-0.3 TP23 0.2-0.3 10/10/2016 Soil Natural 519296	8.4 <0.4 32 37 17 <0.1 27 58 <20		01 01 02 01 03
TP24_0-0.1 TP24 0-0.1 10/10/2016 Soil Natural 519296 TP25_0-0.1 TP25 0-0.1 10/10/2016 Soil Natural 519296	9.9 <0.4 20 33 19 <0.1 19 44 <20		01 01 01 02 01 03 · · · · · · · · · · · · · · · · · ·
TP26_0-0.1 TP26 0-0.1 10/10/2016 Soil Fill 519296	8.3 <0.4 33 38 22 <0.1 27 67 <20		-01 <01 <01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TP26_0.2-0.3 TP26 0.2-0.3 10/10/2016 Soil Fill 519296		0 <20 <50 <50 <50 <100 <100 <20 <20 <50 <0	
TP27_0-0.1 TP27 0-0.1 10/10/2016 Soil Natural 519296 TP27_0.2-0.3 TP27 0.2-0.3 10/10/2016 Soil Natural 519296		0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	401 401 402 403
TP28_0-0.1 TP28 0-0.1 10/10/2016 Soil Natural 519296	9.9 <0.4 27 28 29 <0.1 21 57 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	40.1 40.1 40.1 40.2 40.1 40.3
TP29_0-0.1 0-0.1 10/10/2016 Soil Natural 519296	8.7 <0.4 42 35 25 <0.1 33 70 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	401 401 402 401 40.3 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5
QC03 TP29 0-0.1 0-0.1 10/10/2016 Soil Natural 519296 QC03A 0-0.1 10/10/2016 Soil Natural 155048	9.7 <0.4 52 40 28 <0.1 39 90 <20 8 <0.4 36 27 19 <0.1 27 65 <25	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	41 401 401 402 401 403 405 405 405 405 405 405 405 405 405 405
TP30_0-0.1 TP30 0-0.1 10/10/2016 Soil Natural 519296	8.7 <0.4 23 31 22 <0.1 24 67 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	401 401 402 401 403
TP31_0-0.1 TP31 0-0.1 10/10/2016 Soil Natural 519296			41 401 401 402 401 403 405 405 405 405 405 405 405 06 12 405 405 405 405 405 405 405 405 405 405
TP32_0.0.1 TP32	5.4 <0.4 24 33 16 <0.1 26 58 <20	0 <20 <50 <50 <50 <50 <100 <100 <20 <20 <50 <0	40.1 40.1 40.2 40.1 40.3 · · · · · · · · · · · · · · · · · · ·
ACM01 ACM01 Surface 10/10/2016 Fragment - 519296			
SS01 SS01 Surface 10/10/2016 Soil Natural 519296			
SS02_VEGE PATCH SS02 Surface 10/10/2016 Soil Natural 519296 SS03_DRAIN SS03 Surface 10/10/2016 Soil Natural 519296			
201 20/20/2010 3011 Natural 319/200	30 0.1 24 130 -		

										Organ	ochlor	ine Pes	ticides					_										Asbes	tos				_	Asb	estos		Asbest	s - Trace	Analysis	
Aldrin	4,4-DDE	Aldrin + Dieldrin (Sum of Total)	Dieldrin	aga	alpha-BHC	TOO	DDT+DDE+DDD (Sum of Total)	beta-BHC	alpha-Chlordane	Chlordane	delta-BHC	gamma-Chlordane	Endosulfan alpha	Endosulfan beta	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor Epoxide	Lindane	Methoxychlor	Toxaphene	Approx. Sample Mass	Asbestos from ACM in Soil	Mass ACM	Mass Asbestos in ACM	Mass FA	Asbestos from FA & AF in Soil	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Asbestos ID in Soil	Synthetic Fibres - Comment	ACM - Comment	AF - Comment	FA - Comment	Organic Fibres - Comment	Respirable Fibres - Comment
		mg/kg					mg/kg		mg/xg			mg/kg												g	76W/W	R	8	g	26W/W	8	8	8	В	Comment	Comment	Comment	Comment	Comment	Comment	Comm
0.05	0.05		0.05	0.05	0.05	0.05		0.05		0.10	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	1.00																	
						180																																		
		6					240			50						10			6			300	20																	

Sample ID	Location	Sample Depth	Sample Date	Matrix Type	Lithological Type	Lab Report Number																																				
TP01_0-0.1	TP01	0-0.1	10/10/2016	Soil	Natural	519296			100	-	~			100	-		-		1 .	- 1				1 -			~	-		100		-		-	e le		120	1.0	-			T =
TP02_0-0.1	TP02	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 -01	5*2 <0.05		<0.1	<0.05	- <0.05	5 <0.05	<0.05	<0.05	0.05 <0.0	05 <0.09	5 <0.09	<0.05	<0.05	<1			100	-	-				-	-	-	-	-	-	-
TP02_0.2-0.3	TPO2	0.2-0.3	10/10/2016	Soil	Natural	519296	10.05	10.05	10.1	40.05	0.05		05 (0.1	3 -0.0.		-0.2	-0.03	-0.0.	10.03	-0.05	10.05		-0.0.	10.00	-0.05		**	-	-	-		-	-	-		+	_	+	_	+ -	-	_
	1102	0-0.1	10/10/2016	501		519296	-	-		-	_		-	-	-	-	-		+	-	-		- 2	-		-	-	-	-			-	-	-		-		-	-	+ -	-	-
TP03_0-0.1				SOII	Natural			<u> </u>	1.0	-	-				-	~	-	-	-	-	-			<u> </u>	-	-	-	-		100		-	-			-	-	-	<u> </u>	<u> </u>	<u> </u>	-
QC01	TP03 0 - 0.1	0-0.1	10/10/2016	Soil	Natural	519296	- 22		- 1	-	·	a :a			-	-		2 2	-	-		in 0	- 20	-		-	~	2		(2)		2			S S	- 20	- 22					
QC01A		0-0.1	10/10/2016	Soil	Natural	155048			140	-	~		-	100	-	100			-			2 2	-	-	120	-	~	-		120	100	-	-	-	~ ~		100					~
TP03_0.2-0.3	TP03	0.2-0.3	10/10/2016	Soil	Natural	519296	100	-	121	-	101			120	-	100	-		- 1	-	-	101	120	-	(2)	-	20	-		180	100	-	- 1	-	20	- 00	101		- 1	-		100
TP04_0-0.1	TP04	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5#2 <0.05	-	<0.1	<0.05	< 0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.09	<0.05	<0.05	<1			100	~	-	- 1	-	S S	12.0		-	-	-	-	- 1
TP05_0-0.1	TP05	0-0.1	10/10/2016	Soil	Natural	519296	120		1.0	-	101	s (s		1.51	-	121	-	5 5	(4)			201 2	100		121	-	20	-		155	100	-		-	e. e	- 80	121	- 20		-	-	100
TP06_0-0.1	TP06	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5*2 <0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.05	<0.05	<0.05	<1	2		140	100		- 1	-	w w	120	-	- 2	-	-	-	100
TP07_0.0-0.1	TP07	0-0.1	10/10/2016	Soil	Natural	519296	-		-	-				-	-	1.0				-			- 100	-	-		-	-		100	100	-		-		-	100	1 .	—	—	-	-
TP07_0.2-0.3	TP07	0.2-0.3	10/10/2016	Soil	Natural	519296	1.0	-	-	-				-		-			1 .	-			- 10	-	-		141	2		-	191	-					-	-	-	-	-	
TP08_0-0.1	TP08	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	$\overline{}$	<0.05 <	0.05	105 <0.1	05 .04	-12 -0.05		<0.1	<0.05	<0.06	5 <0.05	<0.05	<0.05	0.05 <0.0	05 <0.09	5 <0.00	< 0.05	<0.05	<1	-		-		-				_	_	_		+	_	_
5000				5011			V0.05	V0.05	<0.1	VU.U5	0.05	1.05	V5 <0.1	5 40.05	-	X0.1	X0.05	- 40.03	V0.05	VU.U5	CU.U5	0.05	05 (0.0:	5 (0.03	V0.05	VU.U5	· ·	-	-	-	~	-	-			-	-	-	-	+		-
TP08_0.2-0.3	TP08	0.2-0.3	10/10/2016	Soil	Natural	519296	-		-	-	-			-		-				-	•			ļ.	-		-	-		-		-				-	-	-	<u> </u>	-	-	-
TP09_0-0.1	TP09	0-0.1	10/10/2016	Soil	Natural	519296	100		125	-	-					100		5 5				25.	100	-	- 25	-		-		125	100	-		-	(m) (m)	~	- 20		-			100
TP10_0-0.1	TP10	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5#2 <0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	:0.05 <0.0	05 <0.05	5 <0.05	<0.05	<0.05	<1	-		140	121		-	-	(a) (a)	100	100			- 2	-	191
TP11_0-0.1	TP11	0-0.1	10/10/2016	Soil	Natural	519296	200		125		101		8	100		100			100	-	in .	20.	(8)		181		200	-		100	100				200	- 00	100	- 20	8		-	(2)
TP11_0.2-0.3	TP11	0.2-0.3	10/10/2016	Soil	Natural	519296	122	-	~	-	120			100		121	- 1	2 2	-	-	-		190	1 -	100	-	141	-	-	120	120	2	- 1	-	20 20	121	100	-	-		-	100
TP12_0-0.1	TP12	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5#2 <0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.05	<0.05	<0.05	<1	-		181	161	-	- 1	-	E E	(8)	- 10	1 .	T -	-	-	181
TP13_0-0.1	TP13	0-0.1	10/10/2016	Soil	Fill	519296	120	- 1	-	2	-			-	- 1	-		2 2	1 .		-		- 12	1 2	- 2	-	_	578	0	0	0	0	0	0	0 0	- 20	1*7	1*7	1*7	1*7	1**	1#3
TP14_0-0.1	TP14	0-0.1	10/10/2016	Soil	Natural	519296	100		-	-				120	-	-			1 -		.		120	+ -	-		- 1	-		- 20		-				-	+ -	1		- (4)	- 2	+ -
TP14_0.2-0.3	11.24			E=i1				-		-		-	-	-	-		-		+	-	-	-	-	-	-	-	-	-	-	-			-	-		-		-	-	-	-	
TF14_0.2-0.3		0.2-0.3	10/10/2016	3011	Natural	519296	٠.	H .		-	-		-	-	-	-	-				-			<u> </u>	-		-	-		-	-	-	-			<u> </u>	-	-	<u> </u>		<u> </u>	
QC02	TP14 0.2-0.3	0.2-0.3	10/10/2016	Soil	Natural	519296	100									-				-		2 2	100		- *		~	-		- 100	- 1	-		2	× ×	- 10		-				100
QC02A		0.2-0.3	10/10/2016	Soil	Natural	155048	- 1	-	-	-	-		-		-	-		27 2		-	-	-		-	-	-	~	-			4	-	- 1				-	-		-		-
TP15_0-0.1	TP15	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.185	<0.05	0.05 <0	1.05 <0.	05 <0.1	5"2 <0.05	-	<0.1	<0.05	< 0.05	< 0.05	<0.05	<0.05	:0.05 <0.0	.05 <0.05	5 <0.05	<0.05	<0.05	<1	4		100	100	-	8 1	~	160	- 20		100				100
TP16_0-0.1	TP16	0-0.1	10/10/2016	Soil	Fill	519296	100	-	-	-	-			100	-	-	-	21 2		-	-			-		-	-	740	0	0	0	0	0	0	0 0	- 20	187	187	1 1 1 7	187	1 1 1 1	1#3
TP16_0.2-0.3	TP16	0.2-0.3	10/10/2016	Soil	Natural	519296	180	-	-	-					-	-	. 1	ei	1 -	- 1			180	-		- 1	100	-		100		-		-	× ×	- 0	-	-	-	-	-	181
TP17_0-0.1	TP17	0-0.1	10/10/2016	Soil	Natural	519296	192	-	-	-	- 1	2 0	1 -	-	-	-	- 1	21 2	-	-	- 1		- 12	1 -	-	-	~	-		- 127	~	- 1	- 1	-	· ·	- 40	-	1	-	1 -	1 -	121
TP17_0.2-0.3	TP17	0.2-0.3	10/10/2016	Soil	Natural	519296	18	-	-	-	-			-	-	-	- 1		1 -	- 1	-			-	-	-	-	-		100	-	- 1	- 1	-	8 8		-	-	-	-	-	181
TP18_0-0.1	TP18	0-0.1	10/10/2016	Soil	Natural	519296	121		-	-	-			120	-	-	-	27 2	1 -	-	-		12	1 2	-	-	-	-		120	12	-	-	-			-	1	-	-	-	-
TP18_0.2-0.3	TP18	0.2-0.3	10/10/2016	Soil	Natural	519296	-	+ -	-		-			-	-	-			+ -		.			+ -	-	-	-			-	-	-			-	-	-	-	+ -	+ -	-	-
TP19_0-0.1	TP19	0-0.1	10/10/2016	5011	Natural	519296	-	+	-	-	-		-	-	-	-	-		+	-	-		-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+ -	-	_
				SOII				-		-	-	0 0				-		0 0	-	-	-	S 5	100	-		-	20	-		- 0	-	-	-	8	25 (2)	- 0				-		101
TP19_0.2-0.3	TP19	0.2-0.3	10/10/2016	Soil	Natural	519296	-			-	~			- ~										-			~			-	-	-			~ ~	-			٠.			(10)
TP20_0-0.1	TP20	0-0.1	10/10/2016	Soil	Natural	519296					-	5		-		-	5 .	5 5		- 5								5		(4)	-	2		-			-					1.5
TP21_0-0.1	TP21	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.185	<0.05 <	0.05 <0	1.05 <0.1	05 <0.1	5 < 0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	.05 <0.05	5 <0.05	<0.05	<0.05	<1	-		140	-	-	-	-	(A)		(*)	-		-	-	140
TP21_0.2-0.3	TP21	0.2-0.3	10/10/2016	Soil	Natural	519296	18					5			- 6	-	6 .	5 5				2 2		8	. 18			1		(-)	- 8	1				100	-			8		1.0
TP22_0-0.1	TP22	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	0.49	<0.185	<0.05 <	0.05 <0	1.05 <0.0	05 0.54	^{#1} <0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.09	<0.05	<0.05	<1	-		- 1	-	-	- 1	-		- 1			-	-	-	141
TP23_0-0.1	TP23	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.185	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5#2 <0.05	-	<0.1	<0.05	- <0.05	5 <0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.09	<0.05	<0.05	<1	-		- 8	8	-	3 1	-		8.	- 3	- 3	1 3	1 8	1	-
TP23_0.2-0.3	TP23	0.2-0.3	10/10/2016	Soil	Natural	519296	100		-	-	-		-	-	-	-	-		1 -	- 1	- 1		100	1 -	-	- 1	-	-		100	141	- 1	- 1	-	e 16	- 1	-	-	 -	—	-	141
TP24_0-0.1	TP24	0-0.1	10/10/2016	Soil	Natural	519296	1 .	1 .	-	-			1	-	1		.		1 -	1	-		- 1	1 .	1.0	.	-	-		100		-	- 1	-		1 1	-	+ -	+ -	+ -	+ -	+-
TP25_0-0.1	TP25	0-0.1	10/10/2016	Soil	Natural	519296	-	1	-	-	-			-	+ -				1	1	-		-	1	-	-	-	-		-	-	-				1	-	1	-	-	-	-
TP26_0-0.1	TP26	0-0.1	10/10/2016	Soil	Fill	519296		-				-	+	-	-		-	-	-			-	-	+			-	740	0	0	0	0	0	0	0 0	1	. 87	100	247	1,47	- 84	, 41
				3011	3 8		-	-	-	-	-	2			+ -	-	1	30 8	1	1	-	0 0	100	-	- 0	-	-	740	, , ,	- 0	0	3		v	0 0	- 2	1"7	1"	1*7	_	-	_
TP26_0.2-0.3	TP26	0.2-0.3	10/10/2016	Soil	Fill	519296	100	-	142	-	× .				-	~			-	-	-			-	- 2	-	~	-		191	~	-	-	-	× ×	-		-	-	-	-	
TP27_0-0.1	TP27	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.185	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5"2 <0.05	-	<0.1	<0.05	<0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.05	<0.05	<0.05	<1			100					A 10		- 100		-	-		
TP27_0.2-0.3	TP27	0.2-0.3	10/10/2016	Soil	Natural	519296	190	-		-	22		-	100	-	140	-	-1	1 -	-	-		100	-	- 12	-	~	-		140	191	2	-	-	(A)	-	100		-		-	141
TP28_0-0.1	TP28	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	0.09	<0.185	<0.05 <	0.05 <0	1.05 <0.0	05 0.14	^{#1} <0.05	-	<0.1	<0.05	< 0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.09	5 <0.09	<0.05	<0.05	<1	-		121	- 12	2	- 1		201 (20)	101	121	12.	-	-		- 10
TP29_0-0.1		0-0.1	10/10/2016	Soil	Natural	519296	<0.05	0.32	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 0.37	^{#1} <0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.09	<0.05	<0.05	<1	570	0	0	0	0	0	0	0 0	-	1 1 17	1 1 1 7	1*7	1*7	184	1 173
QC03	TP29 0-0.1	0-0.1	10/10/2016	Soil	Natural	519296	<0.05	0.42		<0.05 <					_	<0.1		- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.09	<0.05			_	0	0	0	0	0	0	0 0	- 01	1 1 17				_	_
QC03A	\dashv	0-0.1	10/10/2016	Soil	Natural	155048		0.2		<0.1					<0.1	-	<0.1 <	0.1 <0.1							<0.1		-	-		140	100	-	-		w (w)	0	1 12	+	+ -	-	1	-
TP30_0-0.1	TP30	0-0.1	10/10/2016	Soil	Natural	519296	100	19000	-0.2	-	-		3.3	100	-	-		-	1 .	1000			1 2	1		-	- 1	-		+ -	-	-	- 1	.		1 2	1	+ -	+ -	+ -	+ -	+-
TP31_0-0.1	TP31	0-0.1	10/10/2016	Soil	Natural	519296	-	1			722		1 2	-	1	500	-		1		-	-	-	1 2	700	-	-	-	1	100	500	2	-		2 -	-	-	-		+		100
		20000	300000000000000000000000000000000000000	e-ii	0.0000	20000000	-	+-	-	-	-	-	+	-	+ -		-	<u> </u>	+	-	-	-	-	+	-	-	-	-	-	127		-		-		-	+ -	-	-	+ -	-	+
TP32_0-0.1	TP32	0-0.1	10/10/2016	SOII	Natural	519296	100			-									-		1		120		100	-	~			(2)		1					100					100
TP32_0.2-0.3	TP32	0.2-0.3	10/10/2016	Soil	Natural	519296	- 12		1.0	-	742			100	-	120			-		-		190	-	197		~	-		141		-	-	-	× ×		120	-	-		-	
ACM01	ACM01	Surface	10/10/2016	Fragment	-	519296	100		(2)	-	·	n 10		100				S. S.	100	- 0		10.	100		(2)	- 1	~	78	0	0	0	0	0	0	0 0	- 100	1 1 27	187	1*7	187	187	1 #3
SS01	SS01	Surface	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.185	<0.05 <	0.05 <0	1.05 <0.1	05 <0.1	5#2 <0.05	-	<0.1	<0.05	- <0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.09	5 <0.09	<0.05	<0.05	<1	-	- 1	140	120	-	- 1	-	Se Se	21			-	-	-	- 1
SS02 VEGE PATCH	SS02	Surface	10/10/2016	Soil	Natural	519296	<0.05	<0.05	<0.1*5	<0.05 <	0.05 <0	1.05 <0.0	05 <0.1	5#2 <0.05	-	<0.1	<0.05	<0.05	< 0.05	<0.05	<0.05	0.05 <0.0	05 <0.05	5 <0.09	<0.05	<0.05	<1	-		100		-	- 1	-	e. e.		100	-	-	-	-	121
										_	\rightarrow	_	_	\rightarrow		-	_																								\rightarrow	$\overline{}$

Data Commi

#1 ESDAT Combined with Non-Detect Multiplier of 0.5. Some Analytes are missing from this Combined Compound

#2 ESDAT Combined. Some Analytes are missing from this Combined Compour #3 No respirable fibres detected

#3 No respirable fibres detect #4 Organic fibres detected.

#5 ESDAT Combi

Appendix A Bore Search Results

©JBS&G Australia Pty Ltd | 52116-105322

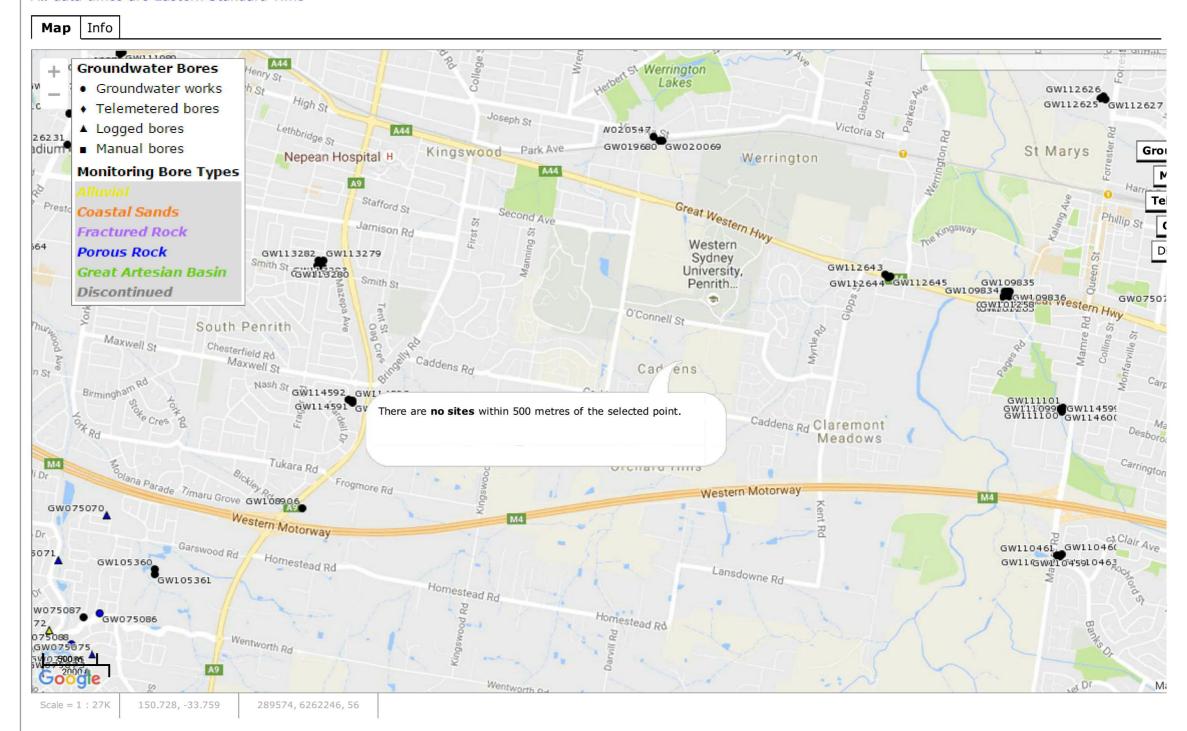
9/20/2016 Groundwater data

Home About us Water Management Water Licensing Urban Water Real-time data

close this window

home · help · login customise

All Groundwater find a site

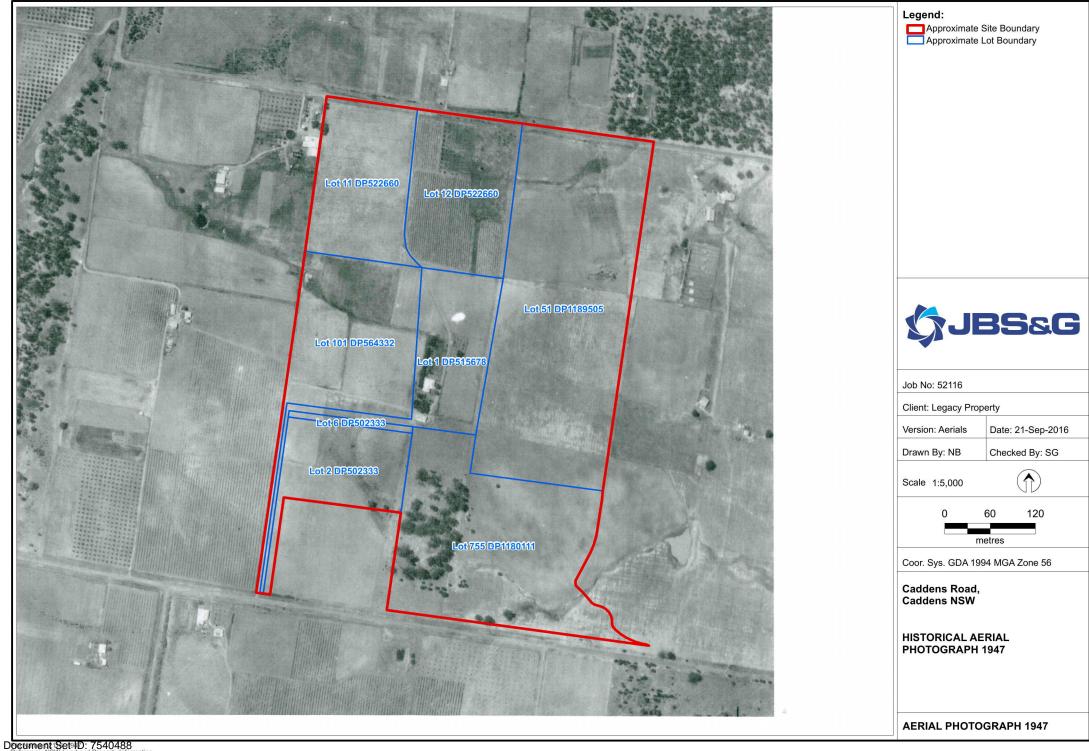

H—All Groundwater Map

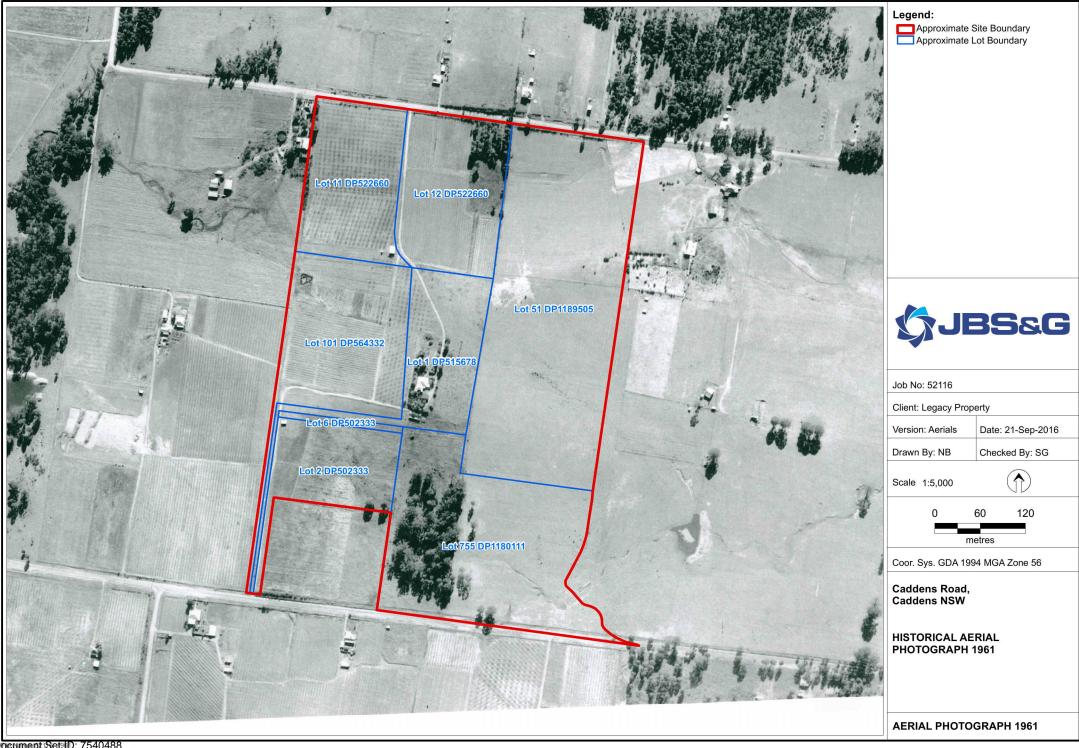
bandwidth high low

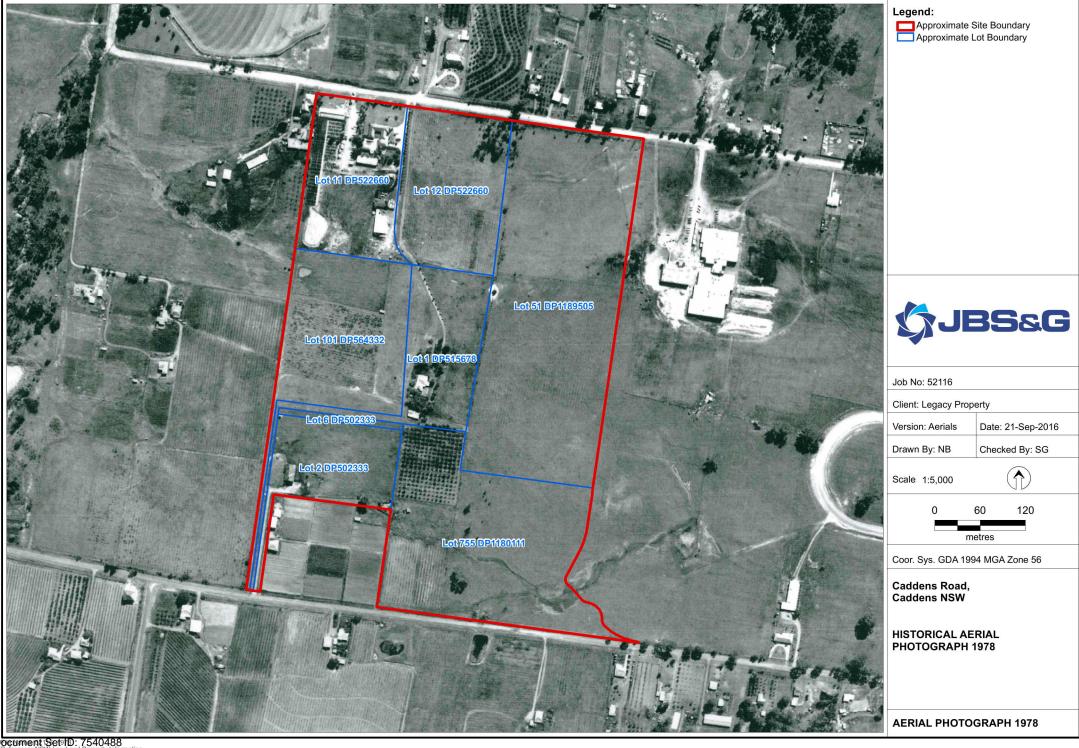
glossary and metadata

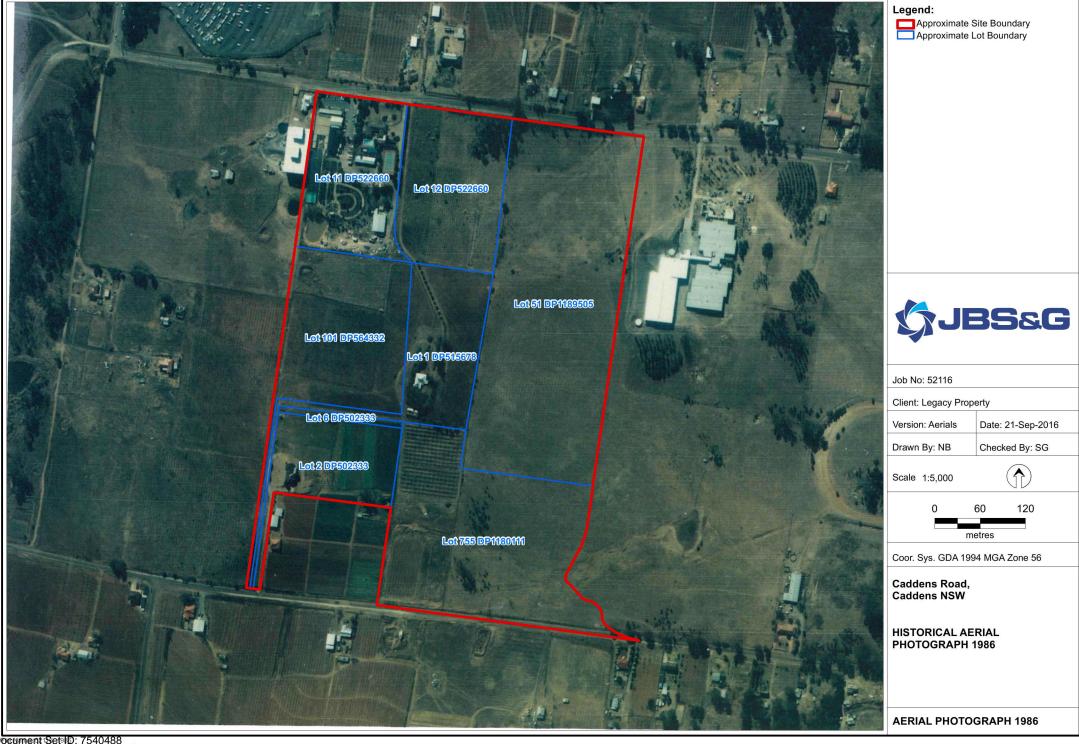
All Groundwater
All Groundwater Map

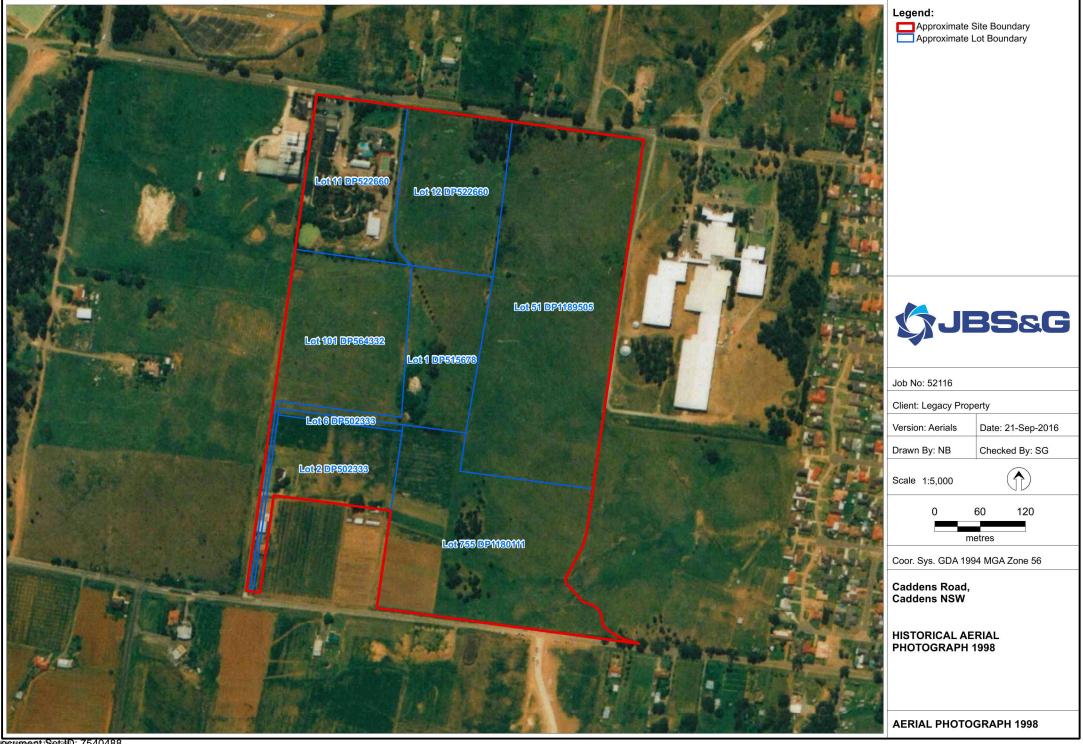
All data times are Eastern Standard Time

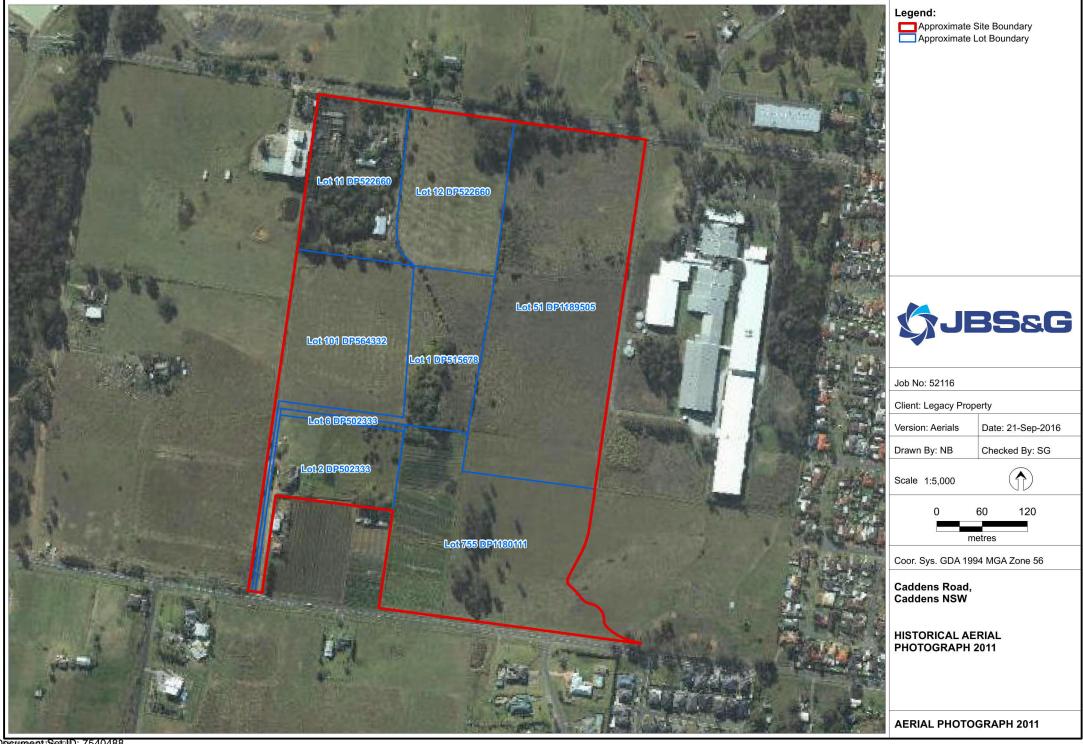


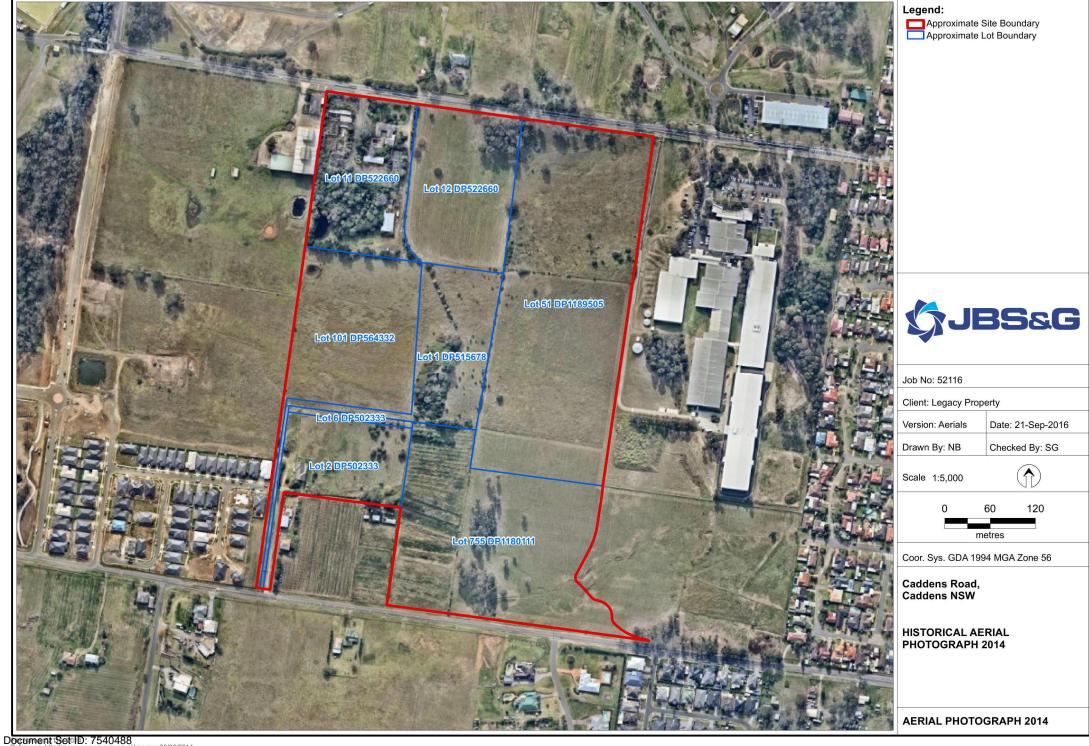

Accessibility | Sitemap | Privacy | Copyright & Disclaimer | Feedback




Appendix B Aerial Photographs


©JBS&G Australia Pty Ltd | 52116-105322





Document Set ID: 7540488 Reference: http://maps.au.negrmap.com/ Imagery 26/06/2014 Version: 1, Version Date: 22/02/2017

Document Set ID: 7540488 Reference: http://maps.au.nearmap.com//magery.09/09/2016 Version: 1, Version Date: 22/02/2017

Appendix C EPA Records

Healthy Environment, Healthy Community, Healthy Business

Home Contaminated land Record of notices

Search results

Your search for:LGA: Penrith City Council

Matched 23 notices relating to 7 sites. Search Again

			Refine Search
Suburb	Address	Site Name	Notices related to this site
BERKSHIRE PARK	(Northern end of Compartment 5) The Northern ROAD	Castlereagh State Forest	6 former
COLYTON	88 Great Western HIGHWAY	Ampol Service Station	1 current
JAMISONTOWN	92 Mulgoa ROAD	7-Eleven Service Station	2 current
LUDDENHAM	Lot 4 The Northern ROAD	Elura Liquid Waste Disposal Site	e 1 current
MULGOA	Mulgoa ROAD	Penrith Waste Services	2 former
PENRITH	Castlereagh ROAD	Crane Enfield Metals	3 current and 3 former
ST MARYS	Vallance STREET	Drum Recycler	5 former

Page 1 of 1

20 September 2016

Copyright

Connect **Feedback** Contact Government About Web support **NSW Government** Contact us Accessibility Public consultation Offices jobs.nsw Disclaimer Report pollution Privacy

Version: 1, Version Date: 22/02/2017

Healthy Environment, Healthy Community, Healthy Business

<u>Home</u> > <u>Environment protection licences</u> > <u>POEO Public Register</u> > <u>Search for licences, applications and notices</u>

Search results

Your search for: General Search with the following criteria

Suburb - CADDENS

returned 0 result

Search Again

Accessibility

Connect Feedback Contact Government About

Web support Contact us NSW Government Public consultation Offices jobs.nsw

Offices jobs.nsw Disclaimer
Report pollution Privacy
Copyright

<u>Home</u> > <u>Contaminated land</u> > List of NSW contaminated sites notified to EPA

List of NSW contaminated sites notified to EPA

Background

A strategy to systematically assess, prioritise and respond to notifications under Section 60 of <u>the Contaminated Land Management Act 1997</u> (CLM Act) has been developed by the EPA. This strategy acknowledges the EPA's obligations to make information available to the public under <u>Government Information (Public Access) Act 2009</u>.

When a site is notified to the EPA, it may be accompanied by detailed site reports where the owner has been proactive in addressing the contamination and its source. However, often there is minimal information on the nature or extent of the contamination.

For some notifications, the information indicates the contamination is securely immobilised within the site, such as under a building or carpark, and is not currently causing any offsite consequences to the community or environment. Such sites would still need to be cleaned up, but this could be done in conjunction with any subsequent building or redevelopment of the land. These sites may not require intervention under the CLM Act, but could be dealt with through the planning and development consent process.

Where indications are that the nominated site is causing actual harm to the environment or an unacceptable offsite impact (i.e. it is a 'significantly contaminated site'), the EPA would apply the regulatory provisions of the CLM Act to have the responsible polluter and/or landowner investigate and remediate the site.

As such, the sites notified to the EPA and presented in the following table are at various stages of the assessment and/or remediation process. Understanding the nature of the underlying contamination, its implications and implementing a remediation program where required, can take a considerable period of time. The tables provide an indication, in relation to each nominated site, as to the management status of that particular site. Further detailed information may be available from the EPA or the responsible landowner.

The following questions and answers may assist those interested in this issue:

Frequently asked questions

What is the difference between the 'List of NSW contaminated sites notified to EPA' and the 'Contaminated Land: Record of Notices'?

A site will be on the <u>Contaminated Land: Record of Notices</u> only if the EPA has issued a regulatory notice in relation to the site under the <u>Contaminated Land Management Act 1997</u>.

The sites appearing on this 'List of NSW contaminated sites notified to the EPA' indicate that the notifiers consider that the sites are contaminated and warrant reporting to EPA. However, the contamination may or may not be significant enough to warrant regulation by the EPA. The EPA needs to review and, if necessary, obtain more information before it can make a determination as to whether the site warrants regulation.

Why does my site appear on the list?

Your site appears on the list for one or more of the following reasons:

- The site owner and/or the person partly or fully responsible for causing the contamination notified the EPA about the contamination under Section 60 of the Contaminated Land Management Act 1997. In other words, the site owner or the 'polluter' believes the site is contaminated.
- The EPA has been notified via other means and is satisfied that the site is or was contaminated.

Does the list contain all contaminated sites in NSW?

No. The list only contains contaminated sites that EPA is aware of, with regard to its regulatory role under the CLM Act. An absence of a site from the list does not necessarily imply the site is not contaminated.

The EPA relies upon responsible parties to notify contaminated sites.

How are notified contaminated sites managed by the EPA?

There are different ways that the EPA manages these notified contaminated sites. First, an initial assessment is carried out by the EPA. At the completion of the initial assessment, the EPA may take one or more than one of the following management approaches:

- The contamination warrants the EPA's direct regulatory intervention either under the
 Contaminated Land Management Act 1997 or the <u>Protection of the Environment Operations</u>
 <u>Act 1997</u> (POEO Act), or both. Information about current or past regulatory action on this
 site can be found on the EPA website.
- The contamination with respect to the current use or approved use of the site, as defined under the *Contaminated Land Management Act 1997*, is not significant enough that it warrants EPA regulation.
- The contamination does not require EPA regulation and can be managed by a planning approval process.
- The contamination is related to an operational underground petroleum storage system, such as a service station or fuel depot. The contamination may be managed under the POEO Act and the <u>Protection of the Environment Operation (Underground Petroleum Storage Systems) Regulation 2014</u>.

Note: There are specific instances where contamination is managed under a specifically tailored program operated by another agency. For example the <u>NSW Resouces & Energy's Derelict mines program</u> and the <u>NSW DPI Cattle tick dip site locator</u>.

The Legacy contamination management procedures for these sites will be detailed in a Memorandum of Understanding between the NSW EPA, NSW Resources and Energy and Dept. Primary Industries (Crown Lands and Biosecurity) (Note: the MoU is currently in draft).

I am the owner of a site that appears on the list. What should I do?

First of all, you should ensure the current use of the site is compatible with the site contamination. Secondly, if the site is the subject of EPA regulation, make sure you comply with the regulatory requirements, and you have considered your obligations to notify other parties who may be affected.

If you have any concerns, contact us and we may be able to offer you general advice, or direct you to accredited professionals who can assist with specific issues.

I am a prospective buyer of a site that appears on the list. What should I do?

You should seek advice from the vendor to put the contamination issue into perspective. You may need to seek independent expert advice.

The information provided in the list, particularly the EPA site management class, is meant to be indicative only, and a starting point for your own assessment. Site contamination as a legacy of past site uses is not uncommon, particularly in an urban environment. If the contamination on a site is properly remediated or managed, it may not materially impact upon the intended future use of the site. However, each site needs to be considered in context.

List of NSW contaminated sites notified to the EPA

Disclaimer

The EPA has taken all reasonable care to ensure that the information in the list of contaminated sites notified to the EPA (the list) is complete and correct. The EPA does not, however, warrant or represent that the list is free from errors or omissions or that it is exhaustive.

The EPA may, without notice, change any or all of the information in the list at any time.

You should obtain independent advice before you make any decision based on the information in the list.

The list is made available on the understanding that the EPA, its servants and agents, to the extent permitted by law, accept no responsibility for any damage, cost, loss or expense incurred by you as a result of:

- 1. any information in the list
- any error, omission or misrepresentation in the list
- 3. any malfunction or failure to function of the list
- without limiting (2) or (3) above, any delay, failure or error in recording, displaying or updating information.

The following information, is also available in this printable document: <u>List of NSW Contaminated Sites Notified to the EPA as of 30 August 2016</u> (PDF 889KB).

EPA site management class	Explanation
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or <i>Protection of the Environment Operations Act 1997</i> . Alternatively, the EPA may require information via a notice issued under s77 of the <i>Contaminated Land Management Act 1997</i> or issue a Preliminary Investigation Order.
Regulation under CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the <i>Contaminated Land Management Act 1997</i> is not required.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> . A regulatory approach is being finalised.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's <u>Contaminated Land Public Record</u> .
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act). The EPA's regulatory actions under the POEO Act are available on the <u>POEO public register</u> .
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the <i>Contaminated Land Management Act</i> 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the <i>Protection of the Environment Operations Act 1997 (POEO Act)</i> .
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the <i>Contaminated Land Management Act 1997</i> (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's <u>Contaminated Land Public Record</u> .

List current as of 30 August 2016.

/20/2016	List of NSW cor	ntaminated sites notifie	ed to EPA NSW EPA
	7 Molloy STREET		currently regulated under CLM Act
BULLI	Bulli Brickworks Quilkey PLACE	Other Industry	Regulation under CLM Act not required
BUNGENDORE	Former Timber Treatment Plant Corner King Street and Butmaroo STREET	Other Industry	Contamination formerly regulated under the CLM Act
BURONGA	Caltex Service Station Sturt Hwy Cnr Silver City HIGHWAY	Service Station	Under assessment
BURWOOD	Burwood STA Depot Cnr Shaftesbury and Parramatta ROADS	Other Industry	Contamination formerly regulated under the CLM Act
BYRON BAY	Residential Development Lot 15 Seaview STREET	Unclassified	Regulation under CLM Act not required
CABARITA	Cabarita Wellcome 33 Phillips STREET	Landfill	Ongoing maintenance required to manage residual contamination (CLM Act)
CABARITA	Dulux (Orica Australia) Cabarita ROAD	Chemical Industry	Contamination formerly regulated under the CLM Act
CABRAMATTA	Caltex Service Station 166 John STREET	Service Station	Under assessment
CALGA	Former service station 101 Peats Ridge ROAD	Service Station	Contamination formerly regulated under the CLM Act
CALLALA BEACH	Callala Beach General Store (formerly 1 Quay Rd) 114A Quay ROAD	Service Station	Regulation under CLM Act not required
CAMBRIDGE PARK	Caltex Cambridge Park Star COURT	Service Station	Under assessment
CAMDEN	Caltex Service Station 21 Barsden STREET	Service Station	Under assessment
CAMDEN	Camden High School (former) John STREET	Gasworks	Regulation under CLM Act not required
CAMDEN SOUTH	Coles Express Service Station Camden 273 Old Hume HIGHWAY	Service Station	Under assessment
CAMELLIA	James Hardie Factory (former, eastern portion) 1 Grand AVENUE	Other Industry	Contamination currently regulated under CLM Act
CAMELLIA	Council Reserve 11B Grand AVENUE	Metal Industry	Regulation under CLM Act not required
CAMELLIA	Bitumen Manufacturer 12 Grand AVENUE	Other Industry	Contamination currently regulated under CLM Act
CAMELLIA	Wrigg 13 Grand AVENUE	Metal Industry	Under assessment
CAMELLIA	Hymix Concrete 14 Grand AVENUE	Metal Industry	Contamination currently regulated under CLM Act
CAMELLIA	Hambear 14 Thackeray STREET	Metal Industry	Regulation under CLM Act not required
CAMELLIA	Mauri Foods 15 Grand AVENUE	Other Industry	Regulation being finalised
CAMELLIA	Railway Land 27 Grand AVENUE	Other Industry	Regulation under CLM Act not required
CAMELLIA	Maritime Services Board	Metal Industry	Regulation under

Appendix D Australian and NSW Heritage Information

©JBS&G Australia Pty Ltd | 52116-105322

Home > Topics > Heritage places and items > Search for heritage

Search for NSW heritage

Return to search page where you can refine/broaden your search.

Statutory listed items

Information and items listed in the State Heritage Inventory come from a number of sources. This means that there may be several entries for the same heritage item in the database. For clarity, the search results have been divided into three sections.

- Section 1 contains Aboriginal Places declared by the **Minister for the Environment** under the National Parks and Wildlife Act. This information is provided by the Heritage Division.
- Section 2 contains heritage items listed by the **Heritage Council of NSW** under the NSW Heritage Act. This includes listing on the State Heritage Register, an Interim Heritage Order or protected under section 136 of the NSW Heritage Act. This information is provided by the Heritage Division.
- Section 3 contains items listed by **local councils** on Local Environmental Plans under the Environmental Planning and Assessment Act, 1979 and **State government agencies** under s.170 of the Heritage Act. This information is provided by local councils and State government agencies.

Section 1. Aboriginal Places listed under the National Parks and Wildlife Act.

Your search did not return any matching results.

Section 2. Items listed under the NSW Heritage Act.

Your search returned 28 records

our search returned 28 records.	1			
Item name	Address	Suburb	LGA	SHR
Ahrens Fox PS2 Fire Engine (1929)	1 Museum Drive	Penrith	Penr ith	01717
Cox's Cottage	2 St Thomas Road	Mulgoa	Penr ith	00171
<u>Craithes House</u>	34-40 Borec Road	Penrith	Penr ith	00378
Dennis Big 6 Fire Engine (1939)	1 Museum Drive	Penrith	Penr ith	01718
Edward Smith Headquarters Switchboard (1909)	1 Museum Drive	Penrith	Penr ith	01901
Emu Plains (Nepean River) Underbridge	Off Bruce Neale Dr, Steel Trusses 1.3 Km Past Station	Penrith	Penr ith	01830
Emu Plains Railway Station group	Main Western railway	Emu Plains	Penr ith	01136
Fairlight Homestead & Barn	Fairlight Road	Mulgoa	Penr ith	00262
<u>Fernhill</u>	Mulgoa Road	Mulgoa	Penr	00054

			ith	
Fire and Rescue NSW Heritage Fleet	Museum Drive	Penrith	Penr ith	01902
Ford 21W Fire Brigade Mobile Canteen (1942)	Museum Drive	Penrith	Penr ith	01900
Fossil Collection	947-953 Londonderry Road	Londond erry	Penr ith	00971
Glenleigh Estate	427 Mulgoa Road	Regentvil le	Penr ith	00346
<u>Glenmore</u>	754-760 Mulgoa Road	Mulgoa	Penr ith	00074
<u>Mamre</u>	Mamre Road	St. Marys	Penr ith	00264
Natural Area	Rickards Avenue	Agnes Banks	Penr ith	00649
NSW Fire Brigades No 10 Vehicle Number Plates	Castlereagh Road	Penrith	Penr ith	01519
Penrith Railway Station group	Great Western Railway	Penrith	Penr ith	01222
Petrology Collection	947-953 Londonderry Road	Londond erry	Penr ith	00973
Rose Cottage and Early Slab Hut	Water Street	Werringt on	Penr ith	01392
Shand Mason 7 inch Manual Fire Engine (1869)	1 Museum Drive	Penrith	Penr ith	01898
Shand Mason Curricle Ladders (1898)	1 Museum Drive	Penrith	Penr ith	01899
Shand Mason Fire Engine (1891)	Museum Drive	Penrith	Penr ith	01716
St. Marys Railway Station Group	Great Western Railway	St. Marys	Penr ith	01249
St. Thomas Anglican Church	St Thomas Road	Mulgoa	Penr ith	00426
Torin Building	26 Coombes Drive	Penrith	Penr ith	01796
Upper Castlereagh Public School and residence	Castlereagh Road	Castlerea gh	Penr ith	00339
<u>Victoria Bridge</u>	Nepean River, Great Western Highway	Penrith	Penr ith	01950

Section 3. Items listed by Local Government and State Agencies.

Your search returned 245 records

Item name	Address	Suburb	LGA	Information source
1841 Tilley 5 inch Manual Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1869 Shand Mason 7" Manual Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1891 Shand Mason Steamer Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1898 Shand Mason Curricle Ladders - Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1916 Garford Type 64 Chain Drive Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1929 Ahrens Fox PS2 Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1939 Dennis Big 6 Fire Engine	1 Museum Drive	Penrith	Pen rith	SGOV
1942 Ford 21W Fire Brigade Mobile Canteen	1 Museum Drive	Penrith	Pen rith	SGOV
1949 Dennis F1 Fire Engine (Scout Car)	1 Museum Drive	Penrith	Pen rith	SGOV
Agnes Banks Public School (Former)	Castlereagh Road	Agnes Banks	Pen rith	LGOV
Arms of Australia Inn	Great Western Highway	Emu Plains	Pen rith	LGOV
<u>Australian Arms Inn (Former)</u>	Great Western Highway	Emu Plains	Pen rith	LGOV
Avenue and Garden Planting	Lemko Place	Penrith	Pen rith	LGOV
Barn to Tannery site (Former)	Pages Road	St. Marys	Pen rith	LGOV
Bayley Park House	Mamre Road	Kemps Creek	Pen rith	LGOV
Bellbird Reserve	Barina Crescent	Emu Plains	Pen rith	LGOV
Bennetts Wagon Works Site (Former)	Queen Street	St. Marys	Pen rith	LGOV
Brells Tannery (Former)	Great Western Highway	St. Marys	Pen rith	LGOV
Brick Cottage	Park Road	Luddenha m	Pen rith	LGOV
Brick Cottage	Campbell Street	Luddenha m	Pen rith	LGOV

7//2016	7/2016 Search for NSW heritage NSW Environment & Heritage					
Broadville Victorian House	98 Station Street	Penrith	Pen rith	LGOV		
Bronte Villa	50 Gidley Street	St. Marys	Pen rith	LGOV		
Building AA - Werrington Park House and Poplar Avenue	Great Western Highway	Werringto n	Pen rith	SGOV		
<u>Castlereagh Council Chambers</u> <u>(Former)</u>	Castlereagh Road	Castlerea gh	Pen rith	LGOV		
Castlereagh General Cemetery	Church Lane	Castlerea gh	Pen rith	LGOV		
Castlereagh Public School (Former)	West Wilchard Road	Castlerea gh	Pen rith	LGOV		
Chestnut Cottage	R17 Castlereagh Road	Agnes Banks	Pen rith	LGOV		
Christchurch Anglican Church	Church Lane	Castlerea gh	Pen rith	LGOV		
Combewood House, garden and original entrance	Coreen Avenue	Penrith	Pen rith	LGOV		
<u>Combewood Trees</u>	Coreen Avenue	Penrith	Pen rith	LGOV		
Commissioner's Uniform (NSWFire Brigades) - Ian Mac Dougall	1 Museum Drive	Penrith	Pen rith	SGOV		
Community Arts Centre	Great Western Highway	Emu Plains	Pen rith	LGOV		
Concrete House	2 Railway Street	Emu Plains	Pen rith	LGOV		
Cottage	14 York Street	Emu Plains	Pen rith	LGOV		
Cottage	Eastern end Seventh Avenue	Llandilo	Pen rith	LGOV		
Cottage	Seventh Avenue (Eastern end)	Llandilo	Pen rith	SGOV		
Cottage	Littlefields Road	Mulgoa	Pen rith	LGOV		
<u>Cottage</u>	Lenore Lane	St. Marys	Pen rith	LGOV		
Cottage, The	St Thomas Road	Mulgoa	Pen rith	LGOV		
Cottages	38-42 Gidley Street	St. Marys	Pen rith	LGOV		
<u>Cottages</u>	Great Western Highway	St. Marys	Pen rith	LGOV		

2016	Search for NSW heritage NSW	Environment & He	eritage	
<u>Craithes House</u>	Borec Road	Penrith	Pen rith	LGOV
Cram Place - Cast Iron Fence	338-340 High Street	Penrith	Pen rith	LGOV
Cram Place - Well and Pump	338-340 High Street	Penrith	Pen rith	LGOV
Cram Place (Former CBC Bank)	338-340 High Street	Penrith	Pen rith	LGOV
Cram Place (Former Coach House)	338-340 High Street	Penrith	Pen rith	LGOV
Cranebrook Public School (Former)	Cranebrook Road	Cranebroo k	Pen rith	LGOV
Crushing Plant	Jacksons Lane	Upper Castlerea gh	Pen rith	LGOV
Derby Street P33b Conservation Area Cottages	Castlereagh Street	Penrith	Pen rith	LGOV
Derby Street P33c Conservation Area Cottages	Derby Street	Penrith	Pen rith	LGOV
<u>Desboroughs Tannery (Former)</u>	Desborough Road	St. Marys	Pen rith	LGOV
Dunheved Fire Station	50 Christie Street	Penrith	Pen rith	SGOV
<u>Dunheved Homestead Site</u>		Dunheved	Pen rith	LGOV
Edinglassie House	22-24 Bunyan Road	Leonay	Pen rith	LGOV
Edward Smith Headquarters Switchboard - 1909	1 Museum Drive	Penrith	Pen rith	SGOV
Edwardian Cottage	323 Castlereagh Road	Penrith	Pen rith	LGOV
Edwardian Cottage	46 Russell Street	Emu Plains	Pen rith	LGOV
Emu Hall Homestead	Great Western Highway	Emu Plains	Pen rith	LGOV
Emu Plains (Nepean River) Underbridge	Off Bruce Neale Dr, Steel Trusses 1.3 Km Past Station	Penrith	Pen rith	SGOV
Emu Plains Assembly Hall	17 Great Western Highway	Emu Plains	Pen rith	LGOV
Emu Plains Railway Culvert	Lamrock Street	Emu Plains	Pen rith	SGOV
Emu Plains Railway Station	Station Street/Railway Row	Emu Plains	Pen rith	LGOV

2016 Search for NSW heritage NSW Environment & Heritage				
Emu Plains Railway Station Group	Mackellar Street	Emu Plains	Pen rith	SGOV
Explorers Memorial	Memorial Avenue	Penrith	Pen rith	LGOV
<u>Farmhouse</u>	Caddens Road	Orchard Hills	Pen rith	LGOV
<u>Farmhouse</u>	Aldington Road	Kemps Creek	Pen rith	LGOV
Farmhouse (Collapsed) & outbuildings	Springwood Road	Agnes Banks	Pen rith	LGOV
Federation Farmhouse	R37 Castlereagh Road	Castlerea gh	Pen rith	LGOV
Federation House & Garden	6 First Street South	Kingswoo d	Pen rith	LGOV
Ferry Crossing	Ferry Road	Emu Plains	Pen rith	LGOV
Four Winds	Great Western Highway	Werringto n	Pen rith	SGOV
Four Winds Bungalow	Great Western Highway	Werringto n	Pen rith	LGOV
Gateposts to Colesbrook	Aldington Road	Kemps Creek	Pen rith	LGOV
Gosling Street & Hessel Place Reserves	Gosling Street	Emu Plains	Pen rith	LGOV
Governor Phillip Special Hospital Original Building	Glebe Place	Penrith	Pen rith	LGOV
Gwandalan Cottage	Nepean Street	Emu Plains	Pen rith	LGOV
Hadley Park	RMB 113 Castlereagh Road	Castlerea gh	Pen rith	GAZ
<u>House</u>	1 Bundarra Road	Regentvill e	Pen rith	LGOV
House Hall family	13 Hessel Place	Emu Plains	Pen rith	LGOV
House to Tannery (Former) site	Pages Road	St. Marys	Pen rith	LGOV
Huntington Hall Country House	52 Beach Street	Emu Plains	Pen rith	LGOV
Johnson's Cottage	Nepean Street	Cranebroo k	Pen rith	LGOV
Kenilworth House	Boundary Road	Cranebroo k	Pen rith	LGOV

/2016 Search for NSW heritage NSW Environment & Heritage				
<u>Kentucky</u>	146 Station Street	Penrith	Pen rith	LGOV
Kingswood Public School Classroom and Teachers Residence	Second Avenue	Kingswoo d	Pen rith	LGOV
Knapsack Gully Railway Viaduct		Emu Plains	Pen rith	LGOV
Lawson Footbridge	East of Station At 94.93 Km, Old Overbridge	Lawson	Pen rith	SGOV
Leeholme Horse Stud-Exercise Yard	Luddenham Road	St. Clair	Pen rith	LGOV
Lemongrove Conservation Area Cottages	18-29 The Crescent	Lemongro ve	Pen rith	LGOV
Lemongrove Conservation Area Cottages	18 Blaxland Avenue	Lemongro ve	Pen rith	LGOV
Lemongrove Conservation Area Cottages	15-53 Lemongrove Road	Lemongro ve	Pen rith	LGOV
Lemongrove Conservation Area Cottages	1-16 Macquarie Avenue	Lemongro ve	Pen rith	LGOV
Lemongrove Conservation Area Cottages	4 - 22 Hemmings Street	Lemongro ve	Pen rith	LGOV
Lemongrove Lodge	24 Lemongrove Avenue	Lemongro ve	Pen rith	LGOV
Leo Buring Cottage, barn, glasshouse and memorial	Leonay Parade	Leonay	Pen rith	LGOV
Lewers Houses & Garden	86 River Road	Emu Plains	Pen rith	LGOV
Little Manly	Western side Nepean River	Emu Plains	Pen rith	LGOV
Londonderry Cemetery	Londonderry Road	Londonde rry	Pen rith	LGOV
Luddenham Progress Hall	The Northern Road	Luddenha m	Pen rith	LGOV
Luddenham Uniting Church	The Northern Road	Luddenha m	Pen rith	LGOV
Luddenham Uniting Church Cemetery	The Northern Road	Luddenha m	Pen rith	LGOV
Madang Park Farmhouse	Jamison Road	Jamisonto wn	Pen rith	LGOV
<u>Mamre</u>	Mamre Road	St. Marys	Pen rith	SGOV
Mamre House	Mamre Road	St. Marys	Pen rith	LGOV

/2016	2016 Search for NSW heritage NSW Environment & Heritage				
Mansion (Site)	Mulgoa Road	Regentvill e	Pen rith	LGOV	
Margaret Farm & Barn	Pages Road	St. Marys	Pen rith	SGOV	
McCarthys Cemetery	McCarthys Lane	Castlerea gh	Pen rith	GAZ	
McCarthys Farm Archaeological remains (Demolished)	McCarthys Lane	Cranebroo k	Pen rith	LGOV	
Memorial Cairn	Mamre Road	St. Marys	Pen rith	LGOV	
Memorial Cairn	Luddenham Road	St. Marys	Pen rith	LGOV	
Memorial Park	Woodriff Street	Penrith	Pen rith	LGOV	
<u>Memorials</u>	Castlereagh Road	Castlerea gh	Pen rith	LGOV	
Methodist Cemetery		Castlerea gh	Pen rith	GAZ	
Methodist Church (Former)	Henry Street	Penrith	Pen rith	LGOV	
Mile Stones	Great Western Highway	Oxley Park	Pen rith	LGOV	
Mimosa Stables (Former)	Pages Road	St. Marys	Pen rith	LGOV	
Mimosa Villa	Pages Road	St. Marys	Pen rith	LGOV	
Moore Cottage	8 Sainsbury Street	St. Marys	Pen rith	LGOV	
Mourilyan House (original section)	333 Great Western Highway	St. Marys	Pen rith	LGOV	
Mulgoa Conservation Area		Regentvill e	Pen rith	LGOV	
Mulgoa Public School	Mulgoa Road	Mulgoa	Pen rith	LGOV	
Museum of Fire Penrith (Former Penrith Power Station)	Castlereagh Road	Penrith	Pen rith	LGOV	
Nepean Park	Castlereagh Road	Castlerea gh	Pen rith	GAZ	
Nepean River		Penrith	Pen rith	LGOV	
NSW Fire Brigades Heritage Fleet	1 Museum Drive	Penrith	Pen rith	SGOV	

7/2016	Search for NSW heritage NSW En	vironment & He	ritage	
NSWFB 'No. 10' Vehicle Number Plates	1 Museum Drive	Penrith	Pen rith	SGOV
Old Police Station	Great Western Highway	Emu Plains	Pen rith	SGOV
Orange Grove Cottage	Park Avenue	Emu Plains	Pen rith	LGOV
Orchard Hills Reservoir (WS 0083)	Castle Road	Orchard Hills	Pen rith	SGOV
Orchard Hills Uniting Church	Kingswood Road	Orchard Hills	Pen rith	LGOV
Original building	Glebe Place	Penrith	Pen rith	SGOV
Osborne Homestead	Castlereagh Road	Agnes Banks	Pen rith	LGOV
Pages Tannery (Former)	Pages Road	St. Marys	Pen rith	LGOV
Parkers Slaughter Yard	Castlereagh Road	Castlerea gh	Pen rith	LGOV
Parkinson Real Estate Cottage	NE corner Great Western Highway	Emu Plains	Pen rith	LGOV
<u>Passadena House</u>	Allan Road	Mulgoa	Pen rith	LGOV
Peach Tree Creek Bridge	Great Western Highway	Penrith	Pen rith	SGOV
Penrith Ambulance Station	High Street	Penrith	Pen rith	LGOV
Penrith Brick Company (Former) (Demolished)	Copeland Street	Kingswoo d	Pen rith	LGOV
Penrith Council Chambers	Henry Street	Penrith	Pen rith	LGOV
Penrith General Cemetery	Copeland Street	Kingswoo d	Pen rith	LGOV
Penrith Infants Department	Henry Street	Penrith	Pen rith	LGOV
Penrith Public School Building	High Street	Penrith	Pen rith	LGOV
Penrith Public School Palm Trees	High Street	Penrith	Pen rith	LGOV
Penrith Railway Station	Jane Street	Penrith	Pen rith	LGOV
Penrith Railway Station Group and Residence	Station Street	Penrith	Pen rith	SGOV

2016 Search for NSW heritage NSW Environment & Heritage				
Penrith Weir	Nepean River	Penrith	Pen rith	SGOV
Pise House Ruins	Church Lane	Castlerea gh	Pen rith	LGOV
Plantings Farmhouse Garden	Church Lane	Castlerea gh	Pen rith	LGOV
Police Station & Residence (Former)	1 Punt Road	Emu Plains	Pen rith	LGOV
Police Station Old (Destroyed)	Great Western Highway	Emu Plains	Pen rith	LGOV
Poplars Garden (The)	Farrells Lane	Cranebroo k	Pen rith	LGOV
Poplars Old slab cottage (The)	Farrells Lane	Cranebroo k	Pen rith	LGOV
Poplars Pise House (The)	Farrells Lane	Cranebroo k	Pen rith	LGOV
Princess Mary Street Cottages	Princess Mary Street	St. Marys	Pen rith	LGOV
Rectory (Former)	95 Glebe Place	Penrith	Pen rith	LGOV
Regentville		Mulgoa Valley	Pen rith	GAZ
Regentville Public School and Gardens	School House Road	Regentvill e	Pen rith	LGOV
Rose Cottage & Barn	Water Street	Werringto n	Pen rith	LGOV
Rose Cottage and Early Slab Hut	Water Street	Werringto n	Pen rith	SGOV
<u>Rotunda</u>	Luddenham Road	St. Clair	Pen rith	SGOV
Rowing Course		Emu Plains	Pen rith	LGOV
Sawmill Precinct	Station Street	St. Marys	Pen rith	LGOV
Sir John Jamisons Cemetery	Lilac Place	Regentvill e	Pen rith	LGOV
Site of Edinglassie House	Lapstone Place	Leonay	Pen rith	LGOV
Site of Fultons Church School	Church Street	Castlerea gh	Pen rith	LGOV
Sites of Early Water Mills		Castlerea gh	Pen rith	LGOV

/2016 Search for NSW heritage NSW Environment & Heritage				
Slab Cottage	Castlereagh Road	Castlerea gh	Pen rith	LGOV
South Creek Bridge (Eastbound)	Great Western Highway	St Marys	Pen rith	SGOV
St Andrews Church of England (Former)	Park Road	Wallacia	Pen rith	LGOV
St Aubin's Terrace	255-265 High Street	Penrith	Pen rith	LGOV
St Marys Railway Station Group	Queen Street	St Marys	Pen rith	SGOV
St. James Church of England	The Northern Road	Luddenha m	Pen rith	LGOV
St. James Church of England Cemetery	The Northern Road	Luddenha m	Pen rith	LGOV
St. Mary Magdalene Cemetery	Magdalene Street	St. Marys	Pen rith	LGOV
St. Mary Magdalene Church	Magdalene Street	St. Marys	Pen rith	LGOV
St. Marys Catholic Church	Mulgoa Road	Mulgoa	Pen rith	LGOV
St. Marys Council Chambers (Former)	Mamre Road	St. Marys	Pen rith	LGOV
St. Marys General Cemetery	Sydney Street	Oxley Park	Pen rith	LGOV
St. Marys Public School & Buildings	Princess Mary Street	St. Marys	Pen rith	LGOV
St. Marys Railway Station	Station street	St. Marys	Pen rith	LGOV
St. Marys Railway Station Parcels Office	Station Street	St. Marys	Pen rith	LGOV
St. Marys Railway Station Waiting Room	Station Street	St. Marys	Pen rith	LGOV
St. Pauls Anglican Cemetery	Nixon Street	Emu Plains	Pen rith	LGOV
St. Pauls Anglican Church	Nixon Street	Emu Plains	Pen rith	LGOV
St. Pauls Church Of England (Relocated)	Castlereagh Road	Agnes Banks	Pen rith	LGOV
St. Phillips Anglican Church	Bringelly Road	Kingswoo d	Pen rith	LGOV
St. Stehens Cemetery	252 High Street	Penrith	Pen rith	LGOV

2016 Search for NSW heritage NSW Environment & Heritage				
St. Stephens Church Hall	252 High Street	Penrith	Pen rith	LGOV
St. Stephens Church of England	252 High Street	Penrith	Pen rith	LGOV
Staff Cottages	Forrester, Viney, Griffiths, Maple	St. Marys	Pen rith	LGOV
State Records Movable Heritage - Furniture	143 O'Connell Street	Kingswoo d	Pen rith	SGOV
State Records Movable Heritage - Memorials	143 O'Connell Street	Kingswoo d	Pen rith	SGOV
Station Masters House (Former)	57 Belmore Street	Penrith	Pen rith	LGOV
Stone House	143 Great Western Highway	Emu Plains	Pen rith	LGOV
Stone Stables Ruins	Castlereagh Road	Castlerea gh	Pen rith	LGOV
Swampland	Werrington Road	Werringto n	Pen rith	LGOV
Tannery Site (Former)	Pages Road	St. Marys	Pen rith	LGOV
Tannery Sites St. Marys & Kingswood (Former)		St. Marys	Pen rith	LGOV
Tannery Werrington Brells (Former)	Great Western Highway	Werringto n	Pen rith	LGOV
The Cottage	39 Warwick Street	Penrith	Pen rith	LGOV
The Lodge	54 Camden Road	Penrith	Pen rith	LGOV
Thompsons Tannery (Former)	Saddington Street	St. Marys	Pen rith	LGOV
Thornton Hall	Mountain View Crescent	Penrith	Pen rith	LGOV
Timber Cottage	71 Parker Street	Penrith	Pen rith	LGOV
Timber Cottages	29 and 41 The Northern Road	Luddenha m	Pen rith	LGOV
Torquay	555 Great Western Highway	Werringto n	Pen rith	SGOV
Torquay Cottage	Great Western Highway	Werringto n	Pen rith	LGOV
Tree - The Cottage	39 Warwick Street	Penrith	Pen rith	LGOV

2016 Search for NSW heritage NSW Environment & Heritage				
Tree to Victorian House	48 Warwick Street	Penrith	Pen rith	LGOV
Trees to St Pauls Anglican Church	Castlereagh Road	Agnes Banks	Pen rith	LGOV
Two Storey Brick Cottage (Destroyed)	7 Lawson Street	Penrith	Pen rith	LGOV
Tyreel Homestead	Castlereagh Road	Agnes Banks	Pen rith	LGOV
Union Inn (Former)	36 Great Western Highway	Emu Plains	Pen rith	LGOV
Uniting Church	Emerald Street	Emu Plains	Pen rith	LGOV
Upper Castlereagh Methodist Church and Hall		Castlerea gh	Pen rith	GAZ
Upper Castlereagh School and Residence		Castlerea gh	Pen rith	GAZ
Upper Castlereagh War Memorial	Castlereagh Road	Upper Castlerea gh	Pen rith	LGOV
<u>Victoria Bridge</u>	Great Western Highway	Penrith	Pen rith	GAZ
Victoria Bridge	Great Western Highway	Penrith	Pen rith	LGOV
Victoria Bridge over Nepean River	Great Western Highway	Penrith	Pen rith	SGOV
<u>Victoria Park</u>	Great Western Highway	St. Marys	Pen rith	LGOV
<u>Victoria Park War Memorial</u>	Great Western Highway	St. Marys	Pen rith	LGOV
<u>Victorian Farmhouse</u>	Grays Lane	Cranebroo k	Pen rith	LGOV
<u>Victorian Farmhouse</u>	R97 Castlereagh Road	Castlerea gh	Pen rith	LGOV
<u>Victorian House</u>	322 Castlereagh Road	Penrith	Pen rith	LGOV
<u>Victorian House</u>	48 Warwick Street	Penrith	Pen rith	LGOV
<u>Victorian House</u>	6 Rawson Avenue	Penrith	Pen rith	LGOV
<u>Victorian House</u>	148 Station Street	Penrith	Pen rith	LGOV
<u>Victorian Terrace</u>	219-221 High Street	Penrith	Pen rith	LGOV

2016	Search for NSVV heritage NSVV	EUNITOHITIEHI & TE	ernage	
<u>Victorian Villa</u>	150 Lethbridge Street	Penrith	Pen rith	LGOV
Wagon Wheel Hotel	Great Western Highway	St. Marys	Pen rith	LGOV
Wallacia Hotel	Mulgoa Road	Wallacia	Pen rith	LGOV
Wallacia Weir		Wallacia	Pen rith	GAZ
War Memorial	Park Street	Emu Plains	Pen rith	LGOV
Weatherboard House	66 Great Western Highway	Emu Plains	Pen rith	LGOV
Webbs Tannery (Former)	Carinya Avenue	St. Marys	Pen rith	LGOV
Weir and Former Pumping Station	Memorial Avenue	Penrith	Pen rith	LGOV
Werrington House	108 Rugby Street	Werringto n	Pen rith	LGOV
Werrington Park House (Former), garden & Poplar Avenue	Great Western Highway	Werringto n	Pen rith	LGOV
Westbank House	2-6 Nepean Street	Emu Plains	Pen rith	LGOV
Wool Pack Inn (Ruin)	556 Great Western Highway	St. Marys	Pen rith	SGOV
Workers Cottages for Brickwork's	Mulgoa Road	Jamisonto wn	Pen rith	LGOV
Yamba Cottage	32 Nixon Street	Emu Plains	Pen rith	LGOV
Yodalla House	26-28 Nepean Street	Emu Plains	Pen rith	LGOV

There was a total of 273 records matching your search criteria.

Key:

LGA = Local Government Area

GAZ= NSW Government Gazette (statutory listings prior to 1997), HGA = Heritage Grant Application, HS = Heritage Study, LGOV = Local Government, SGOV = State Government Agency.

Note: While the Heritage Division seeks to keep the Inventory up to date, it is reliant on State agencies and local councils to provide their data. Always check with the relevant State agency or local council for the most up-to-date information.

Appendix E Data Quality Objectives

E.1 Sampling and Analysis Quality Plan

Data Quality Objectives (DQOs) were established for the assessment works, as described in the following sections.

E.1.1 State the Problem

It is understood that the Site owner, Legacy Property, requires an assessment of the potential risks to human health and the environment associated with site contamination under the current land use specified for the site, as discussed in **Section 1**. As part of this assessment, a data gap investigation was undertaken comprising intrusive soil investigations and site inspections at three properties Lot 1 in DP 515678, Lot 2 in DP 502333 and Lot 6 in DP 502333.

Information on potential site contamination conditions inferred from the desktop review, previous site investigation, and observations made during site inspection was the basis for the conceptual site model information presented in **Section 4**.

E.1.2 Identify the Decision

Based on the decision making process for assessing urban redevelopment sites detailed in DEC (2006⁹), the following decisions must be made:

- Are there any unacceptable risks to likely future onsite receptors?
- Are there any issues relating to background soil concentrations that exceed appropriate site soil criteria?
- Are there any impacts of chemical mixtures?
- Are there any aesthetic issues at the Site?
- Is there any evidence of, or potential for, migration of contaminants from the Site?
- Is a site management strategy required?

E.1.3 Identify Inputs to the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- Desktop review;
- Detailed site inspection/walkover;
- Physical observations and interpretation of fill and natural material through the collection of soil samples and laboratory chemical analysis results;
- Development of appropriate assessment criteria for evaluation of soil impacts;
- Laboratory analysis of soil samples of potentially contaminated media for COPCs; and
- Confirmation that data generated by sample analysis are of an acceptable quality to allow reliable comparison to assessment criteria by assessment of quality assurance / quality control as per the data quality indicators established in **Section E.6**.

Specifically, sufficient data needs to be collected from each of the identified potentially impacted media in the identified AEC for the associated COPC (**Table 4.1**).

E.1.4 Define the Study Boundaries

©JBS&G Australia Pty Ltd | 52116-105322

'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition', NSW Environmental Protection Authority, EPA 2006

The lateral study boundary is defined as Lot 1 in DP 515678, Lot 2 in DP 502333 and Lot 6 in DP 502333, as shown on **Figure 2**. The maximum vertical extent of the assessment works was at 1.0 m below the existing ground surface.

Due to the project objectives, seasonality was not assessed as part of this investigation. Data are therefore representative of the timing and duration of the current investigation.

E.1.5 Develop a Decision Rule

Soil analytical data were assessed against the appropriate criteria as identified in **Section 6.2**. Statistical analyses of the data were undertaken, where appropriate in accordance with relevant guidance documents. The following statistical criteria were adopted:

- The 95% Upper Confidence Limit (UCL) on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250% of the adopted criterion; and
- The standard deviation of the results must be less than 50% of the criterion.

The decision rules adopted to answer the decisions identified in **Section E.1.2** are summarised in **Table E.1**.

Table E.1: Summary of Decision Rules

Decisions Required to be Decision Rule			
Made	Decision Rule		
1. Are there any	Analytical data was compared against EPA endorsed criteria.		
unacceptable risks to	Statistical analysis of the data was completed in accordance with relevant		
onsite future receptors?	guidance documents, as appropriate, to facilitate the decisions. The criteria in		
	Section 6.3 , and the following statistical criteria were adopted with respect to soils:		
	Either: the reported concentrations were all below the Site criteria;		
	Or: the average site concentration for each analyte was below the adopted		
	site criterion; no single analyte concentration exceeded 250% of the adopted		
	site criterion; and the standard deviation of the results was less than 50% of the Site criterion;		
	And: the 95% UCL of the average concentration for each analyte was below the adopted site criterion.		
	If the statistical criteria stated above were satisfied, the answer to the		
	decision was No.		
	If the statistical criteria were not satisfied, the answer to the decision was Yes.		
2. Are there any	Background soil concentrations as detailed in Trace Element Concentrations in		
background contamination	Soils from Rural and Urban Areas of Australia (Olszowy, et. al. 1995) were		
issues?	used for comparison of site soil data. If there were any contaminants at		
	concentrations substantially outside background ranges, then the answer was		
	yes, otherwise the answer was no		
2. Are there any chemical mixtures?	Was there more than one group of contaminants present which increase the risk of harm?		
	If there was, the answer to the decision was Yes.		
	Otherwise, the answer to the decision was No.		
3. Are there any aesthetic	If there were any Asbestos Containing Material (ACM) fragments on the		
issues?	ground surface, any unacceptable odours, any soil discolouration, or excessive		
	amounts of anthropogenic material, the answer to the decision was Yes.		
	Otherwise, the answer to the decision was No.		
4. Is there any evidence of,	Based on assessment results, was there any evidence of, or the potential for,		
or potential for, migration	unacceptable contaminant concentrations to migrate from the Site?		
of contaminants from the	If yes, the answer to the decisions was Yes.		
Site?	Otherwise, the answer to the decision was No.		
5. Is a site management	Is the answer to any of the above decisions Yes?		
strategy required?			

Decisions Required to be Made	Decision Rule
	If yes, a site management strategy is required to address unacceptable contamination concerns at the Site so as to make the Site suitable for permissible site uses.
	If no, a site management strategy is not required and the Site is considered suitable, from a contamination view point for the proposed use.

E.1.6 Specific Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, National Environmental Protection Measure (NEPM) (NEPC 2013¹⁰), appropriate Data Quality Indicators (DQIs, used to assess quality assurance / quality control) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters). The acceptable limit on decision error is 95% compliance with DQIs.

The pre-determined DQIs established for the project are discussed below in relation to the PARCCS parameters, and are shown in **Table E.2**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this study is a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.
- Representativeness expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the Site, and by using an adequate number of sample locations to characterise the Site to the required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; and ensuring analysing laboratories use consistent analysis techniques; and reporting methods.
- Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- Sensitivity expresses the appropriateness of the chosen field and laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted site assessment criteria.

¹⁰ National Environmental Protection (Assessment of Site Contamination) Measure 1999. As compiled 16 May 2013 National Environmental Council (NEPC 2013)

Table E.2: Data Quality Indicators

Data Quality Indicators	Frequency	Data Quality Criteria
Precision		
Split duplicates (intra laboratory)	1 / 20 samples	<50% RPD ¹
Blind duplicates (inter laboratory)	1 / 20 samples	<50% RPD ¹
Laboratory Duplicates	1 / 20 samples	<50% RPD ¹
Accuracy		
Surrogate spikes	All organic samples	70-130%
Laboratory control samples	1 per lab batch	70-130%
Matrix spikes	1 per lab batch	70-130%
Representativeness		
Sampling appropriate for media and analytes	All samples	_2
Samples extracted and analysed within holding times.	-	Soil: organics (14 days), inorganics (6 months)
Laboratory Blanks	1 per lab batch	<lor< td=""></lor<>
Trip spike	1 per lab batch	70-130% recovery
Storage blank	1 per lab batch	<lor< td=""></lor<>
Rinsate sample	1 per sampling event/media	<lor< td=""></lor<>
Comparability		_
Standard operating procedures for sample collection & handling	All Samples	All Samples
Standard analytical methods used for all analyses	All Samples	NATA accreditation
Consistent field conditions, sampling staff and laboratory analysis	All Samples	All samples ²
Limits of reporting appropriate and consistent	All Samples	All samples ²
Completeness		
Sample description and COCs completed and appropriate	All Samples	All samples ²
Appropriate documentation	All Samples	All samples ²
Satisfactory frequency and result for QC samples		95% compliance
Data from critical samples is considered valid	-	Critical samples valid
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted Site assessment criteria	All samples	LOR ≤ site assessment criteria

¹ If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

E.2 Optimise the Design for Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in *Contaminated Sites: Sampling Design Guidelines* (EPA 1995), including judgemental, random, systematic and stratified sampling patterns. The adopted sampling methodology is discussed in the following sections.

² A qualitative assessment of compliance with standard procedures and appropriate sample collection methods will be completed during the DQI compliance assessment.

E.2.1 Soil Investigation Methodology

The number of sampling points required to address the data gap as part of this assessment are indicated in **Table 6.1**. Sampling points were placed on a general systematic grid, skewed towards AECs identified during the site inspection. **Table E.3** details the number and type of systematic and targeted locations advanced into each property.

Table E.3: Soil Sampling Point Summary

Property	Area (ha)	Systematic Test Pits	Targeted Hand Auger Boreholes	Surficial Fragments	Total Investigation Locations
Lot 1 DP 515678	2.1	14	1	1	16
Address: 187					
Caddens Road					
Lot 2 DP 502333	1.75	14	3	=	17
Address: 189					
Caddens Road					
Lot 6 DP 502333	0.07	3	-	-	3
Address: 189					
Caddens Road					

The soil sampling and analysis program is presented in **Table E.4**.

Based on the current CSM and understanding of the Site's historical use, limited potential for widespread or gross contamination, and regional hydrogeological conditions, investigation of groundwater was considered unnecessary to meet the data gap assessment objectives.

E.2.2 Soil Sampling Methodology

Soil sampling was completed by a combination of mechanically advanced test pits using a backhoe and manually advanced boreholes using a hand auger. Soil samples were collected from the soil surface (0-0.1 m) and the subsurface (0.2-0.3 m) in all locations with the exception of TP26, where deep fill was encountered and a sample of natural material was collected at 0.9-1.0 m, underlying the fill material. Additionally, asbestos quantification was undertaken in accordance with methods outlined in the NEPM (NEPC 2013) including collection of a known volume of soil (10 L) and processing through a 7 mm sieve to identify asbestos containing materials

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indicators of contamination were noted. A calibrated Photo Ionisation Detector (PID) was utilised to screen for volatile organic compounds (VOCs) within the sampled material. Calibration records are presented in **Appendix I**.

Soil samples were collected using a trowel and new pair of nitrile gloves and immediately transferred to laboratory supplied sample jars and bags. The sample containers were then transferred to a chilled esky for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory. Based upon field observations, samples were analysed in accordance with the analytical schedule detailed in **Table E.4**.

E.2.3 Decontamination

Prior to the commencement of sampling activities, non-disposable sampling equipment, including the hand trowel and hand auger, was cleaned with a high pressure water/detergent spray, rinsed with water and then air dried. The equipment was then inspected to ensure that no soil, oil, debris or other contaminants were apparent on the equipment prior to the commencement of works.

Soil samples were removed from the hand auger head with the hand trowel and laid on clean plastic sheets for inspection prior to collection. A new pair of disposable nitrile gloves were used to collect each sample.

Sampling equipment was subsequently decontaminated using the above process between each sampling location. Decontamination records are presented in **Appendix I**.

A rinsate sample from the trowel was collected at the completion of field sampling activities to determine the effectiveness of the decontamination procedures implemented on re-usable sampling equipment.

E.2.4 Duplicate and Triplicate Sample Preparation

At selected sample locations sufficient soil was collected to provide a primary, blind (intralaboratory) duplicate and split (inter-laboratory) duplicate (triplicate) sample using the sampling methodology outlined above.

The collected soil sample was divided laterally into three samples with minimal disturbance to reduce the potential for loss of volatiles and placed in three clean glass jars and sample bags as appropriate. Soil samples were not homogenised in order to minimise the loss of volatiles.

Each sample was labelled with primary, duplicate or triplicate sample identification before being placed in the same chilled esky for transport to the laboratory.

E.2.5 Laboratory Analysis

JBS&G contracted Eurofins MGT (Eurofins) as the primary laboratory for the required chemical analyses. The secondary laboratory was Envirolab Services Pty Ltd (Envirolab). Both laboratories were NATA accredited for the required analyses. In addition, the laboratories were required to meet JBS&G's internal quality assurance/quality control (QA/QC) requirements. The completed analysis schedule is summarised in **Table E.4.**

Table E.4: Analytical Schedule

Sample Type	Sample Type	No. of Sampling Locations	Analyses (exc. QA/QC)
Lot 1 DP 515678 Address: 187 Caddens Road	Soil	14 Test Pit Locations and 1 Hand Auger Location.	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 18 samples PAH – 7 samples TPH/BTEX – 20 samples Asbestos Identification – 1 Sample OCPs – 8 samples Physical Parameters (CEC, pH and % Clay) – 2 samples
	Material	1 Surficial Fibrous Cement Sheeting Fragment	Asbestos Identification – 1 Sample
Lot 2 and 6 DP 502333 Address: 189 Caddens Road	Soil	17 Test Pit Locations and 3 Surficial Samples	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 20 samples PAH – 8 samples TPH/BTEX – 22 samples Asbestos Identification – 4 Sample OCPs – 9 samples Physical Parameters (CEC, pH and % Clay) – 2 samples

In addition to the above primary analyses, to address the DQIs, field duplicate and triplicate soil samples were analysed at a rate of one per 20 primary samples for contaminants of concern. A rinsate sample was obtained from non-disposable soil sampling equipment, plus a single trip spike and single trip blank accompanied the sample batch.

Appendix F Detailed Laboratory Documentation

CHAIN OF CUSTODY

PROJECT NO.: 52116.						1 Δ	BOR	ATO	RY BAT	CHN	O :				
PROJECT NAME: Cadden	- NST							ERS:		M	O				
DATE NEEDED BY: 51-4	1404							_	IEPM	-	1			_	
PHONE: Sydney: 02 8245 030		08 9488 01	00 Bris	bane: 07 3112 2688		- CC	- Lh 4		C1 141	2013	1			-	
SEND REPORT & INVOICE TO	(1) adminr	sw@ihs#	com au:	(2) Ryammond @1	oca com	au l	21	5M	lina	i		Olher com au			
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	VL:	com.aa,	(2)	/SE.COIII.	au, I	3/		A	X	छा	@jbsg.com.au	TYP	E OE	
								~ _	0	巴	5		ASB	ESTOS	
								4	ע ע	P -	2			1	
						U	ابسهد	J 7	2 4	五	33		FE F	WA	519296
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	CEC	Hd	1	OCPs OCPs	1-0	Heavy Metals		IDENTIFICATION	NEPM/WA	NOTES:
TPO1 0-01	5011	10/10/16	_	250 ml Jar+ bag	NA			X		X	X		 -	-	110120
TPO1 0-2-0-3				1	1										
TP02 0-0-1									X	X	X			\Box	
TAO2 0-2-0.3					-			X							
TP03 0-0.1					1			X	X				(10.00) - 10.000 (10.000)		
TP03 0-2-0.3							1	X	X				*		
TPOY 0-0.1									V		X			\Box	
TP04 0.2-0.3				300 2					1	′				П	
TPOS 0-0-1				1						XX	Y			\vdash	
905 0.2-03							7							Н	
1706 O-0.1									X	X	X			\Box	
TPO7 02-0.3							寸			Z					
TAO8 0-0.1								1	X	2	X				
TD98 0-2-03										X			\Box	\Box	
TRO9 0-0.1 TRO9 0-2-03 TP10 0-0.1 TP10 0-2-0-3										XX	X			П	
T109 0-2-03										-1,7	1			П	
TP10 0-0-1									X	Z	X				2 2
TP10 0-2-0-3	1/	JI			1.1/				1 1					\Box	
TP11 0-0.1	V	V	V		V				1	X	X				
RELINQUISHED BY				METHOD OF SHIPMENT:					RECEIVE	D BY:		FOR REC	CEIVING L	AB U	SE ONLY:
NAME: Roban DATE: () OF: JBS&G	/10/16	CONS	IGNMENT	NOTE NO.		NA	ME:	1/10/	16		172	COOLER SEAL - Yes No .	Inti	act	Broken
OF: JBS&G	110110	TRAN:	SPORT CO.			OF:	F	FFA	16	5		COOLER TEMP deg C			
NAME: DATE:		CONS	IGNMENT	NOTE NO.		NA	ME:			0	ATE:	COOLER SEAL - Yes No .	Int	act	Broken
OF:		TRAN	SPORT CO			OF:						COOLER TEMP deg C			
Container & Preservative Codes: P = Pla	stic; J = Soil Jar;	B = Glass Bottle	; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlori	c Acid	Prsvd	Vial; V	S = Sulfu	ric Acid	Prsvd Via	al, S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E	= EDTA Prs	vd; ST	= Sterile Bottle; O = Other
IMSO FormsO13 - Chain of Custody - Ge	eneric														

Document Set ID: 7540488

CHAIN OF CUSTODY

PROJECT NO.: 52116						LA	BOR	ATOR	RY BA	TCH N	0.:				
PROJECT NAME:	150					SA	MPL	ERS:	ſ.	24					
DATE NEEDED BY: Sfd										(2013)			E.:		
PHONE: Sydney: 02 8245 030	00 Perth: 0	8 9488 01	00 Bris	bane: 07 3112 2688 (2)	-20-00										
SEND REPORT & INVOICE TO	: (1) adminr	sw@jbsg.d	om.au;	(2) Rhamman (@j	bsg.com.a	au; (3)	5/	100	nceri		@jbs	sg.com.au		
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	վ .։								Д	ō			TYPE OF ASBESTOS	
						Aspestos	1			1	- leaw/weila!			ANALYSIS	
						J.		PH 9%	- 4	PALL .	प्रश	2		IDENTIFICATION NEPM/WA	
		1	19CHILL 98	ľ		5	H.	I O	OC.B.	# 4	8	D#(IDENTIFICA' NEPM/WA	*
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	4			10	74	1	0		Ne loc	NOTES:
TP11 0.2-0.3	501	10/10/16		250ml Jury bay	MA		X	X						$\perp \downarrow \downarrow \downarrow$	
TP12 0-0.1				12					X	XX	X				
TP12 0.2-03															
TP12 0.2-03 TP13 0-0-1		X			X	XX	X			X					
TP13 0.2-0.3				_		X_{\perp}	X								
to 14 0-0.1						X	X								
TP14 0.2-0.3										X	X				**************************************
TP15 0-01									X	X	X				
TP15 0.2-0:3															
TP15 0.2-0.3						X				X	X	X		X	
TP16 0-2-0-3										X					
TP16 0-2-0-3 TP17 0-0-1				\						X					
TP17 02-03				ì							X				
TP18 0-0-1										X	X				
TPB 0.2-03							X	XX							
TP19 0-0-1										X		X			
TP19 0-2-0-3			1								X				-
T020 0-01			V) /	11/					X	X				
TP20 02-03	U		-		V										
RELINQUISHED BY				METHOD OF SHIPMENT:	****			_	RECEIV	ED BY:				VING LAB US	
NAME: DATE:	0/10/16	CONS	IGNMENT	NOTE NO.				55		24	3	_	COOLER SEAL - Yes No	Intact	Broken
OF: JBS&G	סוןטוןיס	TRAN:	SPORT CO.			OF	TE:	11/15	1/14	2	2	-	COOLER TEMP deg C		
NAME: DATE:			GNMENT			II. 5355	ME:				DATE:		COOLER SEAL - Yes No	Intact	Broken
OF:		TDANG	SPORT CO			OF	:						COOLER TEMP deg C		
	astic; J = Soil Jar;			Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochlor	ic Aci	d Prsv	d Vial; \	/S = Sulf	uric Acid	Prsvd \	Vial; S = 5		DTA Prsvd; ST	= Sterile Bottle; O = Other
IMCO FormeO12 Chain of Custody C															

Document Set ID: 7540488

CHAIN OF CUSTODY

PROJECT NO.: 52116						LA	BOF	ATO	ORY B	BATCH NO.:						
PROJECT NAME:						SA	MP	ER:	S: 12	H						
DATE NEEDED BY: 5HU										M (2013)						
PHONE: Sydney: 02 8245 030	00 Perth: 0	8 9488 01	00 Brisl	bane: 07 3112 2688						41						
SEND REPORT & INVOICE TO	: (1) adminr	sw@jbsg.	com.au; (2) Pharmo-1 @jl	osg.com.a	au; (ے (3)	5/4	$\rho\gamma n$	<i>@</i>	bsg.com	.au				
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	AL:					20	x	-3	E				TY	PE OF	
							Sbestos	TRH/BIEX	PA+15	2				AN	NALYSIS	
						5	9	3	7	3.				ATION	1 1	
	1	ī			-	SP	5	龙	€ 8	3				DENTIFICATION	NEPM/WA	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	<u>Q</u>	1	E	4	[-]				i i	NEP	NOTES:
TP21 0-0-1	Soil	10/10/6		250ml Jar Hoay	NA	X		X	1							
TP21 0-2-0-3	1		1					X	ļ							
TP22 0-0-1						X	4	X	$X \rangle$	X						
TP220.2-0.3																
TP 23 0-0.1	P23 0-0.1 P23 0-2-0.3															
123 0.2-0.3					X	>	X									
TP24 8-0.1								X								
TP24 0.2-0.3																
TP 25 0-0.1								X	>	X						
TP25 8.2-0.3																
TP26 0-0-1							X	X	$X \rangle$	X				\ \ \ \ \		
T026 0.2-0.3								X	7							
TP270-0-1						X		X								
TP27 02-0.3									>	K						
TP28 0-0-1 TP28 0-2-0-3 TP29 0-0-1						X		X		X						
TP28 0.2-0-3						1										
7029 0-0-1			1 29			X	X	X	X >	X					4	30.00
TP29 0.2-8-3	('/															1000 (F 1000) 1000 1000 1000 1000 1000 1000 10
7735 0-04	V			U	V			X		X						
RELINQUISHED BY	:			METHOD OF SHIPMENT:			20			EIVED BY:		-				ISE ONLY:
NAME: Roban H DATE: (1016	CONS	GNMENT I	NOTE NO.		NA DA	AME:	5)	1 . 1	111 -	COO	LER SEAL -	Yes No	In	itact	Broken
OF: JBS&G	110		SPORT CO.			OF	ATE:	11,	110/	16 3		LER TEMP	deg C			
NAME: DATE:		CONS	GNMENT I	NOTE NO.			AME:			DATE:	coo	LER SEAL -	Yes No	Ir	ntact	Broken
OF:		TRAN	SPORT CO			OF	•				coo	LER TEMP	deg C			
Container & Preservative Codes: P = Pla				Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochlor	ic Aci	d Prsv	d Via	l; VS = S	Sulfuric Acid Prsvd Vial; S				E = EDTA P	rsvd; S	Γ = Sterile Bottle; O = Other
IMSO FormsO13 - Chain of Custody - G	eneric															

Document Set ID: 7540488

CHAIN OF CUSTODY

PROJECT NO .: ,52116				3000		LA	BOR	ATC	ORY B	ATCH	I NO	.:							
PROJECT NAME:						SA	MPL	ERS	: /c	H							100		
DATE NEEDED BY: Shu						Q	CLEV	/EL:	NEPI	VI (20	13)								
PHONE: Sydney: 02 8245 030	0 Perth: 0	8 9488 03	LOO Bris	bane: 07 3112 2688				-		- 1	(-)								
SEND REPORT & INVOICE TO:	(1) adminr	sw@jbsg	.com.au;	(2) Rhammond @jb	sg.com.	au; (3) .n	5/	lan	201	A		.@jb	sg.com.au					77
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	il:					X	2								TYPE OF ASBEST	TOS		
						V	世	8		17						ANALYS	SIS		
						1	巴	₹		17	7	۵	X			CATIO	4 6	519296	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	Athertos	RWBIE	Heavy Metals	<u> </u>	% CLAY	MH	Scp	XI LA			IDENTIFICATION	2		
Marketon accessors and the		10/196						*	4	201	[-h-		+		++-	9	ž ŅC	DTES:	-
7930 0820020	13201	10/196	_	250 m Jarthay	M		X	1/		-			+		+	-	_		
TP34 0-0.1			1			\vdash	4	4		+	X		+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+ +	-		\dashv
TH31 0.2-0.3						\vdash	10	~	-	+	-		+				_		\dashv
TP32001			<u> </u>	X		V 1/	- 10			+			++	+		\dashv			
TP320.2-0.J	-	-	X		XX	×			+			+	+		\dashv				
TP33 0-01	-	-	^	4			\vdash				+	\vdash	+		\dashv				
TP33 0.2-0.3	0.1			13		V		-	-	-		-	+		-	X	+		_
SEACMO!	Meteral		-	Bag		X,	~		_	4	\vdash	-	+			4	+	<u> </u>	-
401	Soil			250th Jantony			\bigcirc			-		-	-		+	\vdash		ID/N	
0102	1					V	X.	\supset	_	-		V	+		+++-	V	_		\dashv
Q03 RIJ3 T3/TB	1.11-0			DAN IN LOVE		Δ	Ż	\hookrightarrow	+	+	X		+		1	X	-		-
RIVE	crafes	11/	11/	Addles Plats & IP	11/	_	Δ	4	-	+	\wedge	X			1	+	_		-
13/1B		Y	-Y	260 15 1	+i			-		-	-		$X \perp$		+	++	+		_
5501	50:1			250ml Jarthag	+						1	X,	+			++			_
SSO2-Vege Pater		-						X	-	+	X	X,			1	++	_		-
5503-Dain		1		1	11/			X	-	-			+		+	++	-		_
TP26 0.9-1.0	4	14	4	Ψ	Up			\dashv	-	-	\vdash	-	-		+	+++	_		_
TP66 0-2-0-3		1	1	1	11/	_			-	+									
TP07 0:0-0:1		14	0	AAFFILION OF SUMPLAFFILIT	<u> </u>	_	X	X									21102.4	*****	
RELINQUISHED BY:		CON	SIGNMENT	METHOD OF SHIPMENT: NOTE NO.		N/	AME:	55	RECI	EIVED	BY:			COOLER SEAL - Yes	FOR RECEIVI				
Kellant	1/10/16					DA	ATE:	- 2		0/16	C	2	2			mede			
OF: JBS&G	- 1031	-	SPORT CO.			OF	-	- 1	1/ 10	1.0	-	-	-	COOLER TEMP		late		nu-t	175
NAME: DATE:		CON	SIGNMENT	NOTE NO.		OF	AME:				UA	ATE:		COOLER SEAL – Yes	NO	Intac	ct	broken	
OF:			SPORT CO						The same of the sa		N			COOLER TEMP					111
Container & Preservative Codes: P = Pla IMSO FormsO13 = Chain of Custody - Ge		B = Glass Bott	le; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlor	ic Aci	d Prsv	d Vial	; VS = S	ulfuric	Acid Pr	rsvd V	ial; S =	Sulfuric Acid Prsvd; Z = Zind	c Prsvd; E = EDT	A Prsvd	d; ST = St	erile Bottle; O = Other	

Document Set ID: 7540488

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: JBS & G Australia (NSW & WA) P/L

Contact name: Rohan Hammond Project name: CADDENS DSI

Project ID: 52116
COC number: 08150-53
Turn around time: 5 Day

Date/Time received: Oct 11, 2016 5:20 PM

Eurofins | mgt reference: 519296

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 6 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- ☑ Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Extra sample received TP15_0.1 (jar) placed on hold | Bag only received TP13_0-0.1 and TP13_0.3; asbestos only conducted

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Rohan Hammond - rhammond@jbsg.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116

 Order No.:
 Received:
 Oct 11, 2016 5:20 PM

 Report #:
 519296
 Due:
 Oct 18, 2016

Phone: 02 8245 0300 **Priority:** 5 Day

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	21 e.mail : EnviroSales@eurofins.com		Sa	mple Detail			6 Clay	\sbestos Absence /Presence	SANCELLED	-IOLD)Н (1:5 Aqueous extract)	olycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	/letals M8	ятех	//oisture Set	Sation Exchange Capacity	otal Recoverable Hydrocarbons
9	6 5 085 521	urne Laborato	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	X	X	X	Х	Х
			- NATA Site # 1					Х	Х									
<u>'i</u> :	Sap a	ne Laborator	y - NATA Site #	20794			Х											
<u>ct</u>	terr	al Laboratory	/															
۰ ب		Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
mgt	-	P01_0-0.1	Oct 10, 2016		Soil	S16-Oc10337	Х				Х			Х	Х	Х	Х	Х
	-	P02_0-0.1	Oct 10, 2016		Soil	S16-Oc10338							Х	X	Х	Х		Х
		P02_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10339						X				Х		
_		P03_0-0.1	Oct 10, 2016		Soil	S16-Oc10340								Х	Х	Х		Х
_		P03_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10341								Х	Х	Х		Х
_		P04_0-0.1	Oct 10, 2016		Soil	S16-Oc10342							Х	Х	Х	Х		Х
_		P05_0-0.1	Oct 10, 2016		Soil	S16-Oc10343						Х		Х	Х	Х		Х
_		P06_0-0.1	Oct 10, 2016		Soil	S16-Oc10344							Х	Х	Х	Х		Х
_	-	P07_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10345									Х	Х		Х
<u></u>		P08_0-0.1	Oct 10, 2016		Soil	S16-Oc10346							Х	X	Х	Х		Χ

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

မျှစ် Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	085 521 e.mail : EnviroSales@eurofins.com we		Sal ory - NATA Site	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
eli) B ou	rne Laborato	orv - NATA Site					Х	Х	Х	Х	Х	Х	Х	Х	Х		
rd	ne v	/ Laboratory	- NATA Site # 1	8217				Х	Х									
			y - NATA Site #				Х											
	_	al Laboratory																
		P08_0.2-0.3	Oct 10, 2016	S16-Oc10347						Х				Х				
ב	+	P09_0-0.1	Oct 10, 2016		Soil	S16-Oc10348						Х		Х	Х	Х		Х
18 -	1	P10_0-0.1	Oct 10, 2016		Soil	S16-Oc10349							Х	Х	Х	Х		Х
	T _F	P11_0-0.1	Oct 10, 2016		Soil	S16-Oc10350						Х		Х	Х	Х		Х
	1	P11_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10351	Х				Х			Х	Х	Х	Х	Х
1	1	P12_0-0.1	Oct 10, 2016		Soil	S16-Oc10352						Х	Х	Х	Х	Х		Х
-	1	P13_0-0.1	Oct 10, 2016		Soil	S16-Oc10353		Х										
	1	P13_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10354			Х									
1	1	P14_0-0.1	Oct 10, 2016		Soil	S16-Oc10355								Х	Х	Х		Х
	1	P14_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10356								Х	Х	Х		Х
=	1	P15_0-0.1	Oct 10, 2016		Soil	S16-Oc10357							Х	Х	Х	Х		Х
1	<u> †</u>	P16_0-0.1	Oct 10, 2016		S16-Oc10358		Х				X		X	Х	Х		X	

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

e.mail: EnviroSales@eurofins.com we		Sample	e Detail		% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
085 521		ory - NATA Site # 12:														
∍ 8	urne Laborat	ory - NATA Site # 12	54 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х
rdh	ey Laboratory	- NATA Site # 18217				Х	Х									
isato	ane Laboratoi	ry - NATA Site # 2079	94		Х											
ter	nal Laborator	у														
	P16_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10359									Х	Х		Х
<u> </u>	TP17_0-0.1	Oct 10, 2016	Soil	S16-Oc10360									Х	Х		Х
E	P17_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10361								Х		Х		
	P18_0-0.1	Oct 10, 2016	Soil	S16-Oc10362								Х	Х	Х		Х
	P18_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10363	Х				Х					Х	Х	
1	P19_0-0.1	Oct 10, 2016	Soil	S16-Oc10364						Х			Х	Х		Х
	P19_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10365								Х		Х		
ĺ.	P20_0-0.1	Oct 10, 2016	Soil	S16-Oc10366								Х	Х	Х		Х
	P21_0-0.1	Oct 10, 2016	Soil	S16-Oc10367							Χ	Х	Х	Х		Х
1	P21_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10368									Х	Х		Х
	P22_0-0.1	Oct 10, 2016	Soil	S16-Oc10369						Х	Х	Х	Х	Х		Х
6	P23_0-0.1	Oct 10, 2016	Soil	S16-Oc10370							Х		Χ	Χ		Х

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	e.mail: EnviroSales@eurofins.com we		San	nple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
	5 085 521		NATA CHA					V	V	V	V	V	V	V	V	V		
3	50	urne Laborato	ory - NATA Site #			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
_	27		- NATA Site # 18				Х	^	^									
	-	al Laboratory	y - NATA Site # 2	20794			^											
<u> </u>		P23 0.2-0.3	Oct 10, 2016		Soil	S16-Oc10371								Х	Х	Х		Х
٠,		P24 0-0.1	Oct 10, 2016		Soil	S16-Oc10372									X	Х		X
mgt		P25 0-0.1	Oct 10, 2016		Soil	S16-Oc10373								Х	Х	Х		Х
_		P26 0-0.1	Oct 10, 2016		Soil	S16-Oc10374		Х				Х		Х	Х	Х		Х
<u> </u>		P26 0.2-0.3	Oct 10, 2016		Soil	S16-Oc10375								Х	Х	Х		Х
Ī	F	P27_0-0.1	Oct 10, 2016		Soil	S16-Oc10376							Х		Х	Х		Х
	-	P27_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10377								Х		Х		
1	-	P28_0-0.1	Oct 10, 2016		Soil	S16-Oc10378							Х	Х	Х	Х		Х
1	-	P29_0-0.1	Oct 10, 2016		Soil	S16-Oc10379		Х				Х	Х	Х	Х	Х		Х
_	-	P30_0-0.1	Oct 10, 2016		Soil	S16-Oc10380								Х	Х	Х		Х
1	_ -	P31_0-0.1	Oct 10, 2016		Soil	S16-Oc10381						Х		Х	Х	Х		Х
1	-	P32_0-0.1	Oct 10, 2016		Soil	S16-Oc10382								Х	Х	Х		Χ

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

e.mail: EnviroSales@eurofins.com		Sam	ple Detail		% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
5 085 521	aurno I abarat	om, NATA Sito #					Х		X	Х	X	Х	Х	X	X	
31E	ourne Laborat	ory - NATA Site #	1254 & 14271			Х	Х		Х	Α	Α	Α	Χ	Α	_ ^	
77		- NATA Site # 182			Х	^	^									
		ry - NATA Site # 20		^												
te	rral Laborator P32 0.2-0.3	Oct 10, 2016	Soil	S16-Oc10383	Х				Х					Х	Х	
	P32_0.2-0.3 P33_0-0.1	Oct 10, 2016	Soil	S16-Oc10384	^		Х		^					^	_^	
E	ACM01	Oct 10, 2016	Other	S16-Oc10384		Х	^									
E -	QC01	Oct 10, 2016	Soil	S16-Oc10386		^						Х	Х	Х		Х
	QC02	Oct 10, 2016	Soil	S16-Oc10387								X	X	X		X
-	QC03	Oct 10, 2016	Soil	S16-Oc10388		X				Х	X	X	X	X		X
-	RINS	Oct 10, 2016	Water	S16-Oc10389						X	X	X	X	,,		Х
	TS	Oct 10, 2016	Water	S16-Oc10390									Х			
ę.	В	Oct 10, 2016	Water	S16-Oc10391									Х			
7	\$ S01	Oct 10, 2016	Soil	S16-Oc10392							Х			Х		
	SS02_VEGE PATCH	Oct 10, 2016	Soil	S16-Oc10393						х	х	х		х		

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	e.mail: EnviroSales@eurofins.com we		Sai	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
	5 085 521																	
9	Bo	urne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Χ	Х
<u>'(</u>	dne	y Laboratory	- NATA Site # 1	8217				X	X									
<u>i</u> :	s∯oa	ne Laborator	y - NATA Site #	20794			Х											
ct		al Laboratory			T													
1	\neg	S03_DRAIN	Oct 10, 2016		Soil	S16-Oc10394								X		Х		
of	-	P07_0.0-0.1	Oct 10, 2016		Soil	S16-Oc10395								X	Х	Х		Х
mgt	41	P01_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10396				Х								<u> </u>
_		P04_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10397				Х								<u> </u>
	\neg	P05_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10398				Х								<u> </u>
	-	P09_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10399				Х								
_	1	P10_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10400				Х								
1		P12_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10401				Х								
	4	P15_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10402				Х							<u> </u>	<u> </u>
-	1	P20_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10403				X								
1		P22_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10404				Х								<u> </u>
		P24_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10405				Χ							<u></u>	

Fax:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

085 521 e.mail : EnviroSales@eurofins.com we		Sa ory - NATA Site	ample Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
32 8le	urne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
dh	y Laboratory	- NATA Site # 1	18217				Х	Х									
		y - NATA Site#				Х											
	al Laboratory																
1	P25_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10406				Х								
חבר	P28_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10407				Х								
18 <u>—</u>	P29_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10408				Х								
	P30_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10409				Х								
	P31_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10410				Х								
	P33_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10411			Х									
	P26_0.9-1.0	Oct 10, 2016		Soil	S16-Oc10412				Х								
	P06_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10413				Х							\bigsqcup	
	P15_0.1	Oct 10, 2016		Soil	S16-Oc10414				Х								
st	ounts					4	6	3	18	4	15	17	40	45	52	4	43

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Rohan Hammond

Report 519296-AID **Project Name** CADDENS DSI

Project ID 52116

Received Date Oct 11, 2016 **Date Reported** Oct 18, 2016

Methodology:

Asbestos ID

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.

Subsampling Soil Samples

The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding 400 ± 30 °C. The resultant material is then ground and examined in accordance with AS 4964-2004.

Limit of Reporting

The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt NATA accreditation as designated by an asterisk.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50:005:085:521 Telephone: +61:2 9900:8400 Facsimile: +61:2 9420:2977

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name CADDENS DSI

Project ID 52116

Date Sampled Oct 10, 2016 Report 519296-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP13_0-0.1	16-Oc10353	Oct 10, 2016	Approximate Sample 578g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
TP16_0-0.1	16-Oc10358	Oct 10, 2016	Approximate Sample 740g Sample consisted of: Brown coarse grain soil and rocks	Chrysotile, amosite and crocidolite asbestos detected in weathered and unweathered fibre cement fragments. Approximate raw weight of asbestos containing material = 0.8584g Organic fibre detected. No respirable fibres detected.
TP26_0-0.1	16-Oc10374	Oct 10, 2016	Approximate Sample 740g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
TP29_0-0.1	16-Oc10379	Oct 10, 2016	Approximate Sample 570g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
ACM01	16-Oc10385	Oct 10, 2016	Approximate Sample 78g Sample consisted of: Grey compressed fibre cement material	Chrysotile, amosite and crocidolite asbestos detected.
QC03	16-Oc10388	Oct 10, 2016	Approximate Sample 693g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Date Reported: Oct 18, 2016 Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description **Testing Site Extracted Holding Time** Asbestos - LTM-ASB-8020 Sydney Oct 12, 2016 Indefinite

> Page 3 of 12 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977 Report Number: 519296-AID

Date Reported: Oct 18, 2016 Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Project Name:

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: JBS & G Australia (NSW & WA) P/L Order No.: Received: Oct 11, 2016 5:20 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 519296
 Due:
 Oct 18, 2016

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Rohan Hammond

Now 2000 Fax. Contact Name. Rollan Hammond

Project ID: 52116

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	?71					Х	Х	Х	Х	Х	Х	Х	Х	X
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х									
Bris	bane Laborator	y - NATA Site#	20794			Х											
Exte	rnal Laboratory	<u>'</u>															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	TP01_0-0.1	Oct 10, 2016		Soil	S16-Oc10337	Х				Х			Х	Х	Х	Х	Х
2	TP02_0-0.1	Oct 10, 2016		Soil	S16-Oc10338							Х	Х	Х	Х		Х
3	TP02_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10339						Х				Х		
4	TP03_0-0.1	Oct 10, 2016		Soil	S16-Oc10340								Х	Х	Х		X
5	TP03_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10341								Х	Х	Х		Х
6	TP04_0-0.1	Oct 10, 2016		Soil	S16-Oc10342							Х	Х	Х	Х		Х
7	TP05_0-0.1	Oct 10, 2016		Soil	S16-Oc10343						Х		Х	Х	Х		Х
8	TP06_0-0.1	Oct 10, 2016		Soil	S16-Oc10344							Х	Х	Х	Х		X
9	TP07_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10345									Х	Х		Х
10	TP08_0-0.1	Oct 10, 2016		Soil	S16-Oc10346							Х	Х	Х	Х		Χ

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Date Reported: Oct 18, 2016

Company Name:

Project Name:

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

 Address:
 Level 1, 50 Margaret St
 Report #:
 519296
 Due:
 Oct 18, 2016

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Rohan Hammond

Now 2000 Tax. Contact Name. Rollan Hammon

Project ID: 52116

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х									
Bris	bane Laborator	y - NATA Site #	20794			X											
Exte	rnal Laboratory	e e			1												
11	TP08_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10347						Х				Х		
12	TP09_0-0.1	Oct 10, 2016		Soil	S16-Oc10348						Х		Х	Х	Х		Х
13	TP10_0-0.1	Oct 10, 2016		Soil	S16-Oc10349							Х	Х	Х	Х		Х
14	TP11_0-0.1	Oct 10, 2016		Soil	S16-Oc10350						Х		Х	Х	Х		Х
15	TP11_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10351	Х				Х			Х	Х	Х	Х	Х
16	TP12_0-0.1	Oct 10, 2016		Soil	S16-Oc10352						Х	Х	Х	Х	Х		Х
17	TP13_0-0.1	Oct 10, 2016		Soil	S16-Oc10353		Х										
18	TP13_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10354			Х									
19	TP14_0-0.1	Oct 10, 2016		Soil	S16-Oc10355								Х	Х	Х	igsquare	Х
20	TP14_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10356								Х	Х	Х	igsquare	Х
21	TP15_0-0.1	Oct 10, 2016		Soil	S16-Oc10357							Х	Х	Х	Х		Х
22	TP16_0-0.1	Oct 10, 2016		Soil	S16-Oc10358		Х				Х		Х	Х	Х		Х

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Date Reported: Oct 18, 2016

Project Name:

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

 Company Name:
 JBS & G Australia (NSW & WA) P/L
 Order No.:
 Received:
 Oct 11, 2016 5:20 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 519296
 Due:
 Oct 18, 2016

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Rohan Hamn

NSW 2000 Fax: Contact Name: Rohan Hammond

Project ID: 52116

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х									
Bris	bane Laborator	y - NATA Site #	20794			X											
Exte	rnal Laboratory																
23	TP16_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10359									Х	Х		Х
24	TP17_0-0.1	Oct 10, 2016		Soil	S16-Oc10360									Х	Х		Х
25	TP17_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10361								Х		Х		
26	TP18_0-0.1	Oct 10, 2016		Soil	S16-Oc10362								Х	Х	Х		Х
27	TP18_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10363	Х				Х					Х	Х	
28	TP19_0-0.1	Oct 10, 2016		Soil	S16-Oc10364						Х			Х	Х		Х
29	TP19_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10365								Х		Х		
30	TP20_0-0.1	Oct 10, 2016		Soil	S16-Oc10366								Х	Х	Х		Х
31	TP21_0-0.1	Oct 10, 2016		Soil	S16-Oc10367							X	Х	Х	Х		Х
32	TP21_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10368									Х	Х		Х
33	TP22_0-0.1	Oct 10, 2016		Soil	S16-Oc10369						Х	Х	Х	Х	Х		Х
34	TP23_0-0.1	Oct 10, 2016		Soil	S16-Oc10370							Х		Х	Х		Х

Page 6 of 12

Date Reported: Oct 18, 2016

Project Name:

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: JBS & G Australia (NSW & WA) P/L Order No.: Received: Oct 11, 2016 5:20 PM

Address: Level 1, 50 Margaret St Report #: 519296 Due: Oct 18, 2016

Sydney Phone: 02 8245 0300 Priority: 5 Day Fax: **Contact Name:**

NSW 2000 Rohan Hammond

Project ID: 52116 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х									
Bris	bane Laborator	y - NATA Site #	20794			Х											
Exte	rnal Laboratory																
35	TP23_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10371								X	Х	Х		Х
36	TP24_0-0.1	Oct 10, 2016		Soil	S16-Oc10372									Х	Х		Х
37	TP25_0-0.1	Oct 10, 2016		Soil	S16-Oc10373								Х	Х	Х		Х
38	TP26_0-0.1	Oct 10, 2016		Soil	S16-Oc10374		Х				Х		Х	Х	Х		Х
39	TP26_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10375								Х	Х	Х		Х
40	TP27_0-0.1	Oct 10, 2016		Soil	S16-Oc10376							Х		Х	Х		Х
41	TP27_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10377								Х		Х		
42	TP28_0-0.1	Oct 10, 2016		Soil	S16-Oc10378							Х	Х	Х	Х		Х
43	TP29_0-0.1	Oct 10, 2016		Soil	S16-Oc10379		Х				Х	Х	Х	Х	Х		Х
44	TP30_0-0.1	Oct 10, 2016		Soil	S16-Oc10380								Х	Х	Х		Х
45	TP31_0-0.1	Oct 10, 2016		Soil	S16-Oc10381						Х		Х	Х	Х		Х
46	TP32_0-0.1	Oct 10, 2016		Soil	S16-Oc10382								X	Χ	Χ		Χ

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Date Reported: Oct 18, 2016

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: JBS & G Australia (NSW & WA) P/L Order No.: Received: Oct 11, 2016 5:20 PM

Address: Level 1, 50 Margaret St Report #: 519296 Due: Oct 18, 2016

> Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name:** Rohan Hammond

Project Name: Project ID: 52116 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	X									
Bris	bane Laborator	y - NATA Site #	20794			Х											
Exte	rnal Laboratory																
47	TP32_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10383	Х				Х					Х	Х	
48	TP33_0-0.1	Oct 10, 2016		Soil	S16-Oc10384			X									
49	ACM01	Oct 10, 2016		Other	S16-Oc10385		Х										
50	QC01	Oct 10, 2016		Soil	S16-Oc10386								Х	Х	Х		Х
51	QC02	Oct 10, 2016		Soil	S16-Oc10387								Х	Х	Х		Х
52	QC03	Oct 10, 2016		Soil	S16-Oc10388		Х				Х	X	Х	Х	Х		Х
53	RINS	Oct 10, 2016		Water	S16-Oc10389						Х	Х	Х	Х			Х
54	TS	Oct 10, 2016		Water	S16-Oc10390									Х			
55	ТВ	Oct 10, 2016		Water	S16-Oc10391									Х			
56	SS01	Oct 10, 2016		Soil	S16-Oc10392							X			Х		
57	SS02_VEGE PATCH	Oct 10, 2016		Soil	S16-Oc10393						Х	Х	Х		Х		

Date Reported: Oct 18, 2016

Company Name:

Project Name:

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

 Address:
 Level 1, 50 Margaret St
 Report #:
 519296
 Due:
 Oct 18, 2016

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Rohan Hammond

Now 2000 Tax. Contact Name: Notar Hammond

Project ID: 52116

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	X	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х									
Bris	bane Laborator	y - NATA Site #	20794			Х											
Exte	rnal Laboratory	<u> </u>															
58	SS03_DRAIN	Oct 10, 2016		Soil	S16-Oc10394								X		Х		
59	TP07_0.0-0.1	Oct 10, 2016		Soil	S16-Oc10395								X	Х	Х		Х
60	TP01_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10396				Х								
61	TP04_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10397				Х								
62	TP05_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10398				Х								
63	TP09_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10399				Х								
64	TP10_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10400				Х								
65	TP12_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10401				Х								
66	TP15_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10402				Х								
67	TP20_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10403				Х								
68	TP22_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10404				Х								
69	TP24_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10405				Х								

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Date Reported: Oct 18, 2016

Company Name:

Project Name:

mgt

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

JBS & G Australia (NSW & WA) P/L Order No.: Received: Oct 11, 2016 5:20 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 519296
 Due:
 Oct 18, 2016

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Rohan Hammond

10W 2000 Tax. Contact Name. Notal Hamiltonia

Project ID: 52116

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х									
Bris	bane Laborator	y - NATA Site #	20794			X											
Exte	rnal Laboratory	<u>U</u>			1												
70	TP25_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10406				Х								
71	TP28_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10407				Х								
72	TP29_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10408				Х								
73	TP30_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10409				Х								
74	TP31_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10410				Х								
75	TP33_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10411			Х									
76	TP26_0.9-1.0	Oct 10, 2016		Soil	S16-Oc10412				Х								
77	TP06_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10413				Х								
78	TP15_0.1	Oct 10, 2016		Soil	S16-Oc10414				Х								
Test	Counts					4	6	3	18	4	15	17	40	45	52	4	43

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Date Reported: Oct 18, 2016

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

AF

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting.
COC Chain of custody
SRA Sample Receipt Advice

ISO International Stardards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling)

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. (Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substatutial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977

Page 11 of 12

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description
N/A Not applicable

Authorised by:

Rhys Thomas Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgl be liable for consequential claims and lost inclinated to, lost profits, damages for refailure to meet decidines and lost production arising from this report. This document shall be reported everyein full and refletes only to the lies indicated otherwise, the tests were, the feature of the rest indicated otherwise, the tests were, the feature of the reported everyein full and are features needs to miscretis indicated otherwise, the tests were, the feature of the reported everyein full and refletes only to the tiens tested. Unless indicated otherwise, the tests were such as a feature of the reported everyein full and refletes only to the tiens tested. Unless indicated otherwise, the tests were such as a feature of the reported everyein full and reflete only to the report of the reported everyein full and report in the report of the report of

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Facsimile: +61 2 9420 2977 Page 12 of 12

Report Number: 519296-AID

Date Reported: Oct 18, 2016

Document Set ID: 7540488

Version: 1, Version Date: 22/02/2017

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St Sydney NSW 2000 Ilac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Rohan Hammond

Report519296-SProject nameCADDENS DSI

Project ID 52116
Received Date Oct 11, 2016

Client Sample ID			TP01_0-0.1	TP02_0-0.1	TP02_0.2-0.3	TP03_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10337	S16-Oc10338	S16-Oc10339	S16-Oc10340
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit	15		9	
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	_	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50		< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	_	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	=	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	- 5	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	=	< 0.3
4-Bromofluorobenzene (surr.)	1	%	67	109	-6	77
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5		< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50		< 50
TRH C6-C10	20	mg/kg	< 20	< 20	_	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	=	1-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	Y	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	Е	1-	< 0.5	2
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			TP01_0-0.1	TP02_0-0.1	TP02_0.2-0.3	TP03_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10337	S16-Oc10338	S16-Oc10339	S16-Oc10340
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	-	95	-
p-Terphenyl-d14 (surr.)	1	%	-	-	90	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
а-ВНС	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide Hexachlorobenzene	0.05 0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05 < 0.05	-	-
Methoxychlor Toxaphene	1	mg/kg	=	< 1	-	-
Dibutylchlorendate (surr.)	1	mg/kg %	_	147	<u>-</u>	-
Tetrachloro-m-xylene (surr.)	1	%	<u> </u>	79	<u>-</u>	<u>-</u>
Total Recoverable Hydrocarbons - 2013 NEPM		1 70	_	13	-	_
TRH >C10-C16	50	mg/kg	< 50	< 50	_	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	_	< 100
111111111111111111111111111111111111111	100	199	100	100		100
% Clay	1	%	33	_	_	_
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	22	_	_	_
pH (1:5 Aqueous extract)	0.1	pH Units		_	_	_
% Moisture	1	%	14	21	22	17
Ion Exchange Properties		1				
Cation Exchange Capacity	0.05	meq/100g	16	_	_	_
Heavy Metals	3.00	154, 1009	1.5			
Arsenic	2	mg/kg	13	8.7	_	8.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	23	21	-	20
Copper	5	mg/kg	36	37	-	41
Lead	5	mg/kg	20	17	-	18
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	23	23	-	21
Zinc	5	mg/kg	56	57	-	64

Client Sample ID			TP03_0.2-0.3	TP04_0-0.1	TP05 0-0.1	TP06_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10341	S16-Oc10342	S16-Oc10343	S16-Oc10344
			Oct 10, 2016		Oct 10, 2016	
Date Sampled			OCI 10, 2016	Oct 10, 2016	OCI 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		T				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX		T				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	50	116	74	51
Total Recoverable Hydrocarbons - 2013 NEPM		T				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	-	91	-
p-Terphenyl-d14 (surr.)	1	%	-	-	94	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05

Client Sample ID			TP03_0.2-0.3	TP04_0-0.1	TP05_0-0.1	TP06_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10341	S16-Oc10342	S16-Oc10343	S16-Oc10344
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
d-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	_	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	1	mg/kg	-	< 1	-	< 1
Dibutylchlorendate (surr.)	1	%	-	137	-	131
Tetrachloro-m-xylene (surr.)	1	%	-	87	-	92
Total Recoverable Hydrocarbons - 2013	NEPM Fractions	•				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	16	17	19	13
Heavy Metals		<u> </u>				
Arsenic	2	mg/kg	7.1	8.1	8.6	8.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	24	24	18
Copper	5	mg/kg	42	31	43	28
Lead	5	mg/kg	16	15	16	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	21	20	31	22
Zinc	5	mg/kg	59	45	81	52

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP07_0.2-0.3 Soil S16-Oc10345 Oct 10, 2016	TP08_0-0.1 Soil S16-Oc10346 Oct 10, 2016	TP08_0.2-0.3 Soil S16-Oc10347 Oct 10, 2016	TP09_0-0.1 Soil S16-Oc10348 Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	_	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	_	< 0.2

Client Sample ID			TP07_0.2-0.3	TP08_0-0.1	TP08_0.2-0.3	TP09_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10345	S16-Oc10346	S16-Oc10347	S16-Oc10348
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit	,			
BTEX	2011	O i iii				
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	_	< 0.3
4-Bromofluorobenzene (surr.)	1	%	122	111	_	115
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	_	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	_	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	_	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	_	< 20
Polycyclic Aromatic Hydrocarbons		1 3 3				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	_	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	_	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	_	1.2	1.2
Acenaphthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	94	94
p-Terphenyl-d14 (surr.)	1	%	-	-	95	96
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
o-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane) Heptachlor	0.05 0.05	mg/kg mg/kg	-	< 0.05 < 0.05	-	-

Client Sample ID			TP07_0.2-0.3	TP08_0-0.1	TP08_0.2-0.3	TP09_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10345	S16-Oc10346	S16-Oc10347	S16-Oc10348
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Dibutylchlorendate (surr.)	1	%	-	140	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	119	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
% Moisture	1	<u></u> %	21	16	13	20
Heavy Metals		1 70	21	10	10	
Arsenic	2	mg/kg	-	9.3	-	5.0
Cadmium	0.4	mg/kg	-	< 0.4	-	< 0.4
Chromium	5	mg/kg	-	24	-	22
Copper	5	mg/kg	-	34	-	31
Lead	5	mg/kg	-	18	-	15
Mercury	0.1	mg/kg	_	< 0.1	-	< 0.1
Nickel	5	mg/kg	_	21	-	22
Zinc	5	mg/kg	-	60	-	52

Client Sample ID			TP10_0-0.1	TP11_0-0.1	TP11_0.2-0.3	TP12_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10349	S16-Oc10350	S16-Oc10351	S16-Oc10352
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	99	109	75	65
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			TP10_0-0.1	TP11_0-0.1	TP11_0.2-0.3	TP12_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10349	S16-Oc10350	S16-Oc10351	S16-Oc10352
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	_	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	93	-	97
o-Terphenyl-d14 (surr.)	1	%	-	95	-	105
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
o-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
d-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Toxaphene	1	mg/kg	< 1	-	-	< 1
Dibutylchlorendate (surr.)	1	%	136	-	-	132
Tetrachloro-m-xylene (surr.)	1	%	72	-	-	117
Total Recoverable Hydrocarbons - 2013 NEPN		1				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP10_0-0.1 Soil S16-Oc10349	TP11_0-0.1 Soil S16-Oc10350	TP11_0.2-0.3 Soil S16-Oc10351	TP12_0-0.1 Soil S16-Oc10352
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
% Clay	1	%	-	-	25	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	-	-	20	-
pH (1:5 Aqueous extract)	0.1	pH Units	-	-	7.9	-
% Moisture	1	%	17	14	12	17
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	-	19	-
Heavy Metals						
Arsenic	2	mg/kg	11	11	9.7	6.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	26	24	28
Copper	5	mg/kg	35	37	37	33
Lead	5	mg/kg	27	23	21	20
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	23	28	29	32
Zinc	5	mg/kg	75	72	72	64

Client Sample ID			TP14_0-0.1	TP14_0.2-0.3	TP15_0-0.1	TP16_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10355	S16-Oc10356	S16-Oc10357	S16-Oc10358
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	50	75	74	79
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID Sample Matrix			TP14_0-0.1 Soil	TP14_0.2-0.3 Soil	TP15_0-0.1 Soil	TP16_0-0.1 Soil
Eurofins mgt Sample No.			S16-Oc10355	S16-Oc10356	S16-Oc10357	S16-Oc10358
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benz(a)anthracene	0.5	mg/kg	-	-	_	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	_	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	_	< 0.5
Naphthalene	0.5	mg/kg	-	-	_	< 0.5
Phenanthrene	0.5	mg/kg	-	-	_	< 0.5
Pyrene	0.5	mg/kg	-	-	_	< 0.5
Total PAH*	0.5	mg/kg	-	-	_	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	_	94
p-Terphenyl-d14 (surr.)	1	%	-	-	_	105
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	_	-	< 1	-
Dibutylchlorendate (surr.)	1	%	_	-	133	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	122	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	14	16	17	6.9

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP14_0-0.1 Soil S16-Oc10355 Oct 10, 2016	TP14_0.2-0.3 Soil S16-Oc10356 Oct 10, 2016	TP15_0-0.1 Soil S16-Oc10357 Oct 10, 2016	TP16_0-0.1 Soil S16-Oc10358 Oct 10, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	8.1	8.5	7.5	8.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	29	28	24	30
Copper	5	mg/kg	34	32	30	16
Lead	5	mg/kg	27	28	21	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	29	27	26	21
Zinc	5	mg/kg	76	68	66	33

Client Sample ID			TP16_0.2-0.3	TP17_0-0.1	TP17_0.2-0.3	TP18_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10359	S16-Oc10360	S16-Oc10361	S16-Oc10362
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac						
TRH C6-C9	20	mg/kg	< 20	< 20	_	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	_	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	_	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	_	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	_	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	73	67	-	64
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	-	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
% Moisture	1	%	13	16	20	13
% Moisture Heavy Metals	<u> </u>	<u> </u> %	13	16	20	13
	2	ma/ka	_		10	8.1
Arsenic Cadmium	0.4	mg/kg mg/kg	-	-	< 0.4	< 0.4
	5		<u>-</u>	<u>-</u>		_
Conner	5	mg/kg			23	19
Copper	5	mg/kg	-	-	22	23
Lead		mg/kg	-	-	< 0.1	< 0.1
Mercury	0.1	mg/kg	-	-		
Nickel	5	mg/kg	-	-	27	15
Zinc	5	mg/kg	-	-	64	66

Client Sample ID			TP18_0.2-0.3	TP19_0-0.1	TP19_0.2-0.3	TP20_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10363	S16-Oc10364	S16-Oc10365	S16-Oc10366
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac		Offic				
TRH C6-C9	20	ma/ka	_	< 20	_	< 20
TRH C10-C14	20	mg/kg mg/kg		< 20		< 20
TRH C15-C28	50	mg/kg		< 50		< 50
TRH C29-C36	50	mg/kg		< 50		< 50
TRH C10-36 (Total)	50	mg/kg	_	< 50	_	< 50
BTEX		ing/kg		1 00		100
Benzene	0.1	mg/kg	_	< 0.1	_	< 0.1
Toluene	0.1	mg/kg	_	< 0.1	_	< 0.1
Ethylbenzene	0.1	mg/kg	_	< 0.1		< 0.1
m&p-Xylenes	0.2	mg/kg	_	< 0.2	_	< 0.2
o-Xylene	0.1	mg/kg	_	< 0.1	_	< 0.1
Xylenes - Total	0.3	mg/kg	_	< 0.3		< 0.3
4-Bromofluorobenzene (surr.)	1	%	_	61	_	65
Total Recoverable Hydrocarbons - 2013 NEPM Frac		70				
Naphthalene ^{N02}	0.5	mg/kg	_	< 0.5	_	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	_	< 50	_	< 50
TRH C6-C10	20	mg/kg	_	< 20	_	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	_	< 20	_	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	_	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	_	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	1.2	_	_
Acenaphthene	0.5	mg/kg	_	< 0.5	_	_
Acenaphthylene	0.5	mg/kg	_	< 0.5	_	-
Anthracene	0.5	mg/kg	_	< 0.5	_	-
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	_	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	_	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	_	_
Benzo(g.h.i)perylene	0.5	mg/kg	_	< 0.5	_	_
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	_	_
Chrysene	0.5	mg/kg	-	< 0.5	_	_
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	_	_
Fluoranthene	0.5	mg/kg	-	< 0.5	_	_
Fluorene	0.5	mg/kg	_	< 0.5	_	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	_	-
Pyrene	0.5	mg/kg	-	< 0.5	_	-
Total PAH*	0.5	mg/kg	-	< 0.5	_	-
2-Fluorobiphenyl (surr.)	1	%	-	90	_	-
p-Terphenyl-d14 (surr.)	1	%	-	98	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg		< 100	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
% Clay	1	%	33	-	-	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	26	-	-	-
pH (1:5 Aqueous extract)	0.1	pH Units		-	-	-
% Moisture	1	%	18	15	25	1.1

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP18_0.2-0.3 Soil S16-Oc10363 Oct 10, 2016	TP19_0-0.1 Soil S16-Oc10364 Oct 10, 2016	TP19_0.2-0.3 Soil S16-Oc10365 Oct 10, 2016	TP20_0-0.1 Soil S16-Oc10366 Oct 10, 2016
Ion Exchange Properties	0.05		14		_	
Cation Exchange Capacity Heavy Metals	0.05	meq/100g	14	-	-	-
Arsenic	2	mg/kg	-	-	19	50
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	29	30
Copper	5	mg/kg	-	-	41	45
Lead	5	mg/kg	-	-	24	9.9
Mercury	0.1	mg/kg	-	-	< 0.1	< 0.1
Nickel	5	mg/kg	-	-	31	6.4
Zinc	5	mg/kg	-	-	76	82

Client Sample ID			TP21_0-0.1	TP21_0.2-0.3	TP22_0-0.1	TP23_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10367	S16-Oc10368	S16-Oc10369	S16-Oc10370
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	64	69	64	61
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			TP21_0-0.1	TP21_0.2-0.3	TP22_0-0.1	TP23_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10367	S16-Oc10368	S16-Oc10369	S16-Oc10370
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	LOIK	Offic				
Dibenz(a.h)anthracene	0.5	mg/kg			< 0.5	
Fluoranthene	0.5	mg/kg	-	-	< 0.5	
Fluorene	0.5	mg/kg	-	-	< 0.5	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_		< 0.5	_
Naphthalene	0.5	mg/kg	_		< 0.5	_
Phenanthrene	0.5	mg/kg	_	_	< 0.5	_
Pyrene	0.5	mg/kg	_	-	< 0.5	
Total PAH*	0.5	mg/kg	_	-	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	_	_	95	_
p-Terphenyl-d14 (surr.)	1	%	_	-	104	_
Organochlorine Pesticides	'	70			104	
Chlordanes - Total	0.1	ma/ka	< 0.1		< 0.1	< 0.1
Uniordanes - Total 4.4'-DDD	0.05	mg/kg	< 0.1	-	< 0.1	< 0.1
4.4'-DDE	0.05	mg/kg	< 0.05	-	0.49	< 0.05
4.4'-DDE 4.4'-DDT	0.05	mg/kg	< 0.05		< 0.05	< 0.05
4.4-DD1 a-BHC	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	< 0.05
Aldrin	0.05		< 0.05		< 0.05	< 0.05
		mg/kg		-		
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05 < 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Toxaphene	1	mg/kg %	< 1 143	-	< 1 107	< 1 137
Dibutylchlorendate (surr.)	1	%		-	59	
Tetrachloro-m-xylene (surr.) Total Recoverable Hydrocarbons - 2013 NEP	-	%	144	-	59	138
-			. 50	- 50	. 50	. 50
TRH >C16 C24	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	15	14	19	20
Heavy Metals	T					
Arsenic	2	mg/kg	9.2	-	7.9	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	24	-	19	-
Copper	5	mg/kg	25	-	23	-
Lead	5	mg/kg	21	-	21	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	18	-	16	-
Zinc	5	mg/kg	44	_	54	-

Client Sample ID			TP23_0.2-0.3	TP24_0-0.1	TP25_0-0.1	TP26_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10371	S16-Oc10372	S16-Oc10373	S16-Oc10374
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
p-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Kylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	63	59	63	64
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
FRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
FRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
FRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	_	_	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	_	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	89
p-Terphenyl-d14 (surr.)	1	%	-	-	-	90
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP23_0.2-0.3 Soil S16-Oc10371 Oct 10, 2016	TP24_0-0.1 Soil S16-Oc10372 Oct 10, 2016	TP25_0-0.1 Soil S16-Oc10373 Oct 10, 2016	TP26_0-0.1 Soil S16-Oc10374 Oct 10, 2016
Test/Reference	LOR	Unit				
Heavy Metals	Heavy Metals					
Arsenic	2	mg/kg	8.4	-	9.9	8.3
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	< 0.4
Chromium	5	mg/kg	32	-	20	33
Copper	5	mg/kg	37	-	33	38
Lead	5	mg/kg	17	-	19	22
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Nickel	5	mg/kg	27	-	19	27
Zinc	5	mg/kg	58	-	44	67

Client Sample ID			TP26_0.2-0.3	TP27_0-0.1	TP27_0.2-0.3	TP28_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10375	S16-Oc10376	S16-Oc10377	S16-Oc10378
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	_	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	_	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	67	80	-	67
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	-	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	0.09
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05

Client Sample ID			TP26_0.2-0.3	TP27_0-0.1	TP27_0.2-0.3	TP28_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10375	S16-Oc10376	S16-Oc10377	S16-Oc10378
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	1	mg/kg	-	< 1	-	< 1
Dibutylchlorendate (surr.)	1	%	-	141	-	112
Tetrachloro-m-xylene (surr.)	1	%	-	121	-	118
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
% Moisture	1	%	14	20	18	16
Heavy Metals						
Arsenic	2	mg/kg	7.4	=	5.0	9.9
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	< 0.4
Chromium	5	mg/kg	26	-	12	27
Copper	5	mg/kg	34	-	27	28
Lead	5	mg/kg	18	-	13	29
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Nickel	5	mg/kg	26	-	7.1	21
Zinc	5	mg/kg	63	-	23	57

Client Sample ID Sample Matrix			TP29_0-0.1 Soil	TP30_0-0.1 Soil	TP31_0-0.1 Soil	TP32_0-0.1 Soil
Eurofins mgt Sample No.			S16-Oc10379	S16-Oc10380	S16-Oc10381	S16-Oc10382
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEP	M Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	66	85	82

Client Sample ID			TP29_0-0.1	TP30_0-0.1	TP31_0-0.1	TP32_0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10379	S16-Oc10380	S16-Oc10381	S16-Oc10382
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	95	-	89	-
p-Terphenyl-d14 (surr.)	1	%	89	-	91	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	0.32	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-

Client Sample ID			TP29_0-0.1	TP30_0-0.1	TP31_0-0.1	TP32_0-0.1
Sample Matrix			Soil	Soil S16-Oc10380	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10379	S16-OC10380	S16-Oc10381	S16-Oc10382
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Dibutylchlorendate (surr.)	1	%	109	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	123	-	_	-
Total Recoverable Hydrocarbons - 2013 NEPM	l Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	15	16	9.2	13
Heavy Metals		1 70	10	10	3.2	13
Arsenic	2	mg/kg	8.7	8.7	20	5.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	42	23	25	24
Copper	5	mg/kg	35	31	31	33
Lead	5	mg/kg	25	22	19	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	33	24	26	26
Zinc	5	mg/kg	70	67	62	58

Client Sample ID			TP32_0.2-0.3	QC01	QC02	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10383	S16-Oc10386	S16-Oc10387	S16-Oc10388
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	-	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	-	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	-	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	74	72	68
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	-	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			TP32_0.2-0.3	QC01	QC02	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10383	S16-Oc10386	S16-Oc10387	S16-Oc10388
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthylene	0.5	mg/kg	-	-	_	< 0.5
Anthracene	0.5	mg/kg	-	_	_	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	_	_	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	_	_	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	_	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	_	< 0.5
Fluoranthene	0.5	mg/kg	-	_	_	< 0.5
Fluorene	0.5	mg/kg	-	_	_	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	_	_	< 0.5
Naphthalene	0.5	mg/kg	-	_	_	< 0.5
Phenanthrene	0.5	mg/kg	-	_	_	< 0.5
Pyrene	0.5	mg/kg	-	_	_	< 0.5
Total PAH*	0.5	mg/kg	-	_	_	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	_	_	100
p-Terphenyl-d14 (surr.)	1	%	-	_	_	98
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	_	_	_	< 0.1
4.4'-DDD	0.05	mg/kg	_	_	_	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	_	0.42
4.4'-DDT	0.05	mg/kg	-	-	_	< 0.05
a-BHC	0.05	mg/kg	-	_	_	< 0.05
Aldrin	0.05	mg/kg	-	_	_	< 0.05
b-BHC	0.05	mg/kg	-	-	_	< 0.05
d-BHC	0.05	mg/kg	-	_	_	< 0.05
Dieldrin	0.05	mg/kg	-	_	_	< 0.05
Endosulfan I	0.05	mg/kg	-	_	_	< 0.05
Endosulfan II	0.05	mg/kg	-	_	_	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	_	_	< 0.05
Endrin	0.05	mg/kg	-	_	_	< 0.05
Endrin aldehyde	0.05	mg/kg	-	_	_	< 0.05
Endrin ketone	0.05	mg/kg	-	-	_	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	_	< 0.05
Heptachlor	0.05	mg/kg	-	-	_	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	_	< 0.05
Toxaphene	1	mg/kg	-	-	-	< 1
Dibutylchlorendate (surr.)	1	%	-	-	-	142
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	51
Total Recoverable Hydrocarbons - 2013 NEP	M Fractions					
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	_	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	_	< 100	< 100	< 100

Client Sample ID			TP32_0.2-0.3	QC01	QC02	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10383	S16-Oc10386	S16-Oc10387	S16-Oc10388
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
0/ Clay	1		22			
% Clay	<u>'</u>		33	-	-	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	22	-	-	-
pH (1:5 Aqueous extract)	0.1	pH Units	6.9	-	-	-
% Moisture	1	%	14	19	15	15
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	15	-	_	-
Heavy Metals						
Arsenic	2	mg/kg	-	7.2	8.9	9.7
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	20	39	52
Copper	5	mg/kg	-	44	41	40
Lead	5	mg/kg	-	17	31	28
Mercury	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	-	22	35	39
Zinc	5	mg/kg	-	68	87	90

Client Sample ID			SS01	SS02_VEGE PATCH	SS03_DRAIN	TP07_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10392	S16-Oc10393	S16-Oc10394	S16-Oc10395
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	-	_	< 50
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	_	79
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	-	< 50
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	_

Client Sample ID			SS01	SS02_VEGE PATCH	SS03_DRAIN	TP07_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc10392	S16-Oc10393	S16-Oc10394	S16-Oc10395
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	_	_
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Chrysene	0.5	mg/kg	-	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	-	-
Pyrene	0.5	mg/kg	-	< 0.5	-	_
Total PAH*	0.5	mg/kg	-	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	-	94	-	-
p-Terphenyl-d14 (surr.)	1	%	-	92	-	-
Organochlorine Pesticides		•				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	_
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	_
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	_
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	_
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Toxaphene	1	mg/kg	< 1	< 1	-	-
Dibutylchlorendate (surr.)	1	%	95	149	-	-
Tetrachloro-m-xylene (surr.)	1	%	116	62	-	-
Total Recoverable Hydrocarbons - 2013 NEP	M Fractions					
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
Of Mariations				0.0	F.0	40
% Moisture	1	%	83	3.0	5.2	18

Client Sample ID			SS01	SS02_VEGE PATCH	SS03_DRAIN	TP07_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.				S16-Oc10393	S16-Oc10394	S16-Oc10395
Date Sampled				Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	8.4	6.2	15
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	17	25	35
Copper	5	mg/kg	-	30	74	41
Lead	5	mg/kg	-	18	30	16
Mercury	0.1	mg/kg	-	< 0.1	0.1	0.1
Nickel	5	mg/kg	-	17	24	31
Zinc	5	mg/kg	-	90	190	81

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 13, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Oct 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 13, 2016	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Oct 13, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
% Clay	Brisbane	Oct 13, 2016	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract)	Melbourne	Oct 13, 2016	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Melbourne	Oct 13, 2016	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Oct 13, 2016	7 Day
- Method: LTM-INO-4030			
Ion Exchange Properties	Melbourne	Oct 14, 2016	
% Moisture	Melbourne	Oct 12, 2016	14 Day

- Method: LTM-GEN-7080 Moisture

Address: Level 1, 50 Margaret St

Sydney NSW 2000

မှုီစု Pr**p**ject Name: CADDENS DSI

Project ID: 52116 Order No.:

Report #: 519296 Phone: 02 8245 0300

Fax:

Oct 11, 2016 5:20 PM Received: Due: Oct 18, 2016

alia, 2066 2977

5 Day Priority:

Lane Cove West, NSW, Aust 28400 Facsimile: +61 2 9420 Priority: 5 Day
Contact Name: Rohan Hammond

Securify: 5 Day
Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

0																0	0
21 e.mail : EnviroSales@eurofins.com we	Sample Detail							CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity Funding F, 16 Mais Roa	Total Recoverable Hydrocarbons
5 085 521																	
el8 6		urne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	X	Х	Χ	Х	Х
		- NATA Site # 1					Х	X								Д_	
		y - NATA Site #	20794			Х										Д_	
ter	al Laboratory	/	ı		1											Д_	
0	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
0.0	P01_0-0.1	Oct 10, 2016		Soil	S16-Oc10337	Х				Х			Х	Х	Х	Х	Х
	P02_0-0.1	Oct 10, 2016		Soil	S16-Oc10338							Х	Х	Х	Х		Х
-	P02_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10339						Х				Х		
	P03_0-0.1	Oct 10, 2016		Soil	S16-Oc10340								Х	Х	Х		Х
	P03_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10341								Х	Х	Х		Х
	P04_0-0.1	Oct 10, 2016		Soil	S16-Oc10342							Х	X	Х	Х		Х
	P05_0-0.1	Oct 10, 2016		Soil	S16-Oc10343						Х		Х	Х	Χ	Ш.	X
	P06_0-0.1	Oct 10, 2016		Soil	S16-Oc10344							Х	X	Х	Χ	Ш.	78, 2016 X
	P07_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10345									Х	Χ	Ш.	<i>∞</i> ,X
()	P08_0-0.1	Oct 10, 2016		Soil	S16-Oc10346							Х	X	Х	Χ		χ
																	Date Reported X

Document Set D: 7540488

Version: 1, Version Date: 22/02/2017

Level 1, 50 Margaret St

Sydney NSW 2000

မျှစ် Pr**p**ject Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Sample Detail LZG 980 Gourne Laboratory - NATA Site # 1254 & 14271						% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
eli) B ou	Gurne Laboratory - NATA Site # 1254 & 14271								Х	Х	Х	Х	Х	Х	Х	Х	Х
rd	ne v	y Laboratory - NATA Site # 18217							Х									
			y - NATA Site #				Х											
	_	al Laboratory																
		P08_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10347						Х				Х		
ב	+	P09_0-0.1	Oct 10, 2016		Soil	S16-Oc10348						Х		Х	Х	Х		Х
18 -	1	P10_0-0.1	Oct 10, 2016		Soil	S16-Oc10349							Х	Х	Х	Х		Х
	T _F	P11_0-0.1	Oct 10, 2016		Soil	S16-Oc10350						Х		Х	Х	Х		Х
	1	P11_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10351	Х				Х			Х	Х	Х	Х	Х
1	1	P12_0-0.1	Oct 10, 2016		Soil	S16-Oc10352						Х	Х	Х	Х	Х		Х
-	1	P13_0-0.1	Oct 10, 2016		Soil	S16-Oc10353		Х										
	1	P13_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10354			Х									
1	1	P14_0-0.1	Oct 10, 2016		Soil	S16-Oc10355								Х	Х	Х		Х
	1	P14_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10356								Х	Х	Х		Х
=	1	P15_0-0.1	Oct 10, 2016		Soil	S16-Oc10357							Х	Х	Х	Х		Х
1	<u> †</u>	P16_0-0.1	Oct 10, 2016		Soil	S16-Oc10358		Х				X		X	Х	Х		Χ

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

e.mail: EnviroSales@eurofins.com we	Sample Detail						CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
085 521		ory - NATA Site # 12:														
∍ 8	urne Laborat	ory - NATA Site # 12	54 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х
rdh	ey Laboratory	y Laboratory - NATA Site # 18217														
isato	ane Laboratoi	ry - NATA Site # 2079	94		Х											
ter	nal Laborator	у														
	P16_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10359									Х	Х		Х
<u> </u>	TP17_0-0.1	Oct 10, 2016	Soil	S16-Oc10360									Х	Х		Х
E	P17_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10361								Х		Х		
	P18_0-0.1	Oct 10, 2016	Soil	S16-Oc10362								Х	Х	Х		Х
	P18_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10363	Х				Х					Х	Х	
1	P19_0-0.1	Oct 10, 2016	Soil	S16-Oc10364						Х			Х	Х		Х
	P19_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10365								Х		Х		
ĺ.	P20_0-0.1	Oct 10, 2016	Soil	S16-Oc10366								Х	Х	Х		Х
	P21_0-0.1	Oct 10, 2016	Soil	S16-Oc10367							Χ	Х	Х	Х		Х
1	P21_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10368									Х	Х		Х
	P22_0-0.1	Oct 10, 2016	Soil	S16-Oc10369						Х	Х	Х	Х	Х		Х
6	P23_0-0.1	Oct 10, 2016	Soil	S16-Oc10370							Х		Χ	Χ		Х

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	e.mail: EnviroSales@eurofins.com we		San	nple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
	5 085 521		NATA CHA	44054.9.440	74					V	V	V	V	V	V	V	V	V
3	50	urne Laborato	ory - NATA Site #	1254 & 142	2/1			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
_	27		- NATA Site # 18				Х	^	^									
	-	al Laboratory	y - NATA Site # 2	20794			^											
<u> </u>		P23 0.2-0.3	Oct 10, 2016		Soil	S16-Oc10371								Х	Х	Х		Х
٠,		P24 0-0.1	Oct 10, 2016		Soil	S16-Oc10372									X	X		X
mgt		P25 0-0.1	Oct 10, 2016		Soil	S16-Oc10373								Х	Х	Х		Х
_		P26 0-0.1	Oct 10, 2016		Soil	S16-Oc10374		Х				Х		Х	Х	Х		Х
<u> </u>		P26 0.2-0.3	Oct 10, 2016		Soil	S16-Oc10375								Х	Х	Х		Х
Ī	F	P27_0-0.1	Oct 10, 2016		Soil	S16-Oc10376							Х		Х	Х		Х
	-	P27_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10377								Х		Х		
1	-	P28_0-0.1	Oct 10, 2016		Soil	S16-Oc10378							Х	Х	Х	Х		Х
1	-	P29_0-0.1	Oct 10, 2016		Soil	S16-Oc10379		Х				Х	Х	Х	Х	Х		Х
_	-	P30_0-0.1	Oct 10, 2016		Soil	S16-Oc10380								Х	Х	Х		Х
1	_ -	P31_0-0.1	Oct 10, 2016		Soil	S16-Oc10381						Х		Х	Х	Х		Х
1	-	P32_0-0.1	Oct 10, 2016		Soil	S16-Oc10382								Х	Х	Х		Χ

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

e.mail: EnviroSales@eurofins.com		Sam	ple Detail		% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
5 085 521	aurno I abarat	om, NATA Sito #	1254 9 14274					Х		X	Х	X	Х	Х	X	X
31E	ourne Laborat	ory - NATA Site #	1254 & 14271			Х	Х		Х	Α	Α	Α	Χ	Α	_ ^	
77		- NATA Site # 182			Х	^	^									
		ry - NATA Site # 20	0794		^											
te	rral Laborator P32 0.2-0.3	Oct 10, 2016	Soil	S16-Oc10383	Х				Х					Х	Х	
	P32_0.2-0.3 P33_0-0.1	Oct 10, 2016	Soil	S16-Oc10384	^		Х		^					^	_^	
E	ACM01	Oct 10, 2016	Other	S16-Oc10384		Х	^									
E -	QC01	Oct 10, 2016	Soil	S16-Oc10386		^						Х	Х	Х		Х
	QC02	Oct 10, 2016	Soil	S16-Oc10387								X	X	X		X
-	QC03	Oct 10, 2016	Soil	S16-Oc10388		X				Х	X	X	X	X		X
-	RINS	Oct 10, 2016	Water	S16-Oc10389						X	X	X	X	,,		Х
	TS	Oct 10, 2016	Water	S16-Oc10390									Х			
ę.	В	Oct 10, 2016	Water	S16-Oc10391									Х			
7	\$ S01	Oct 10, 2016	Soil	S16-Oc10392							Х			Х		
	SS02_VEGE PATCH	Oct 10, 2016	Soil	S16-Oc10393						х	х	х		х		

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	e.mail: EnviroSales@eurofins.com we		Sai	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
	5 085 521																	
9	Bo	urne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
<u>'(</u>	dne	y Laboratory	- NATA Site # 1	8217				X	X									
<u>i</u> :	s∯oa	ne Laborator	y - NATA Site #	20794			Х											<u> </u>
ct		al Laboratory			T													
1	\neg	S03_DRAIN	Oct 10, 2016		Soil	S16-Oc10394								X		Х		
of	-	P07_0.0-0.1	Oct 10, 2016		Soil	S16-Oc10395								X	Х	Х		Х
mgt	41	P01_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10396				Х								<u> </u>
_		P04_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10397				Х								<u> </u>
	\neg	P05_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10398				Х								
	-	P09_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10399				Х								
_	1	P10_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10400				Х								
1		P12_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10401				Х								
	4	P15_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10402				Х							<u> </u>	<u> </u>
-	1	P20_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10403				X								
1		P22_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10404				Х								<u> </u>
		P24_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10405				Χ							<u></u>	

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

085 521 e.mail : EnviroSales@eurofins.com we		Sa ory - NATA Site	ample Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
32 e	urne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
dh	y Laboratory	- NATA Site # 1	18217				Х	Х									
		y - NATA Site#				Х											
	nal Laboratory																
1	P25_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10406				Х								
חבר	P28_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10407				Х								
18 <u>—</u>	P29_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10408				Х								
	P30_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10409				Х								
	P31_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10410				Х								
	P33_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10411			Х									
	P26_0.9-1.0	Oct 10, 2016		Soil	S16-Oc10412				Х								
	P06_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10413				Х							\bigsqcup	
	P15_0.1	Oct 10, 2016		Soil	S16-Oc10414				Х								
st	ounts					4	6	3	18	4	15	17	40	45	52	4	43

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 pbb: Parts per billion
 %: Percentage

org/100m1: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the res

Duplicate

A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 519296-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank			, , , , , ,		
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	ing/kg	120	20	1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene		< 0.5	0.5	Pass	
Anthracene	mg/kg mg/kg	< 0.5	0.5	Pass	
		< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg				
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	·

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	5545
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	ilig/kg	, ,		1 033	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				Π	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C16	mg/kg	< 100	100	Pass	
TRH > C16-C34		< 100	100	Pass	
	mg/kg	< 100	100	Pass	
Method Blank	0/	. 4		D	
% Clay	%	< 1		Pass	
Method Blank					
Ion Exchange Properties				 	
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
Method Blank				T	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	97	70-130	Pass	
TRH C10-C14	%	109	70-130	Pass	
LCS - % Recovery				<u>'</u>	
BTEX					
Benzene	%	100	70-130	Pass	
Toluene	%	99	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	95	70-130	Pass	
Xylenes - Total	%	94	70-130	Pass	
LCS - % Recovery	70	94	70-130	1 033	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				Ι	
•	0/	100	70.120	Dage	
Naphthalene	%	120	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons				<u> </u>	
Acenaphthene	%	97	70-130	Pass	
Acenaphthylene	%	101	70-130	Pass	
Anthracene	%	106	70-130	Pass	
Benz(a)anthracene	%	99	70-130	Pass	
Benzo(a)pyrene	%	104	70-130	Pass	
Benzo(b&j)fluoranthene	%	103	70-130	Pass	
Benzo(g.h.i)perylene	%	71	70-130	Pass	
Benzo(k)fluoranthene	%	125	70-130	Pass	
Chrysene	%	112	70-130	Pass	
Dibenz(a.h)anthracene	%	74	70-130	Pass	

100	\sim
	U
	$\leq L$

Te	st		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene			%	107	70-130	Pass	
Fluorene			%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	70	70-130	Pass	
Naphthalene			%	97	70-130	Pass	
Phenanthrene			%	91	70-130	Pass	
Pyrene			%	108	70-130	Pass	
LCS - % Recovery							
Organochlorine Pesticides							
4.4'-DDD			%	124	70-130	Pass	
4.4'-DDE			%	123	70-130	Pass	
4.4'-DDT			%	113	70-130	Pass	
a-BHC			%	108	70-130	Pass	
Aldrin			%	109	70-130	Pass	
b-BHC			%	108	70-130	Pass	
d-BHC			%	125	70-130	Pass	
Dieldrin			%	123	70-130	Pass	
Endosulfan I			%	120	70-130	Pass	
Endosulfan II			———— %	128	70-130	Pass	
Endosulfan sulphate			%	108	70-130	Pass	
Endrin			%	116	70-130	Pass	
Endrin aldehyde			———— %	101	70-130	Pass	
Endrin ketone			———— %	115	70-130	Pass	
g-BHC (Lindane)			%	114	70-130	Pass	
Heptachlor			——————————————————————————————————————	112	70-130	Pass	
Heptachlor epoxide			————— %	126	70-130	Pass	
Hexachlorobenzene			——————————————————————————————————————	111	70-130	Pass	
Methoxychlor			% 	102	70-130	Pass	
LCS - % Recovery			70	102	70 100	1 455	
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	tions					
TRH >C10-C16	13 - 20 10 NET WITTE	lions	%	108	70-130	Pass	
LCS - % Recovery				100	70-130	1 033	
% Clay			%	105	70-130	Pass	
LCS - % Recovery			70	100	70-130	1 033	
Heavy Metals							
Arsenic			%	104	80-120	Pass	
			% %		<u> </u>		
Cadmium				101	80-120	Pass	
Chromium			%	105	80-120	Pass	
Copper			%	112	80-120	Pass	
Lead			%	105	80-120	Pass	
Mercury			<u>%</u>	115	75-125	Pass	
Nickel			%	107	80-120	Pass	
Zinc Test	Lab Sample ID	QA	% Units	111 Result 1	80-120 Acceptance Limits	Pass Pass	Qualifying
Spike - % Recovery	, -	Source			Limits	Limits	Code
Heavy Metals				Result 1			
Arsenic	S16-Oc10338	CP	%	104	75-125	Pass	
Cadmium	S16-Oc10338	СР	%	100	75-125	Pass	
Chromium	S16-Oc10338	CP	%	98	75-125	Pass	
Copper	S16-Oc10338	СР	%	114	75-125	Pass	
Lead	S16-Oc10338	СР	%	100	75-125	Pass	
Mercury	S16-Oc10338	СР	%	113	70-130	Pass	
Nickel	S16-Oc10338	СР	%	96	75-125	Pass	
Zinc	S16-Oc10338	СР	%	104	75-125	Pass	
				 	 		

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S16-Oc10346	CP	%	126	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	S16-Oc10346	CP	%	124	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S16-Oc10351	CP	%	102	75-125	Pass	
Cadmium	S16-Oc10351	CP	%	100	75-125	Pass	
Chromium	S16-Oc10351	CP	%	96	75-125	Pass	
Copper	S16-Oc10351	СР	%	109	75-125	Pass	
Lead	S16-Oc10351	СР	%	99	75-125	Pass	
Mercury	S16-Oc10351	СР	%	115	70-130	Pass	
Nickel	S16-Oc10351	СР	%	110	75-125	Pass	
Zinc	S16-Oc10351	СР	%	118	75-125	Pass	
Spike - % Recovery		'				<u>'</u>	
Polycyclic Aromatic Hydrocarbo	ons			Result 1			
Acenaphthene	S16-Oc10352	СР	%	104	70-130	Pass	
Acenaphthylene	S16-Oc10352	CP	%	109	70-130	Pass	
Anthracene	S16-Oc10352	CP	%	112	70-130	Pass	
Benz(a)anthracene	S16-Oc10352	CP	 %	103	70-130	Pass	
Benzo(a)pyrene	S16-Oc10352	CP	%	110	70-130	Pass	
Benzo(b&j)fluoranthene	S16-Oc10352	CP	% 	111	70-130	Pass	
Benzo(g.h.i)perylene	S16-Oc10352	CP	% 	70	70-130	Pass	
Benzo(k)fluoranthene	S16-Oc10352	CP	<u> </u>	123	70-130	Pass	
Chrysene	S16-Oc10352	CP	<u> </u>	121	70-130	Pass	
Dibenz(a.h)anthracene	S16-Oc10352	CP	<u> </u>	84	70-130	Pass	
Fluoranthene	S16-Oc10352	CP	%	118	70-130	Pass	
Fluorene	S16-Oc10352	CP	% %	106	70-130	Pass	
	S16-Oc10352	CP	% 	74	70-130		
Indeno(1.2.3-cd)pyrene	\$16-0c10352 \$16-0c10352	CP		98	70-130	Pass	
Naphthalene			%		70-130	Pass	
Phenanthrene	S16-Oc10352	CP	%	101		Pass	
Pyrene	S16-Oc10352	CP	<u>%</u>	119	70-130	Pass	
Spike - % Recovery	4000 NEDME	-		B 4			
Total Recoverable Hydrocarbon				Result 1	70.400		
TRH C10-C14	S16-Oc10359	CP	%	108	70-130	Pass	
Spike - % Recovery		_		T = "T		Ι	
Total Recoverable Hydrocarbon				Result 1			
TRH >C10-C16	S16-Oc10359	CP	%	108	70-130	Pass	
Spike - % Recovery				T	T	Ι	
Heavy Metals				Result 1			
Arsenic	S16-Oc10367	CP	%	105	75-125	Pass	
Cadmium	S16-Oc10367	CP	%	105	75-125	Pass	
Chromium	S16-Oc10367	CP	%	105	75-125	Pass	
Copper	S16-Oc10367	CP	%	119	75-125	Pass	
Lead	S16-Oc10367	CP	%	98	75-125	Pass	
Mercury	S16-Oc10367	CP	%	117	70-130	Pass	
Nickel	S16-Oc10367	СР	%	101	75-125	Pass	
Zinc	S16-Oc10367	CP	%	89	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S16-Oc10369	СР	%	110	70-130	Pass	
Spike - % Recovery							

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzene	S16-Oc10369	СР	%	116	70-130	Pass	
Toluene	S16-Oc10369	СР	%	114	70-130	Pass	
Ethylbenzene	S16-Oc10369	СР	%	115	70-130	Pass	
m&p-Xylenes	S16-Oc10369	СР	%	113	70-130	Pass	
o-Xylene	S16-Oc10369	СР	%	113	70-130	Pass	
Xylenes - Total	S16-Oc10369	СР	%	113	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
Naphthalene	S16-Oc10369	CP	%	126	70-130	Pass	
TRH C6-C10	S16-Oc10369	CP	%	98	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S16-Oc10369	CP	%	110	70-130	Pass	
4.4'-DDE	S16-Oc10369	СР	%	130	70-130	Pass	
4.4'-DDT	S16-Oc10369	СР	%	114	70-130	Pass	
а-ВНС	S16-Oc10369	СР	%	122	70-130	Pass	
Aldrin	S16-Oc10369	СР	%	112	70-130	Pass	
b-BHC	S16-Oc10369	СР	%	129	70-130	Pass	
d-BHC	S16-Oc10369	СР	%	126	70-130	Pass	
Dieldrin	S16-Oc10369	СР	%	113	70-130	Pass	
Endosulfan I	S16-Oc10369	СР	%	122	70-130	Pass	
Endosulfan II	S16-Oc10369	СР	%	105	70-130	Pass	
Endosulfan sulphate	S16-Oc10369	СР	%	115	70-130	Pass	
Endrin	S16-Oc10369	СР	%	107	70-130	Pass	
Endrin aldehyde	S16-Oc10369	СР	%	125	70-130	Pass	
Endrin ketone	S16-Oc10369	СР	%	123	70-130	Pass	
g-BHC (Lindane)	S16-Oc10369	СР	%	122	70-130	Pass	
Heptachlor	S16-Oc10369	СР	%	121	70-130	Pass	
Heptachlor epoxide	S16-Oc10369	СР	%	115	70-130	Pass	
Hexachlorobenzene	S16-Oc10369	СР	%	124	70-130	Pass	
Methoxychlor	S16-Oc10369	СР	%	108	70-130	Pass	
Spike - % Recovery	<u> </u>	,				<u>'</u>	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S16-Oc10372	СР	%	130	70-130	Pass	
Spike - % Recovery	<u> </u>	,				<u>'</u>	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	S16-Oc10372	СР	%	122	70-130	Pass	
Spike - % Recovery	<u> </u>	'				<u>'</u>	
Heavy Metals				Result 1			
Arsenic	S16-Oc10381	СР	%	98	75-125	Pass	
Cadmium	S16-Oc10381	CP	%	103	75-125	Pass	
Chromium	S16-Oc10381	CP	%	108	75-125	Pass	
Copper	S16-Oc10381	CP	%	122	75-125	Pass	
Lead	S16-Oc10381	CP	%	99	75-125	Pass	
Nickel	S16-Oc10381	CP	%	102	75-125	Pass	
Zinc	S16-Oc10381	CP	%	106	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S16-Oc10386	CP	%	105	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	S16-Oc10386	CP	%	103	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M16-Oc08735	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	M16-Oc08735	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M16-Oc08735	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M16-Oc08735	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M16-Oc08735	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M16-Oc08735	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M16-Oc08735	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M16-Oc08735	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M16-Oc08735	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract)	S16-Oc10288	NCP	pH Units	6.8	6.8	pass	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc10337	CP	mg/kg	13	13	<1	30%	Pass	
Cadmium	S16-Oc10337	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10337	СР	mg/kg	23	23	<1	30%	Pass	
Copper	S16-Oc10337	СР	mg/kg	36	36	<1	30%	Pass	
Lead	S16-Oc10337	СР	mg/kg	20	20	1.0	30%	Pass	
Nickel	S16-Oc10337	СР	mg/kg	23	23	1.0	30%	Pass	
Zinc	S16-Oc10337	СР	mg/kg	56	58	5.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc10338	СР	mg/kg	8.7	8.4	4.0	30%	Pass	
Cadmium	S16-Oc10338	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10338	СР	mg/kg	21	22	2.0	30%	Pass	
Copper	S16-Oc10338	СР	mg/kg	37	37	<1	30%	Pass	
Lead	S16-Oc10338	СР	mg/kg	17	17	1.0	30%	Pass	
Mercury	S16-Oc10338	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S16-Oc10338	СР	mg/kg	23	23	3.0	30%	Pass	
Zinc	S16-Oc10338	СР	mg/kg	57	59	3.0	30%	Pass	
Duplicate	1	'			· · · · · · ·				
				Result 1	Result 2	RPD			
% Moisture	S16-Oc10340	СР	%	17	17	1.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Oc10345	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Oc10345	CP	mg/kg	< 50	< 50	<u></u> <1	30%	Pass	
TRH C29-C36	S16-Oc10345	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	· 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Oc10345	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Oc10345	CP	mg/kg	< 100	< 100	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbor				Result 1	Result 2	RPD			
Acenaphthene	S16-Oc10350	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Oc10350	CP		< 0.5	< 0.5	<u> </u>	30%	Pass	
			mg/kg				30%		
Phenanthrene	S16-Oc10350	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene Duplicate	S16-Oc10350	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Deaut 4	Bootile O	DDD			
9/ Majotura	916 O-100F0	0 D	n/	Result 1	Result 2	RPD	300	Page	
% Moisture	S16-Oc10350	CP	%	14	14	<1	30%	Pass	
Duplicate				D	D 11 O	DDD			
Heavy Metals	040 0 40050	0.5		Result 1	Result 2	RPD	0001	 	
Arsenic	S16-Oc10350	CP	mg/kg	11	9.6	11	30%	Pass	
Cadmium	S16-Oc10350	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10350	CP	mg/kg	26	25	4.0	30%	Pass	
Copper	S16-Oc10350	CP	mg/kg	37	39	5.0	30%	Pass	
Lead	S16-Oc10350	CP	mg/kg	23	25	8.0	30%	Pass	
Nickel	S16-Oc10350	CP	mg/kg	28	32	12	30%	Pass	
Zinc	S16-Oc10350	CP	mg/kg	72	83	14	30%	Pass	
Duplicate				T	1		I		
Heavy Metals	<u> </u>			Result 1	Result 2	RPD			
Arsenic	S16-Oc10351	CP	mg/kg	9.7	9.7	<1	30%	Pass	
Cadmium	S16-Oc10351	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10351	CP	mg/kg	24	24	<1	30%	Pass	
Copper	S16-Oc10351	CP	mg/kg	37	37	<1	30%	Pass	
Lead	S16-Oc10351	CP	mg/kg	21	20	4.0	30%	Pass	
Mercury	S16-Oc10351	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S16-Oc10351	CP	mg/kg	29	29	<1	30%	Pass	
Zinc	S16-Oc10351	СР	mg/kg	72	72	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Oc10358	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Oc10358	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Oc10358	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Oc10358	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Oc10358	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-Oc10358	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Oc10362	СР	%	13	12	4.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Clay	S16-Oc10363	СР	%	33	35	7.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc10366	СР	mg/kg	50	60	18	30%	Pass	
Cadmium	S16-Oc10366	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10366	СР	mg/kg	30	33	10	30%	Pass	
Copper	S16-Oc10366	СР	mg/kg	45	49	9.0	30%	Pass	
Lead	S16-Oc10366	СР	mg/kg	9.9	9.9	<1	30%	Pass	
Nickel	S16-Oc10366	СР	mg/kg	6.4	6.8	6.0	30%	Pass	
Zinc	S16-Oc10366	СР	mg/kg	82	95	15	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-Oc10367	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Oc10367	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Oc10367	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-Oc10367	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Oc10367	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<u></u>	30%	Pass	
d-BHC	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<u></u>	30%	Pass	
Dieldrin	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<u></u>	30%	Pass	
Endosulfan I	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<u></u>	30%	Pass	
Endosulfan II	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<u></u>	30%	Pass	
Endrin	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Oc10367	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S16-Oc10367	CP	mg/kg	< 1	< 1	<u></u>	30%	Pass	
Duplicate		<u> </u>							
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc10367	СР	mg/kg	9.2	9.0	2.0	30%	Pass	
Cadmium	S16-Oc10367	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10367	CP	mg/kg	24	24	2.0	30%	Pass	
Copper	S16-Oc10367	CP	mg/kg	25	25	1.0	30%	Pass	
Lead	S16-Oc10367	CP	mg/kg	21	21	2.0	30%	Pass	
Mercury	S16-Oc10367	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S16-Oc10367	CP	mg/kg	18	19	2.0	30%	Pass	
Zinc	S16-Oc10367	CP	mg/kg	44	46	5.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocark	oons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Oc10371	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Oc10371	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Oc10371	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	1 2.3 2010071		9/1/9					, , , ,	
Total Recoverable Hydrocark	oons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Oc10371	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Oc10371	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-Oc10371	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	310-00103/1		ing/kg	100	- 100	`	J 30 /0	1 033	
Daynoute				Result 1	Result 2	RPD			
	S16-Oc10372	Г	%	I Coult I	18	NI D			

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc10380	СР	mg/kg	8.7	7.4	16	30%	Pass	
Cadmium	S16-Oc10380	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10380	СР	mg/kg	23	20	16	30%	Pass	
Copper	S16-Oc10380	CP	mg/kg	31	24	26	30%	Pass	
Lead	S16-Oc10380	CP	mg/kg	22	19	15	30%	Pass	
Nickel	S16-Oc10380	CP	mg/kg	24	20	17	30%	Pass	
Zinc	S16-Oc10380	CP	mg/kg	67	60	12	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc10381	CP	mg/kg	20	19	1.0	30%	Pass	
Cadmium	S16-Oc10381	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc10381	CP	mg/kg	25	25	<1	30%	Pass	
Copper	S16-Oc10381	CP	mg/kg	31	32	1.0	30%	Pass	
Lead	S16-Oc10381	CP	mg/kg	19	19	<1	30%	Pass	
Mercury	S16-Oc10381	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S16-Oc10381	CP	mg/kg	26	26	1.0	30%	Pass	
Zinc	S16-Oc10381	CP	mg/kg	62	62	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				Result 1	Result 2	RPD			
TRH C10-C14	S16-Oc10382	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Oc10382	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Oc10382	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Oc10382	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Oc10382	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-Oc10382	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Oc10382	СР	%	13	13	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C)	S16-Oc10383	СР	uS/cm	22	20	9.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

O 1	— • • • • • • • • • • • • • • • • • • •
Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Senior Analyst-Inorganic (VIC) Huona Le Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Rhys Thomas Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Irrigi shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins Irrigit be liable for consequential damages including, but no limited to, lost profifs, damages for relative to meet decidines and lost production arising from this report. This document shall be reported evereign full all and relates only to the times tested. Unless indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Rohan Hammond

Report519296-WProject nameCADDENS DSI

Project ID 52116
Received Date Oct 11, 2016

Client Sample ID			RINS	TS	тв	
Sample Matrix			Water	Water	Water	
Eurofins mgt Sample No.			S16-Oc10389	S16-Oc10390	S16-Oc10391	
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016	
Test/Reference	LOR	Unit	2			
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	0.02	mg/L	< 0.02	-	-	
TRH C10-C14	0.05	mg/L	< 0.05	-	_	
TRH C15-C28	0.1	mg/L	< 0.1	-	_	
TRH C29-C36	0.1	mg/L	< 0.1	_	_	
TRH C10-36 (Total)	0.1	mg/L	< 0.1	_	_	
ВТЕХ	1					
Benzene	0.001	mg/L	< 0.001	84%	< 0.001	
Toluene	0.001	mg/L	< 0.001	79%	< 0.001	
Ethylbenzene	0.001	mg/L	< 0.001	87%	< 0.001	
m&p-Xylenes	0.002	mg/L	< 0.002	78%	< 0.002	
o-Xylene	0.001	mg/L	< 0.001	80%	< 0.001	
Xylenes - Total	0.003	mg/L	< 0.003	79%	< 0.003	
4-Bromofluorobenzene (surr.)	1	%	104	97	79	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-		
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	_	_	
TRH C6-C10	0.02	mg/L	< 0.02	_	_	
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-	_	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	-	-	
Acenaphthylene	0.001	mg/L	< 0.001	-	-	
Anthracene	0.001	mg/L	< 0.001	-	_	
Benz(a)anthracene	0.001	mg/L	< 0.001	-	_	
Benzo(a)pyrene	0.001	mg/L	< 0.001	-		
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	_	-	
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	_	
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-	
Chrysene	0.001	mg/L	< 0.001	-	-	
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-	
Fluoranthene	0.001	mg/L	< 0.001	-	-	
Fluorene	0.001	mg/L	< 0.001	-	_	
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-		
Naphthalene	0.001	mg/L	< 0.001	-	-	
Phenanthrene	0.001	mg/L	< 0.001	-	-	
Pyrene	0.001	mg/L	< 0.001	-	_	

Oliant Campula ID					1
Client Sample ID Sample Matrix			RINS Water	TS Water	TB Water
•					
Eurofins mgt Sample No.			S16-Oc10389	S16-Oc10390	S16-Oc10391
Date Sampled			Oct 10, 2016	Oct 10, 2016	Oct 10, 2016
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons		Ι			
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	53	-	-
p-Terphenyl-d14 (surr.)	1	%	71	-	-
Organochlorine Pesticides	0.004		0.004		
Chlordanes - Total	0.001	mg/L	< 0.001	-	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-	-
a-BHC	0.0001	mg/L	< 0.0001	-	-
Aldrin	0.0001	mg/L	< 0.0001	-	-
b-BHC d-BHC	0.0001 0.0001	mg/L	< 0.0001 < 0.0001	-	-
Dieldrin	0.0001	mg/L	< 0.0001	-	-
Endosulfan I	0.0001	mg/L mg/L	< 0.0001	-	-
Endosulfan II	0.0001	mg/L	< 0.0001	-	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-	-
Endrin	0.0001	mg/L	< 0.0001	_	-
Endrin aldehyde	0.0001	mg/L	< 0.0001	-	-
Endrin ketone	0.0001	mg/L	< 0.0001	_	_
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	-	-
Heptachlor	0.0001	mg/L	< 0.0001	-	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	_	_
Hexachlorobenzene	0.0001	mg/L	< 0.0001	_	_
Methoxychlor	0.0001	mg/L	< 0.0001	_	_
Toxaphene	0.01	mg/L	< 0.01	-	-
Dibutylchlorendate (surr.)	1	%	127	-	-
Tetrachloro-m-xylene (surr.)	1	%	76	-	-
Total Recoverable Hydrocarbons - 2013 N	NEPM Fractions				
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
Heavy Metals					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	_
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	0.001	-	-
Zinc	0.005	mg/L	< 0.005	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Oct 13, 2016	Holding Time 7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 12, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 13, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Oct 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 13, 2016	7 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Oct 13, 2016	7 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Metals M8	Melbourne	Oct 12, 2016	28 Days

Address: Level 1, 50 Margaret St

Sydney NSW 2000

မှုီစု Pr**p**ject Name: CADDENS DSI

Project ID: 52116 Order No.:

Report #: 519296 Phone: 02 8245 0300

Fax:

Oct 11, 2016 5:20 PM Received: Due: Oct 18, 2016

alia, 2066 2977

5 Day Priority:

Lane Cove West, NSW, Aust 28400 Facsimile: +61 2 9420 Priority: 5 Day
Contact Name: Rohan Hammond

Securify: 5 Day
Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

0																0	0
21 e.mail : EnviroSales@eurofins.com we		Sa	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity Funding F, 16 Mais Roa	Total Recoverable Hydrocarbons
5 085 521																	
el8 6		ory - NATA Site		271					Х	Х	Х	Х	X	Х	Χ	Х	Х
		- NATA Site # 1					Х	X								Д_	
		y - NATA Site #	20794			Х										Д_	
ter	al Laboratory	/	ı		1											Д_	
0	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
0.0	P01_0-0.1	Oct 10, 2016		Soil	S16-Oc10337	Х				Х			Х	Х	Х	Х	Х
	P02_0-0.1	Oct 10, 2016		Soil	S16-Oc10338							Х	Х	Х	Х		Х
-	P02_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10339						Х				Х		
	P03_0-0.1	Oct 10, 2016		Soil	S16-Oc10340								Х	Х	Х		Х
	P03_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10341								Х	Х	Х		Х
	P04_0-0.1	Oct 10, 2016		Soil	S16-Oc10342							Х	X	Х	Х		Х
	P05_0-0.1	Oct 10, 2016		Soil	S16-Oc10343						Х		Х	Х	Χ	Ш.	X
	P06_0-0.1	Oct 10, 2016		Soil	S16-Oc10344							Х	Х	Х	Х	Ш.	78, 2016 X
	P07_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10345									Х	Х	Ш.	<i>∞</i> ,X
(P08_0-0.1	Oct 10, 2016		Soil	S16-Oc10346							Х	X	Х	Х		χ
																	Date Reported X

Document Set D: 7540488

Version: 1, Version Date: 22/02/2017

Level 1, 50 Margaret St

Sydney NSW 2000

မျှစ် Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	085 521 e.mail : EnviroSales@eurofins.com we		Sal ory - NATA Site	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
eli) B ou	rne Laborato	orv - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
rd	ne v	/ Laboratory	- NATA Site # 1	8217				Х	Х									
			y - NATA Site #				Х											
	_	al Laboratory																
		P08_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10347						Х				Х		
ב	+	P09_0-0.1	Oct 10, 2016		Soil	S16-Oc10348						Х		Х	Х	Х		Х
18 -	1	P10_0-0.1	Oct 10, 2016		Soil	S16-Oc10349							Х	Х	Х	Х		Х
	T _F	P11_0-0.1	Oct 10, 2016		Soil	S16-Oc10350						Х		Х	Х	Х		Х
	1	P11_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10351	Х				Х			Х	Х	Х	Х	Х
1	1	P12_0-0.1	Oct 10, 2016		Soil	S16-Oc10352						Х	Х	Х	Х	Х		Х
-	1	P13_0-0.1	Oct 10, 2016		Soil	S16-Oc10353		Х										
	1	P13_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10354			Х									
1	1	P14_0-0.1	Oct 10, 2016		Soil	S16-Oc10355								Х	Х	Х		Х
	1	P14_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10356								Х	Х	Х		Х
=	1	P15_0-0.1	Oct 10, 2016		Soil	S16-Oc10357							Х	Х	Х	Х		Х
1	<u> †</u>	P16_0-0.1	Oct 10, 2016		Soil	S16-Oc10358		Х				X		X	Х	Х		X

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

e.mail: EnviroSales@eurofins.com we		Sample	e Detail		% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
085 521		ory - NATA Site # 12:														
∍ 8	urne Laborat	ory - NATA Site # 12	54 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х
rdh	ey Laboratory	- NATA Site # 18217				Х	Х									
isato	ane Laboratoi	ry - NATA Site # 2079	94		Х											
ter	nal Laborator	у														
	P16_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10359									Х	Х		Х
<u> </u>	TP17_0-0.1	Oct 10, 2016	Soil	S16-Oc10360									Х	Х		Х
E	P17_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10361								Х		Х		
	P18_0-0.1	Oct 10, 2016	Soil	S16-Oc10362								Х	Х	Х		Х
	P18_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10363	Х				Х					Х	Х	
1	P19_0-0.1	Oct 10, 2016	Soil	S16-Oc10364						Х			Х	Х		Х
	P19_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10365								Х		Х		
ĺ.	P20_0-0.1	Oct 10, 2016	Soil	S16-Oc10366								Х	Х	Х		Х
	P21_0-0.1	Oct 10, 2016	Soil	S16-Oc10367							X	Х	Х	Х		Х
1	P21_0.2-0.3	Oct 10, 2016	Soil	S16-Oc10368									Х	Х		Х
	P22_0-0.1	Oct 10, 2016	Soil	S16-Oc10369						Х	Х	Х	Х	Х		Х
6	P23_0-0.1	Oct 10, 2016	Soil	S16-Oc10370							Х		Χ	Χ		Х

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	e.mail: EnviroSales@eurofins.com we		San	nple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
	5 085 521		NATA CHA	44054.9.440	74					V	V	V	V	V	V	V	V	V
3	50	urne Laborato	ory - NATA Site #	1254 & 142	2/1			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
_	27		- NATA Site # 18				Х	^	^									
	-	al Laboratory	y - NATA Site # 2	20794			^											
<u> </u>		P23 0.2-0.3	Oct 10, 2016		Soil	S16-Oc10371								Х	Х	Х		Х
٠,		P24 0-0.1	Oct 10, 2016		Soil	S16-Oc10372									X	Х		X
mgt		P25 0-0.1	Oct 10, 2016		Soil	S16-Oc10373								Х	Х	Х		Х
_		P26 0-0.1	Oct 10, 2016		Soil	S16-Oc10374		Х				Х		Х	Х	Х		Х
<u> </u>		P26 0.2-0.3	Oct 10, 2016		Soil	S16-Oc10375								Х	Х	Х		Х
Ī	F	P27_0-0.1	Oct 10, 2016		Soil	S16-Oc10376							Х		Х	Х		Х
	-	P27_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10377								Х		Х		
1	-	P28_0-0.1	Oct 10, 2016		Soil	S16-Oc10378							Х	Х	Х	Х		Х
1	-	P29_0-0.1	Oct 10, 2016		Soil	S16-Oc10379		Х				Х	Х	Х	Х	Х		Х
_	-	P30_0-0.1	Oct 10, 2016		Soil	S16-Oc10380								Х	Х	Х		Х
1	_ -	P31_0-0.1	Oct 10, 2016		Soil	S16-Oc10381						Х		Х	Х	Х		Х
1	-	P32_0-0.1	Oct 10, 2016		Soil	S16-Oc10382								Х	Х	Х		Χ

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

e.mail: EnviroSales@eurofins.com		Sam	ple Detail		% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
5 085 521	aurno I abarat	om, NATA Sito #	1254 9 14274					X		X	Х	X	X	Х	X	X
31E	ourne Laborat	ory - NATA Site #	1254 & 14271			Х	Х		Х	Α	Α	Α	Χ	Α	_ ^	
77		- NATA Site # 182			Х	^	^									
		ry - NATA Site # 20	0794		^											
te	rral Laborator P32 0.2-0.3	Oct 10, 2016	Soil	S16-Oc10383	Х				Х					Х	Х	
	P32_0.2-0.3 P33_0-0.1	Oct 10, 2016	Soil	S16-Oc10384	^		Х		^					^	_^	
E	ACM01	Oct 10, 2016	Other	S16-Oc10384		Х	^									
E -	QC01	Oct 10, 2016	Soil	S16-Oc10386		^						Х	Х	Х		Х
	QC02	Oct 10, 2016	Soil	S16-Oc10387								X	X	X		X
-	QC03	Oct 10, 2016	Soil	S16-Oc10388		X				Х	X	X	X	X		X
-	RINS	Oct 10, 2016	Water	S16-Oc10389						X	X	X	X	,,		Х
	TS	Oct 10, 2016	Water	S16-Oc10390									Х			
ę.	В	Oct 10, 2016	Water	S16-Oc10391									Х			
7	\$ S01	Oct 10, 2016	Soil	S16-Oc10392							Х			Х		
	SS02_VEGE PATCH	Oct 10, 2016	Soil	S16-Oc10393						х	х	х		х		

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	e.mail: EnviroSales@eurofins.com we		Sai	mple Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
	5 085 521																	
9	Bo	urne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Χ	Х
<u>'(</u>	dne	y Laboratory	- NATA Site # 1	8217				X	X									
<u>i</u> :	s∯oa	ne Laborator	y - NATA Site #	20794			Х											<u> </u>
ct		al Laboratory			T													
1	\neg	S03_DRAIN	Oct 10, 2016		Soil	S16-Oc10394								X		Х		
of	-	P07_0.0-0.1	Oct 10, 2016		Soil	S16-Oc10395								X	Х	Х		Х
mgt	41	P01_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10396				Х								<u> </u>
_		P04_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10397				Х								<u> </u>
	\neg	P05_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10398				Х								<u> </u>
	-	P09_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10399				Х								
_	1	P10_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10400				Х								
1		P12_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10401				X								
	4	P15_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10402				Х							<u> </u>	<u> </u>
-	1	P20_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10403				X								
1		P22_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10404				Х								<u> </u>
1		P24_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10405				Χ							<u></u>	

Fax:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: CADDENS DSI

Project ID: 52116 Order No.: Received: Oct 11, 2016 5:20 PM Report #: Oct 18, 2016 519296 Due:

Priority: 5 Day Phone: 02 8245 0300

Contact Name: Rohan Hammond Fax:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

085 521 e.mail : EnviroSales@eurofins.com we		Sa ory - NATA Site	ample Detail			% Clay	Asbestos Absence /Presence	CANCELLED	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
32 e	urne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х
dh	y Laboratory	- NATA Site # 1	18217				Х	Х									
		y - NATA Site#				Х											
	nal Laboratory																
1	P25_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10406				Х								
חבר	P28_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10407				Х								
18 <u>—</u>	P29_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10408				Х								
	P30_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10409				Х								
	P31_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10410				Х								
	P33_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10411			X									
	P26_0.9-1.0	Oct 10, 2016		Soil	S16-Oc10412				Х								
	P06_0.2-0.3	Oct 10, 2016		Soil	S16-Oc10413				Х							\bigsqcup	
	P15_0.1	Oct 10, 2016		Soil	S16-Oc10414				Х								
st	ounts					4	6	3	18	4	15	17	40	45	52	4	43

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 pbb: Parts per billion
 %: Percentage

org/100mI: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate

A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&i)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	ilig/L	10.001	0.001	1 400	
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin		< 0.0001	0.0001	Pass	
	mg/L				
b-BHC d-BHC	mg/L	< 0.0001 < 0.0001	0.0001 0.0001	Pass Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
	mg/L				
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	L

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank	ı ıııgı L	- 0.01	0.01	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH > C16-C34	mg/L	< 0.1	0.00	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	IIIg/L	<u> </u>	0.1	Fd55	
Heavy Metals		. 0.004	0.004	D	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	92	70-130	Pass	
TRH C10-C14	%	124	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	76	70-130	Pass	
Toluene	%	80	70-130	Pass	
Ethylbenzene	%	101	70-130	Pass	
m&p-Xylenes	%	88	70-130	Pass	
Xylenes - Total	%	90	70-130	Pass	
LCS - % Recovery	,,,		70 100	1 466	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	125	70-130	Pass	
TRH C6-C10	%	89	70-130	Pass	
LCS - % Recovery	70	09	10-130	газэ	
·				Ι	
Polycyclic Aromatic Hydrocarbons	0/	0.5	70.420	D	
Acenaphthene	%	85	70-130	Pass	
Acenaphthylene	%	93	70-130	Pass	
Anthracene	%	86	70-130	Pass	
Benz(a)anthracene	%	70	70-130	Pass	
Benzo(a)pyrene	%	96	70-130	Pass	
Benzo(b&j)fluoranthene	%	101	70-130	Pass	
Benzo(g.h.i)perylene	%	70	70-130	Pass	
Benzo(k)fluoranthene	%	117	70-130	Pass	
Chrysene	%	75	70-130	Pass	
Dibenz(a.h)anthracene	%	75	70-130	Pass	
Fluoranthene	%	77	70-130	Pass	
Fluorene	%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	70	70-130	Pass	
Naphthalene	%	80	70-130	Pass	
1 ****	%	84	70-130		

Т	est		Units	Result 1	Ac	ceptance Limits	Pass Limits	Qualifying Code
Pyrene			%	76		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
4.4'-DDD			%	91		70-130	Pass	
4.4'-DDE			%	75		70-130	Pass	
4.4'-DDT			%	117		70-130	Pass	
a-BHC			%	96		70-130	Pass	
Aldrin			%	108		70-130	Pass	
b-BHC			%	116		70-130	Pass	
d-BHC			%	127		70-130	Pass	
Dieldrin			%	96		70-130	Pass	
Endosulfan I			%	103		70-130	Pass	
Endosulfan II			%	107		70-130	Pass	
Endosulfan sulphate			%	115		70-130	Pass	
Endrin			%	101		70-130	Pass	
Endrin aldehyde			%	76		70-130	Pass	
Endrin ketone			%	93		70-130	Pass	
g-BHC (Lindane)			%	125		70-130	Pass	
Heptachlor			%	122		70-130	Pass	
Heptachlor epoxide			%	125		70-130	Pass	
Hexachlorobenzene			%	112		70-130	Pass	
Methoxychlor			%	111		70-130	Pass	
LCS - % Recovery						<u>'</u>		
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions						
TRH >C10-C16			%	123		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	89		80-120	Pass	
Cadmium			%	85		80-120	Pass	
Chromium			%	84		80-120	Pass	
Copper			%	85		80-120	Pass	
Lead			%	88		80-120	Pass	
Mercury			%	90		75-125	Pass	
Nickel			%	86		80-120		
				1		80-120	Pass	
Zinc		0.0	%	86			Pass	O
Test	Lab Sample ID	QA Source	Units	Result 1	AC	ceptance Limits	Pass Limits	Qualifyin Code
Spike - % Recovery	one 4000 NEDM Front			Doguit 4		I		
Total Recoverable Hydrocarb TRH C6-C9	M16-Oc09766	NCP	%	Result 1		70-130	Pass	
TRH C6-C9 TRH C10-C14				73				
	M16-Oc08670	NCP	%	/4		70-130	Pass	
Spike - % Recovery				D #4				
BTEX		T=		Result 1			_	
Benzene	M16-Oc09766	NCP	%	86		70-130	Pass	
Toluene	M16-Oc09766	NCP	%	83		70-130	Pass	
	M16-Oc09766	NCP	%	95		70-130	Pass	
Ethylbenzene	M16-Oc09766	NCP	%	83		70-130	Pass	
m&p-Xylenes		L NCD	%	89		70-130	Pass	
m&p-Xylenes o-Xylene	M16-Oc09766	NCP				70-130	D	
m&p-Xylenes o-Xylene Xylenes - Total	M16-Oc09766 M16-Oc09766	NCP	%	85		70-130	Pass	
m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery	M16-Oc09766	NCP				70-130	Pass	
m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery	M16-Oc09766	NCP	%	85 Result 1		70-130	Pass	
m&p-Xylenes o-Xylene	M16-Oc09766	NCP				70-130	Pass	
m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarb	M16-Oc09766 ons - 2013 NEPM Fract	NCP	%	Result 1				

Page 14 of 17 Report Number: 519296-W

Date Reported: Oct 18, 2016
Document Set ID: 7540488
Version: 1, Version Date: 22/02/2017

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chlordanes - Total	M16-Oc04549	NCP	%	0.0000000			70-130	Fail	
4.4'-DDD	M16-Oc08533	NCP	%	114			70-130	Pass	
4.4'-DDE	M16-Oc08533	NCP	%	99			70-130	Pass	
4.4'-DDT	B16-Oc07593	NCP	%	120			70-130	Pass	
a-BHC	M16-Oc08533	NCP	%	92			70-130	Pass	
Aldrin	M16-Oc08533	NCP	%	120			70-130	Pass	
b-BHC	M16-Oc08533	NCP	%	111			70-130	Pass	
d-BHC	B16-Oc07593	NCP	%	72			70-130	Pass	
Dieldrin	M16-Oc08533	NCP	%	115			70-130	Pass	
Endosulfan I	B16-Oc07593	NCP	%	85			70-130	Pass	
Endosulfan II	M16-Oc04549	NCP	%	0.0000000			70-130	Fail	
Endosulfan sulphate	M16-Oc08533	NCP	%	76			70-130	Pass	
Endrin	M16-Oc04549	NCP	%	0.0000000			70-130	Fail	
Endrin aldehyde	M16-Oc08533	NCP	%	106			70-130	Pass	
Endrin ketone	B16-Oc07593	NCP	%	102			70-130	Pass	
g-BHC (Lindane)	M16-Oc08533	NCP	%	112			70-130	Pass	
Heptachlor	M16-Oc04549	NCP	%	0.0000000			70-130	Fail	
Heptachlor epoxide	B16-Oc07593	NCP	%	125			70-130	Pass	
Hexachlorobenzene	M16-Oc08533	NCP	%	115			70-130	Pass	
Methoxychlor	M16-Oc04549	NCP	%	0.0000000			70-130	Fail	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1					
TRH >C10-C16	M16-Oc08670	NCP	%	74			70-130	Pass	
Spike - % Recovery		'							
Heavy Metals				Result 1					
Arsenic	M16-Oc09412	NCP	%	91			75-125	Pass	
Cadmium	M16-Oc09412	NCP	%	83			75-125	Pass	
Chromium	M16-Oc09412	NCP	%	84			75-125	Pass	
Copper	M16-Oc09412	NCP	%	83			75-125	Pass	
Lead	M16-Oc09412	NCP	%	86			75-125	Pass	
Mercury	M16-Oc09412	NCP	%	87			70-130	Pass	
Nickel	M16-Oc09412	NCP	%	84			75-125	Pass	
Zinc	M16-Oc09412	NCP	%	83			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	'			_					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	M16-Oc09627	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M16-Oc08669	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M16-Oc08669	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M16-Oc08669	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			.		.	•	22.0		
BTEX				Result 1	Result 2	RPD			
Benzene	M16-Oc09627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M16-Oc09627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M16-Oc09627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M16-Oc09627	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M16-Oc09627	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Xylenes - Total	M16-Oc09627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate	10110-0003021	1101	mg/L	- 0.000	- 0.000	*1	0070	1 433	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	M16-Oc09627	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M16-Oc09627	NCP	mg/L	< 0.01	< 0.01	<u> </u>	30%	Pass	
1111 00-010	NTTO-0003021	NOF	mg/L	1 - 0.02	- 0.02	- 1	J 50 70	1 433	

mgt

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M16-Oc08532	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4.4'-DDD	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDE	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDT	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
a-BHC	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Aldrin	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin ketone	M16-Oc08532	NCP	mg/L	< 0.0005	< 0.0005	<1	30%	Pass	
g-BHC (Lindane)	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor epoxide	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Hexachlorobenzene	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Methoxychlor	M16-Oc08532	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Toxaphene	M16-Oc08532	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M16-Oc08669	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M16-Oc08669	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M16-Oc08669	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M16-Oc09412	NCP	mg/L	0.002	0.002	<1	30%	Pass	
Cadmium	M16-Oc09412	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M16-Oc09412	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M16-Oc09412	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	M16-Oc09412	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M16-Oc09412	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M16-Oc09412	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	M16-Oc09412	NCP	mg/L	0.027	0.025	7.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description
Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, but sprifts, damages for risdilure to meet deadlines and lots production arising from this report. This document shall be reported evec except in full and retriested only to the literals indicated otherwise, the testis were performed on the samples as received.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 155048

Client:

JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St Sydney NSW 2000

Attention: R Hammond, S Morinali

Sample log in details:

Your Reference: 52116, Caddens DSI

No. of samples: 3 Soils

Date samples received / completed instructions received 11/10/16 / 11/10/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 18/10/16 / 18/10/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer/ General Manager

			Г	
vTRH(C6-C10)/BTEXN in Soil				
Our Reference:	UNITS	155048-1	155048-2	155048-3
Your Reference		QC01A	QC02A	QC03A
	-			
Date Sampled		10/10/2016	10/10/2016	10/10/2016
Type of sample		Soil	Soil	Soil
Date extracted	-	13/10/2016	13/10/2016	13/10/2016
Date analysed	-	14/10/2016	14/10/2016	14/10/2016
TRHC6-C9	mg/kg	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	82	84	79

svTRH(C10-C40)in Soil				
Our Reference:	UNITS	155048-1	155048-2	155048-3
Your Reference		QC01A	QC02A	QC03A
	-			
Date Sampled		10/10/2016	10/10/2016	10/10/2016
Type of sample		Soil	Soil	Soil
Date extracted	-	13/10/2016	13/10/2016	13/10/2016
Date analysed	-	13/10/2016	13/10/2016	13/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50
TRH>C10 - C18 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	99	100	98

PAHs in Soil		
Our Reference:	UNITS	155048-3
Your Reference		QC03A
Date Sampled	-	10/10/2016
Type of sample		Soil
		13/10/2016
Date extracted	-	
Date analysed	-	13/10/2016
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE
Surrogate p-Terphenyl-d14	%	78

Organochlorine Pesticides in soil		
Our Reference:	UNITS	155048-3
Your Reference		QC03A
Date Sampled	-	10/10/2016
Type of sample		Soil
Date extracted	-	13/10/2016
Date analysed	-	15/10/2016
НСВ	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan l	mg/kg	<0.1
pp-DDE	mg/kg	0.2
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	91

Acid Extractable metals in soil				
Our Reference:	UNITS	155048-1	155048-2	155048-3
Your Reference		QC01A	QC02A	QC03A
	-			
Date Sampled		10/10/2016	10/10/2016	10/10/2016
Type of sample		Soil	Soil	Soil
Date prepared	-	13/10/2016	13/10/2016	13/10/2016
Date analysed	-	13/10/2016	13/10/2016	13/10/2016
Arsenic	mg/kg	5	8	8
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	11	25	36
Copper	mg/kg	29	28	27
Lead	mg/kg	13	20	19
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	15	23	27
Zinc	mg/kg	42	56	65

Moisture Our Reference: Your Reference	UNITS	155048-1 QC01A	155048-2 QC02A	155048-3 QC03A
Date Sampled Type of sample		10/10/2016 Soil	10/10/2016 Soil	10/10/2016 Soil
Date prepared	-	13/10/2016	13/10/2016	13/10/2016
Date analysed	-	14/10/2016	14/10/2016	14/10/2016
Moisture	%	11	14	14

Asbestos ID - soils		
Our Reference:	UNITS	155048-3
Your Reference		QC03A
	-	
Date Sampled		10/10/2016
Type of sample		Soil
Date analysed	-	17/10/2016
Sample mass tested	g	Approx 75g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected

Envirolab Reference: 155048 Revision No: R 00

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql 'teq="" 2.="" <pql="" actually="" all="" and="" approach="" are="" as="" assuming="" at="" be="" below="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" is="" least="" may="" more="" most="" negative="" not="" pahs="" positive="" pql.="" pql.<="" present="" present.="" reported="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" values="" when="" zero'="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" td="" the="" therefore"="" total=""></pql>
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Client Reference: 52116, Caddens DSI QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXN in Base II Duplicate II %RPD Soil Date extracted 13/10/2 [NT] [NT] LCS-5 13/10/2016 016 14/10/2 Date analysed LCS-5 14/10/2016 [NT] [NT] 016 Org-016 101% TRHC6-C9 mg/kg 25 <25 [NT] [NT] LCS-5 TRHC6-C10 25 Org-016 <25 LCS-5 101% mg/kg [NT] [NT] Org-016 105% 0.2 <0.2 [NT] LCS-5 Benzene mg/kg [NT] 0.5 Org-016 <0.5 LCS-5 101% Toluene mg/kg [NT] [NT] Org-016 99% Ethylbenzene mg/kg 1 <1 [NT] [NT] LCS-5 2 Org-016 99% <2 LCS-5 m+p-xylene mg/kg [NT] [NT] Org-016 105% o-Xylene mg/kg 1 <1 [NT] [NT] LCS-5 naphthalene mg/kg 1 Org-014 <1 [NT] [NT] [NR] [NR] % Org-016 90 LCS-5 90% [NT] [NT] Surrogate aaa-Trifluorotoluene QUALITYCONTROL UNITS PQL Spike % **METHOD** Blank Duplicate Duplicate results Spike Sm# Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II %RPD Date extracted 13/10/2 [NT] [NT] LCS-5 13/10/2016 016 13/10/2 13/10/2016 Date analysed [NT] LCS-5 [NT] 016 Org-003 TRHC10 - C14 mg/kg 50 <50 [NT] [NT] LCS-5 94% Org-003 95% TRHC15 - C28 mg/kg 100 <100 [NT] [NT] LCS-5 Org-003 100 <100 LCS-5 82% TRHC 29 - C36 mg/kg [NT] [NT] Org-003 TRH>C10-C16 mg/kg 50 <50 [NT] [NT] LCS-5 94% Org-003 95% TRH>C16-C34 mg/kg 100 <100 [NT] [NT] LCS-5 100 Org-003 <100 LCS-5 82% TRH>C34-C40 mg/kg [NT] [NT] Surrogate o-Terphenyl Org-003 73% % 102 [NT] [NT] LCS-5 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD 13/10/2 Date extracted [NT] [NT] LCS-5 13/10/2016 016 13/10/2 LCS-5 13/10/2016 Date analysed [NT] [NT] 016 Org-012 103% Naphthalene 0.1 < 0.1 [NT] [NT] LCS-5 mg/kg Acenaphthylene 0.1 Org-012 <0.1 [NR] [NR] mg/kg [NT] [NT] Org-012 Acenaphthene mg/kg 0.1 < 0.1 [NT] [NT] [NR] [NR] Org-012 Fluorene mg/kg 0.1 <0.1 [NT] [NT] LCS-5 109% 0.1 Org-012 <0.1 LCS-5 129% Phenanthrene mg/kg [NT] [NT] 0.1 Org-012 Anthracene mg/kg <0.1 [NT] [NT] [NR] [NR] Fluoranthene mg/kg 0.1 Org-012 <0.1 [NT] [NT] LCS-5 117% 0.1 Org-012 <0.1 LCS-5 118% Pyrene mg/kg [NT] [NT] Benzo(a)anthracene mg/kg 0.1 Org-012 <0.1 [NT] [NT] [NR] [NR]

Envirolab Reference: 155048 Revision No: R 00

mg/kg

mg/kg

0.1

0.2

Org-012

Org-012

<0.1

<0.2

[NT]

[NT]

[NT]

[NT]

Page 10 of 14

[NR]

[NR]

[NR]

[NR]

Chrysene

Benzo(b,j

+k)fluoranthene

		Clie	ent Referenc	e: 52	2116, Cadde	ens DSI		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-5	110%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	100	[NT]	[NT]	LCS-5	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			13/10/2 016	[NT]	[NT]	LCS-5	13/10/2016
Date analysed	-			15/10/2 016	[NT]	[NT]	LCS-5	15/10/2016
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	82%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	98%
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	96%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	103%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	98%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan l	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	100%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	103%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	96%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	99%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	70%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	87	[NT]	[NT]	LCS-5	106%

Envirolab Reference: 155048 Revision No: R 00

Page 11 of 14

		Cile	ent Referenc	:e: 5₄	2116, Caddei	าร บอเ		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date prepared	-			13/10/2 016	[NT]	[NT]	LCS-5	13/10/2016
Date analysed	-			13/10/2 016	[NT]	[NT]	LCS-5	13/10/2016
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	LCS-5	116%
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	LCS-5	105%
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	113%
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	109%
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	107%
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	LCS-5	88%
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	104%
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	111%

Envirolab Reference: 155048 Revision No: R 00 Page 12 of 14

Report Comments:

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Sample 155048-3 were sub-sampled from bag provided by the client.

Asbestos ID was analysed by Approved Identifier: Paul Ching Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 155048 Revision No: R 00 Page 13 of 14

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 155048
Revision No: R 00

CHAIN OF CUSTODY

NAMATIV Saga		N OF CUSTODY	SAMPLERS: RAMA (2013)	om.au; (3) S. M. M. M. M. M. W.	S G AND SHOT WARES	17 RIPS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Env	ENVROUMB Charswood NSW 2067	JUB NO: (150 458	Date Received: W/W	1 1 p	Received by: A 3	Coeing: tog(cepack	Security: (htacken/None			RECEIVED BY: FOR RECEIVING LAB USE ONLY:		E: AZ 14:30	COOLER SEAL – Yes No Intact (1/10) {4:30} COOLER TEMP deg C COOLER SEAL – Yes No Intact
	TIME	@jbsg.com.ar	@jbsg.com.au	BJEX S	とりか	F. H. H. J. S. C.	Wartbay Mis XX			With the state of		Date	Tim	Kec Ten	3	Ž.				METHOD OF SHIPMENT: RECEIVED BY:	NAME:	NAME: AS SECEIVED BY: NAME: AS SECEIVED BY: DATE: I// N
D300 Perth: 08 94 TO: (1) adminnsw@ TORAGE OR DISPOSAL: SO! (C// MATRIX D (C// (C// C// (C// C// (C// (C//		S	B BROJECT NO.: 52 11.	BHONE: Sydney: 02 8243 (SEND REPORT & INVOICE	COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	SAMPLE ID	100019	\$ 0,000 4 \$ 0,003 4											GHSIIIONIII	RELINQUISHED BY	Shar	NAME: RELINQUISHED NAME: DATE:

Appendix G Quality Assurance / Quality Control

©JBS&G Australia Pty Ltd | 52116-105322

G.1 QA/QC Results

Analysis of the Quality Analysis / Quality Control (QA/QC) has thus been undertaken for analytical results from the site. QA/QC results for soil samples collected at the site are summarised in **Table G.1** and discussed in **Section G.2**. Detailed laboratory QA/QC results are included as part of the laboratory reports in **Appendix F**, and JBS&G's review of laboratory supplied of Quality Assurance/Quality Control data is presented in **Appendix J**.

Table G.1: QA/QC Results Summary

Data Quality Indicator	Results	DQI met?	
Precision			
Soil Blind duplicates (intra laboratory)	0-33 % RPD	Yes	
	Intra laboratory samples were analysed at a rate		
	greater than 1 in 20 samples.		
Soil Blind triplicates (inter laboratory)	0-58% RPD	Partial ¹	
	Intra laboratory samples were analysed at a rate		
	greater than 1 in 20 samples.		
T. I	0-26% RPD	Yes	
Laboratory duplicates	Intra laboratory samples were analysed at a rate of 1		
A	in 20 samples.		
Accuracy	FO. 1400/ Papariam.	Dawtial1	
Surrogate spikes	50- 149% Recovery	Partial ¹	
	Surrogate spikes were completed for all organic samples		
Laboratory Control Samples	70-128% Recovery	Yes	
Laboratory Control Samples	Laboratory control samples were completed for all	163	
	organic and metals samples		
Matrix spikes	70-130% Recovery	Yes	
Triderix Spikes	Matrix spikes were completed for all organic and	165	
	metals samples		
Representativeness	·		
Sampling appropriate for media and	All sampling conducted in accordance with JBS&G	Yes	
analytes	procedures		
Laboratory blanks	<lor< td=""><td>Yes</td></lor<>	Yes	
Samples extracted and analysed within	All samples were extracted and analysed within	Yes	
holding times.	holding times.		
Trip spikes	78%-84%	Yes	
Trip blanks	<lor< td=""><td>Yes</td></lor<>	Yes	
Rinsate blank	Generally <lor at<="" detected="" exception="" of="" td="" the="" with="" zinc=""><td>Partial¹</td></lor>	Partial ¹	
	the reporting limit		
Comparability			
Standard operating procedures used for	Two JBS&G field scientists used standard operating	Yes	
sample collection & handling	procedures throughout works.		
Standard analytical methods used	Standard analytical methods used, as detailed in the laboratory reports (Appendix F)	Yes	
Consistent field conditions, sampling staff	Sampling was conducted by two field staff members	Yes	
and laboratory analysis	using standard operating procedures in the same		
	conditions throughout the works. The laboratories		
	remained consistent throughout the investigation.		
Limits of reporting appropriate and consistent	Limits of reporting were consistent and appropriate.	Yes	
Completeness			
Soil description & Chains of Custody	All borehole logs and Chains of Custody were	Yes	
completed	completed appropriately.		
Appropriate documentation	All appropriate field documentation processes were	Yes	
	undertaken. Borehole logs and Calibration/		
	Decontamination records are included as Appendix I .		
Satisfactory frequency/result for QC	The QC results are considered adequate for the	Yes	
samples	purposes of the investigation.		

Data from critical samples is considered valid	Data from critical samples is considered valid.	Yes
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria	Appropriate laboratory analysis methods and detection limits were considered to have been achieved during the field and laboratory phases of this investigation.	Yes

^{1.} See discussion of DQI exceedances in Section 7.2.

G.2 QA/QC Discussion

G.2.1 Precision

Analytical results for the primary soil samples were within acceptable limits of agreement when compared with the blind duplicate samples for all analytes within all samples analysed. Analytical results for the primary soil samples were generally within the acceptable limits of agreement when compared with the split duplicate samples with the exception of the following:

- An RPD of 51 % was reported for arsenic between primary sample TP03 0-0.1 and split duplicate sample QC01A;
- An RPD of 58 % was reported for chromium between primary sample TP03 0-0.1 and split duplicate sample QC01A;
- An RPD of 34 % was reported for copper between primary sample TP03 0-0.1 and split duplicate sample QC01A;
- An RPD of 42 % was reported for zinc between primary sample TP03 0-0.1 and split duplicate sample QC01A; and
- An RPD of 46 % was reported for 4,4-DDE between primary sample TP03 0-0.1 and split duplicate sample QC03A.

The RPDs for the intra-laboratory and inter-laboratory duplicates and triplicates are presented in **Appendix H**. High RPDs are considered to be the result of heterogeneity in the soil samples collected. No analytical results from any of the analysed samples, including blind and split duplicates, were in excess of the adopted site criteria and therefore elevated RPDs results are not considered to influence the outcome of the investigation.

All laboratory duplicates returned RPDs within the acceptable limits.

On this basis the DQIs for precision are considered to have been achieved for this investigation.

G.2.2 Accuracy

Surrogate spike recoveries were generally within the acceptable range of 70-130%, with the exception of the following:

- 4-Bromofluorobenzene was under reported in 21 surrogate spike analyses with recoveries
 ranging from 50 % to 59 %. This analyte is a surrogate for BTEX compounds; given that all
 BTEX compounds were reported to be below the laboratory LOR and significantly (10x)
 below the adopted site criteria, this minor discrepancy is not considered to have negatively
 affected the reliability of the dataset for the intended purpose;
- Dibutylchlorendate was over reported in 12 surrogate spike analyses with recoveries ranging from 131 % to 149 %. This analyte is a surrogate for OCP compounds; given that all OCP compounds were reported significantly (10x) below the adopted site criteria, this minor discrepancy is not considered to have negatively affected the reliability of the dataset for the intended purpose;

©JBS&G Australia Pty Ltd | 52116-105322

Tetrachloro-m-xylene was over reported in 2 surrogate spike analyses and under reported in 2 surrogate spike analyses with reported recoveries ranging from 51 % to 144 %. This analyte is a surrogate for OCP compounds; given that all OCP compounds were reported significantly (10x) below the adopted site criteria, this minor discrepancy is not considered to have negatively affected the reliability of the dataset for the intended purpose;

Laboratory control sample (LCS) recoveries were within the acceptable range of 70-130% and are considered acceptable.

Matrix spike recoveries were within the acceptable range of 70-130% and are considered acceptable.

On this basis the DQIs for accuracy are considered to have been achieved for this investigation.

G.2.3 Representativeness

The extraction and analysis of selected soil samples was completed within the recommended holding times for all analytes.

A rinsate sample was collected following decontamination of all non-disposable sampling equipment for the soil sampling event. Analyte concentrations in the rinsate blanks were generally below the laboratory limit of reporting (LOR), with the exception of nickel (0.001 mg/L in RINS 10/10/2016). It is considered likely that small particulates of soil which were not able to be removed from the hand trowel between each location and became dislodged during the rinsate procedure would have been washed into the sample container and returned a positive result when analysed. Given the lack of significant concentrations of zinc reported in any of the analysed samples, it is considered that possible cross-contamination as a result of ineffective implementation of decontamination procedures has not negatively affected the data set. Decontamination records are presented in **Appendix I**.

A trip spike was submitted with the soil samples collected during the assessment. Trip spike recoveries for analytes was within the acceptable limit of 70-130%.

A storage blank was submitted with the soil samples collected during the assessment. There were no reported concentrations of BTEX compounds above the laboratory LOR.

All laboratory blanks analysed reported analyte concentrations less than the laboratory LOR.

All field equipment was decontaminated appropriately as per the procedure identified in **Section E.2.3**. Collected samples were immediately placed into the sample containers, sealed and then placed into chilled eskies to minimise volatile loss.

Based on the above comments the DQIs for representativeness were considered to have been satisfactorily achieved.

G.2.4 Comparability

Eurofins, the primary laboratory, and Envirolab Services, the secondary laboratory, are NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the analytical data were comparable between laboratories as indicated by the results of duplicate analysis. Where different LORs were adopted by the laboratories, this did not impact upon the usability of the data given that all values were considerably less than the adopted assessment criteria.

The samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

G.2.5 Completeness

All laboratory and field documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix F**. Bore hole logs are presented in **Appendix H**.

The frequency of analysis of all QA/QC samples was considered appropriate and valid.

G.2.6 Sensitivity

The adopted soil analytical methods provided suitable LORs with respect to the adopted site assessment criteria.

G.3 QA/QC Conclusions

The field sampling and handling procedures across the Site produced QA/QC results which indicate that soil data collected is of an acceptable quality.

The NATA certified laboratory reports indicate that the project laboratories were achieving levels of performance within its recommended control limits during the period when the samples from this program were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the Site.

Appendix H Field Borehole Logs

©JBS&G Australia Pty Ltd | 52116-105322

TP01

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Pit Dimension (m3): 450

Eastings (GDA 94): 290540.6 **Northings (GDA 94):** 6260688

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Elevation (m):

L							
Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Red / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass)	TP01 0-0.1 PID = 0 ppm	
	_	0.10		CL-ML	Red / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
	_					TP01 0.2-0.3 PID = 0 ppm	
	_						
L	0.5	0.50			Test Pit TP01 terminated at 0.5m		
	-						
	-						
	-	_					
	-	-					
20/10/16	1.0						
STRALIA.GDT	_	-					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-	-					
ST PIT.GPJ (-						
PIT JBSG TE	-	-					
TEST	1 <u>.5</u>						

Project Number: 52116
Client: Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290574.9 **Northings (GDA 94):** 6260684

Zone/Area:

Total Hole Depth (mbgs): 0.5 **Reference Level:** Ground Surface

Pit Dimension (m3): 450 Elevation (m):

L							
Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Red and orange / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass)	TP02 0-0.1 PID = 0 ppm	
	-	0.10		CL-ML	Red and orange / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
	-					TP02 0.2-0.3 PID = 0 ppm	
	-						
	0.5	0.50			Test Pit TP02 terminated at 0.5m		
		0.00			Toot it in our terminated at 0.0m		
	-						
	-	_					
	-						
	-						
0/10/16	1.0						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-	-					
INT STD AUS	-						
ST PIT.GPJ G	-						
OIT JBSG TES	_	-					
TEST	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290609.1 **Northings (GDA 94):** 6260672

Zone/Area:

Total Hole Depth (mbgs): 0.5 **Reference Level:** Ground Surface

Pit Dimension (m3): 450 Elevation (m):

			. ()				
Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass)	TP03 0-0.1 PID = 0 ppm	
	-	0.10		CL-ML	Brown / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
	_					TP03 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP03 terminated at 0.5m		
	-						
	-						
	-						
	-						
20/10/16	1.0						
STRALIA.GDT	-						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-						
EST PIT.GPJ (-						
PIT JBSG TE	-						
TEST	1.5						

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290529 Northings (GDA 94): 6260639

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

						1	T
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Red and orange / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass)	TP04 0-0.1 PID = 0 ppm	
	_	0.10		CL-ML	Red and orange / homogeneous / damp / low plasticity / stiff / no inclusions		No odours, staining or asbestos in the soil profi
	_	,				TP04 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP04 terminated at 0.5m	_	
	_						
	_						
	_						
	_	·					
	1.0						
	_						
	_						
	_						
	_						
	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290567.4 **Northings (GDA 94):** 6260635

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

Method	Denth (mhas)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Red and orange / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass)	TP05 0-0.1 PID = 0 ppm	
		0.1		CL-ML	Red and orange / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
						TP05 0.2-0.3 PID = 0 ppm	
		_					
	0	.5			Test Pit TP05 terminated at 0.5m		
		_					
		-					
		-					
20/10/16	1	.0					
TRALIA.GDT							
INT STD AUS		-					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16		-					
PIT JBSG TE		-					
TEST	1	.5					

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290605.2 **Northings (GDA 94):** 6260631

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

Method		Contact (mbos)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Red / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass)	TP06 0-0.1 PID = 0 ppm	
		0.1		CL-ML	Red / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
						TP06 0.2-0.3 PID = 0 ppm	
		_					
	0	.5			Test Pit TP06 terminated at 0.5m		
		_					
		_					
		-					
0/10/16	1	.0					
RALIA.GDT 20		-					
INT STD AUST		-					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16							
PIT JBSG TE							
TEST	1	.5					

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290517.2 **Northings (GDA 94):** 6260607

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

\mid	(sbi	(sbqu	бо	le e		Samples	
Method		Contact (mbgs)	Graphic Log	Lithological	Lithological Description	Tests Remarks	Additional Observations
Test Pit				CL-ML	Red and orange / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass)	TP07 0-0.1 PID = 0 ppm	
		0.10		CL	Red and orange / homogeneous / damp / low plasticity / stiff / no inclusions		No odours, staining or asbestos in the soil profile
						TP07 0.2-0.3 PID = 0 ppm	
		_					
	0.	5 0.50			Test Pit TP07 terminated at 0.5m		
		-					
10/16	1_	0					
ALIA.GDT 20		_					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16							
PIT.GPJ GIN							
T JBSG TEST							
TEST PIT	1 <u>.</u>	5					

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290561.7 **Northings (GDA 94):** 6260591

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Red and brown / homogeneous / dry / low plasticity / hard / inclusions of organics (rootlets and grass)	TP08 0-0.1 PID = 0 ppm	
		0.10		CL-ML	Red and brown / homogeneous / damp / low plasticity / stiff / no inclusions		No odours, staining or asbestos in the soil profile
	_	,				TP08 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP08 terminated at 0.5m		
	_						
	_						
	_						
	_	¢					
. 20/10/16	1.0						
JSTRALIA.GDT	_						
I GINT STD AL	_						
TEST PIT.GPJ	_	s					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290597.3 **Northings (GDA 94):** 6260590

Zone/Area:

Total Hole Depth (mbgs): 0.5 **Reference Level:** Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Orange / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass)	TP09 0-0.1 PID = 0 ppm	
	-	0.10		CL	Orange / homogeneous / damp / low plasticity / stiff / inclusions of weathered shale gravels		No odours, staining or asbestos in the soil profile
	-	-				TP09 0.2-0.3 PID = 0 ppm	
	-	_					
	0.5	0.50			Test Pit TP09 terminated at 0.5m		
	-						
	_	-					
	_	_					
	-	-					
20/10/16	1.0	_					
TRALIA.GDT	-	-					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-	-					
ST PIT.GPJ G	-						
IT JBSG TES	-	-					
TEST F	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290508.7 **Northings (GDA 94):** 6260569

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Orange / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass)	TP10 0-0.1 PID = 0 ppm	
	_	0.10		CL	Orange / homogeneous / damp / moderate plasticity / stiff / no inclusions		No odours, staining or asbestos in the soil profil
						TP10 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP10 terminated at 0.5m		
	_						
	_						
	_						
	_						
	1 <u>.0</u>						
	_						
	-						
	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290553.4 **Northings (GDA 94):** 6260560

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

L							
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass) and minor surficial sands	TP11 0-0.1 PID = 0 ppm	
	_	0.10		CL-ML	Brown / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
	_					TP11 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP11 terminated at 0.5m		
	_						
	_						
	_						
	_						
20/10/16	1.0						
STRALIA.GDT	_						
GINT STD AU	_						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_						
T PIT JBSG TI	_						
TES.	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290592.3 **Northings (GDA 94):** 6260551

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Orange and yellow / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass)	TP12 0-0.1 PID = 0 ppm	
		0.10		CL-ML	Orange and yellow / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
		_				TP12 0.2-0.3 PID = 0 ppm	
		-					
	0	.5			Test Pit TP12 terminated at 0.5m		
		-					
		-					
		-					
0/10/16	1	.0					
RALIA.GDT 2		-					
INT STD AUST		-					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16		-					
PIT JBSG TE		-					
TEST	1	.5					

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290509.3 Northings (GDA 94): 6260520

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

\vdash	$\overline{}$							
Method		Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Ailder	of Color				Fill	Orange and yellow / heterogeneous / dry / low plasticity / stiff / inclusions of building rubble (bricks, metal, ash, wood) and ACM present at surface	TP13 0-0.1 PID = 0 ppm	
					CL-ML	Orange and yellow / homogeneous / dry / low plasticity / stiff / no inclusions		No odours, staining or asbestos in the soil profile
			0.20				TP13 0.2-0.3 PID = 0 ppm	
		_						
		0.5	0.50			Test Pit TP13 terminated at 0.5m		
		-						
		_						
		-						
/10/16		1.0						
RALIA.GDT 20		_						
NT STD AUSTE		-						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16		-						
IT JBSG TES		-						
TEST P		1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290545.8 **Northings (GDA 94):** 6260518

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method		Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	1 150				CL-ML	Brown / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass)	TP14 0-0.1 PID = 0 ppm	
			0.10		CL-ML	Orange / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
							TP14 0.2-0.3 PID = 0 ppm	
		0.5	0.50			Test Pit TP14 terminated at 0.5m		
			0.00					
		_						
/10/16		1.0						
RALIA.GDT 20		-						
NT STD AUST		-						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16								
NT JBSG TES								
TEST		1.5						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290585.5 **Northings (GDA 94):** 6260512

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / damp / low plasticity / soft / inclusions of organics (rootlets and grass) and minor surficial sands	TP15 0-0.1 PID = 0 ppm	
		0.10		CL-ML	Brown / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
		_				TP15 0.2-0.3 PID = 0 ppm	
		_					
	0.	5 0.50			Test Pit TP15 terminated at 0.5m		
		_					
0/10/16	1 <u>.</u>	0					
RALIA.GDT 2		-					
SINT STD AUST		_					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16							
PIT JBSG TE							
TEST	1.	5					

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290346.9 **Northings (GDA 94):** 6260502

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

\vdash	1						
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Brown / heterogeneous / dry /non plastic / soft / inclusions of building rubble (bricks, tiles, concrete, igneous gravels and ACM)	TP16 0-0.1 PID = 0 ppm	
	-	_		CL-ML	Red / homogeneous / dry to damp / low plasticity / stiff / no inclusions		No odours, staining or asbestos in the soil profile
	_	0.20				TP16 0.2-0.3 PID = 0 ppm	
	_	_					
	0.5	0.50			Test Pit TP16 terminated at 0.5m		
		0.00					
	-	_					
	-	_					
	-	-					
10/16	1.0						
ALIA.GDT 20/	_	-					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_	-					
PIT.GPJ GIN	_	_					
JBSG TEST	_	_					
TEST PIT	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290392.7 **Northings (GDA 94):** 6260498

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

_					T		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / dry / non plastic / stiff / no inclusions	TP17 0-0.1 PID = 0 ppm	
		0.10		CL-ML	Redish brown / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profil
	_					TP17 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP17 terminated at 0.5m		
	_						
	_						
	_						
	_						
	1.0						
	_						
	_						
	_						
	1 <u>.5</u>						

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290440.7 Northings (GDA 94): 6260494

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Redish brown / homogeneous / dry / low plasticity / soft / inclusions of minor organics (rootlets and grass)	TP18 0-0.1 PID = 0 ppm	
							No odours, staining or asbestos in the soil profile
						TP18 0.2-0.3 PID = 0 ppm	
	0.5						
		0.50			Test Pit TP18 terminated at 0.5m		
	_						
	_						
16	1.0						
A.GDT 20/10/	_						
TD AUSTRAL	_						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-						
JBSG TEST PI	-						
TEST PIT.	1.5						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290481.9 **Northings (GDA 94):** 6260488

Zone/Area:

Total Hole Depth (mbgs): 0.5 Pit Dimension (m3): 450 Reference Level: Ground Surface

Elevation (m):

Method		Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Total	1691				CL-ML	Brown / homogeneous / dry / low plasticity / soft / inclusions of organics (rootlets and grass) and minor surficial sands	TP19 0-0.1 PID = 0 ppm	
			0.10		CL-ML	Brown / homogeneous / damp / low plasticity / soft / no inclusions		No odours, staining or asbestos in the soil profile
		_					TP19 0.2-0.3 PID = 0 ppm	
		-						
		0.5	0.50			Test Pit TP19 terminated at 0.5m		
		-						
		-						
		-						
20/10/16		1.0						
STRALIA.GDT		-						
GINT STD AU		_						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16		-						
T PIT JBSG T								
TES		1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290334.9 **Northings (GDA 94):** 6260458

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / dry / low plasticity / hard / inclusions of organics (rootlets and grass) and minor surficial sands	TP20 0-0.1 PID = 0 ppm	
		0.10		CL-ML	Brown / homogeneous / damp / low plasticity / firm / no inclusions		No odours, staining or asbestos in the soil profile
						TP20 0.2-0.3 PID = 0 ppm	
	0.5	0.50			Test Pit TP20 terminated at 0.5m		
	-						
	-						
20/10/16	1 <u>.0</u>						
STRALIA.GDT	-						
GINT STD AUS							
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-						
PIT JBSG TE	-						
TEST	1.5						

Project Number: 52116
Client: Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290377.6 **Northings (GDA 94):** 6260466

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

L		,		,			
Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / dry / low plasticity / firm / no inclusions	TP21 0-0.1 PID = 0 ppm	
	_						No odours, staining or asbestos in the soil profile
	_	0.20		CL-ML	Red / homogeneous / damp / low plasticity / firm / no inclusions	TP210.2-0.3 PID = 0 ppm	
	-						
	0.5	0.50			Test Pit TP21 terminated at 0.5m		
	_						
	_						
	_						
	_						
10/16	1 <u>.0</u>						
ALIA.GDT 20/	_						
STD AUSTR	_						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_						
JBSG TEST F	_						
TEST PIT .	1.5						

Project Number: 52116
Client: Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290420.3 **Northings (GDA 94):** 6260452

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method		Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Dit	1691 7 11	-			CL-ML	Brown / homogeneous / dry / low plasticity / soft / inclusions of minor organics (rootlets and grass)	TP22 0-0.1 PID = 0 ppm	No odours, staining or asbestos in the soil profile
		_						
		_					TP22 0.2-0.3 PID = 0 ppm	
		_						
		0.5	0.50			Test Pit TP22 terminated at 0.5m		
		-						
		_						
		-						
		_						
0/10/16		1.0						
TRALIA.GDT		_						
INT STD AUST		-						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16		-						
PIT JBSG TE		-						
TEST		1.5						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290459.6 **Northings (GDA 94):** 6260449

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown to red / homogeneous / damp / low plasticity / soft / no inclusions	TP23 0-0.1 PID = 0 ppm	
	_						No odours, staining or asbestos in the soil profile
	_					TP23 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP23 terminated at 0.5m		
	_	_					
	_						
	_	_					
	_						
0/10/16	1.0						
RALIA.GDT 2	_						
INT STD AUSI	_						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_						
PIT JBSG TE	_	-					
TEST	1.5						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290492.2 **Northings (GDA 94):** 6260444

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

				. 400	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / damp / low plasticity / soft / no inclusions	TP24 0-0.1 PID = 0 ppm	
							No odours, staining or asbestos in the soil profile
						TP24 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP24 terminated at 0.5m		
	_						
	_						
	_						
	_						
20 00	1.0						
	_						
בינו דון מסטט ובינו דון מינט מומן טום אסטווארביא סטו במינט ומינט ו							
<u> </u>	1.5						

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290329.4 Northings (GDA 94): 6260413

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown to beige / homogeneous / dry / non plastic / hard / no inclusions	TP25 0-0.1 PID = 0 ppm	
		0.10		CL-ML	Orange to red / homogeneous / damp / low plasticity / firm / no inclusions		No odours, staining or asbestos in the soil profile
						TP25 0.2-0.3 PID = 0 ppm	
	0.	0.50			Test Pit TP25 terminated at 0.5m		
		_					
3DT 20/10/16	1 <u>.</u>	0					
) AUSTRALIA.C							
GPJ GINT STE							
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16							
TEST PIT J	1 <u>.</u>	5					

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles **Eastings (GDA 94):** 290381.3 **Northings (GDA 94):** 6260419

Zone/Area:

Total Hole Depth (mbgs): 1 **Reference Level:** Ground Surface

Pit Dimension (m3): 450 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit			CL-ML	Brown / heterogeneous / dry / non plastic / soft / inclusions of rubble (concrete, brick and glass)	TP26 0-0.1 PID = 0 ppm	
						No odours, staining or asbestos in the soil profile
					TP26 0.2-0.3 PID = 0 ppm	
	_					
	0 <u>.5</u>					
	_					
	_					
	_	0.80	CL-ML	Orange / homogeneous / damp / low plasticity / firm / no inclusions		
	_				TP26 0.9-1.0 PID = 0 ppm	
1/16	1.0	1.00		Test Pit TP26 terminated at 1m	PID = 0 ppili	
LIA.GDT 20/10	_					
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_					
PIT.GPJ GINT	_					
T JBSG TEST	_					
TEST PI	1 <u>.5</u>					

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290418.8 Northings (GDA 94): 6260411

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations				
Test Pit				CL-ML	Brown / homogeneous / moist / moderate plasticity / soft / inclusions of minor organics (rootlets and grass)	TP27 0-0.1 PID = 0 ppm					
							No odours, staining or asbestos in the soil profile				
						TP27 0.2-0.3 PID = 0 ppm					
	0.5										
		0.50			Test Pit TP27 terminated at 0.5m						
	_										
	_										
	_										
/16	1.0										
JA.GDT 20/10	_										
STD AUSTRAI	-										
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_										
JBSG TEST F	_										
TEST PIT	1 <u>.5</u>										

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290469.5 **Northings (GDA 94):** 6260425

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations				
Test Pit				ML-CL	Brown / homogeneous / damp / non plastic / soft / inclusions of minor organics (rootlets and grass)	TP28 0-0.1 PID = 0 ppm					
							No odours, staining or asbestos in the soil profile				
						TP28 0.2-0.3 PID = 0 ppm					
	0.5	0.50			Test Pit TP28 terminated at 0.5m						
	_	0.50			Test Pit TP20 terminated at 0.5m						
	_										
	_										
	_										
10/16	1.0										
ALIA.GDT 20/	_										
T STD AUSTR	_										
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_										
T JBSG TEST	_										
TEST PI	1.5										

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290487.9 **Northings (GDA 94):** 6260420

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

					Lievation (iii).	_	
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Redish brown / homogeneous / damp / low plasticity / soft to firm / no inclusions	TP29 0-0.1 PID = 0 ppm	
							No odours, staining or asbestos in the soil profile
		,				TP29 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP29 terminated at 0.5m		
	_						
	_						
	_						
	_						
91 /01 /02	1.0						
I KALIA.GDI	_						
SINI SID AUS	_						
TEST FIT JOSG TEST FIT.GFJ GINI STD AUSTRALIA.GDT ZGTUTO							
Deac III							
	1.5						

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290328.7 Northings (GDA 94): 6260383

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / dry / low plasticity / soft / no inclusions	TP30 0-0.1 PID = 0 ppm	
	_	0.10		CL-ML	Orange / homogeneous / dry / non plastic / stiff / no inclusions		No odours, staining or asbestos in the soil profile
	_					TP30 0.2-0.3 PID = 0 ppm	
	0.5						
		0.50			Test Pit TP30 terminated at 0.5m		
	_						
	_						
	_	-					
/16	1.0						
IA.GDT 20/10	_	-					
STD AUSTRAI	-						
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	_						
JBSG TEST P	_						
TEST PIT	1 <u>.5</u>						

Project Number: 52116 **Client:** Legacy Property

Project Name: Caddens Multi Lot DSI **Site Address:** Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles Total Hole Depth (mbgs): 0.5

Pit Dimension (m3): 450

Eastings (GDA 94): 290322.4 **Northings (GDA 94):** 6260340

Zone/Area:

Reference Level: Ground Surface

Elevation (m):

	_											
Method		Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations					
Test Pit				CL-ML	Orange to red / homogeneous / dry / low plasticity / firm to stiff / no inclusions	TP31 0-0.1 PID = 0 ppm						
	-	0.10		CL-ML	Yellow / homogeneous / dry / non plastic / stiff / inclusion of large (>5 cm in diameter) roots		No odours, staining or asbestos in the soil profile					
						TP31 0.2-0.3 PID = 0 ppm						
	_											
	0.5	0.50			Test Pit TP31 terminated at 0.5m							
	-											
	-											
	-											
	-	_										
20/10/16	1.0	-										
STRALIA.GDT	-	-										
GINT STD AUS	-	_										
TEST PIT JBSG TEST PIT.GPJ GINT STD AUSTRALIA.GDT 20/10/16	-	_										
T PIT JBSG T	-	_										
TES	1 <u>.5</u>											

Project Number: 52116 Client: Legacy Property

Project Name: Caddens Multi Lot DSI Site Address: Caddens, NSW

Date: 10/10/2016 Logged By: Rohan Hammond Contractor: Ken Coles

Eastings (GDA 94): 290317.1 Northings (GDA 94): 6260308

Zone/Area:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface Pit Dimension (m3): 450

Elevation (m):

					I		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				CL-ML	Brown / homogeneous / dry / non plastic / stiff / inclusions of surficial building rubble	TP32 0-0.1 PID = 0 ppm	
	_	0.10		CL-ML	Red to orange / homogeneous / dry / non plastic / stiff / no inclusions		No odours, staining or asbestos in the soil profil
	_	,				TP32 0.2-0.3 PID = 0 ppm	
	_						
	0.5	0.50			Test Pit TP32 terminated at 0.5m		
	_	,					
	_						
	_						
	_	·					
	1 <u>.0</u>	s.					
	_						
	_						
	_						
	_						
	1.5						

Appendix I Calibration and Decontamination Records

©JBS&G Australia Pty Ltd | 52116-105322

Field Equipment Calibration and Decontamination

PROJECT	NAME: Cao	ldors	I	PROJECT NO: 52116		
FIELD DA	TES: (0/	10/16	F	FIELD STAFF: RH/J)	
				/		
	TION SUMM	13. (5079) (17.007)				
EQUIPME	1.0	0 / 0 /	•			
CALIBRA	TION STAND	pard: 150 betylene (1	90			
DATE	TIME	READING (ppm _v)	COMMENTS			
	8:35	99-7				
10/10/16	0.23	11-7	Calibration of			
		4		·····		

DECONTAI	INATION S	SUMMARY				
EQUIPMEN	1	land toduel				
1. Was the	equipment de	econtaminated appropriately	prior to sampling at each location?	(Ŷ)	N	NA
2. Was exce	ss soil remov	red by scraping, brushing or	wiping with disposable towels?	Ø	N	NA
3. Was the of the office of th	equipment co e equipment	ntaminated with grease, tar steam cleaned or rinsed wit	or similar material? h pesticide-grade acetone:hexane?	Y	N N	(NA)
1. Was phos	phate-free de	etergent used to wash the ed	juipment?	00	N	NA
5. Was the e	quipment rin	sed with clean water?		Ø	N	NA
5. Was the e	quipment the	en rinsed with deionised wate	er?	0	N	NA
7. Were all s	ample contai	ners cleaned and acid or solv	vent washed prior to sample collection	1?	N	NA
			ASURES REQUIRED? PROVIDE DE			
Fresh A	air of n	the dover used	to alled each so	mple		

IMSO Forms009 - Calibration and Decon

Air-Met Scientific P/L 7-11 Ceylon Street Nunawading Victoria 3131, Australia

Calibration Certificate

This document hereby certifies that this instrument detailed has been calibrated to the parameters listed below.

Certificate Print Date: 18 July, 2016

Call ID:

00194320

Calibration Date: 18 July, 2016

Next Calibration Due: 18 January, 2017

Job / SO Number:

Customer: JBS&G(NSW&WA)PTY LTD Type:

Misc

Model:

Miscellaneous

Serial No: T-107613

Description: PhoCheck Tiger

Instrument Readings

Sensor	Date Code	Gas Bottle No.	Calibration Gas and Concentration	C.F	C.V	Certified	Before / Span Res.	After
PID	(/	SY129	ISOBUTYLENE 100PPM, BAL			NIST	90 PPM	100 PPM
30 · · · · · · · · · · · · · · · · · · ·	<i>(1</i>							
	V)							
	//				-			
	V)							
	//		- E. (07877)		-			

Completed by: Kurt Avallone

Signed:

Australian Standard Alarm Levels

CF - Conversion Factor, CV Compensated Value

CV = CF * Span Gas

Air-Met Scientific

Service Report

ABN 73 006 849 949

INVOICE ADDRESS	DELIVERY ADDRESS
JBS&G Australia Pty Ltd Level 1 50 Margaret Street Sydney NSW 2000 Australia	JBS&G Australia Pty Ltd Level 1 50 Margaret Street Sydney NSW 2000 Australia
	Attention: Michelle Delandro Email: MDelandro@jbsg.com.au

Customer Code	Call Reference	Customer Order No	Work Order	Date: 19/07/2016
202507	218707	408829		Page 1 of 1

Serial Number T-107613 PID, Phocheck Tiger

Filter was blocked.

Inlet nossle was blocked

Cleaned PID lamp.

PhoCheck Tiger serviced, cleaned and calibrated. PhoCheck Tiger is in good working condition.

			lime /	
Materials/Activ	vity	Unit	Quantity	
301	301 Labour (charged)	Hour	1.00	
CALPID	Factory calibration of a PID monitor	EA	1.00	

Miscellaneous Charge	
Misc Code	Description
30	SRV Freight

Service Centres (Phone - 1800 000 744):

Melbourne Sydney Brisbane 7-11 Ceylon St, Nunawading VIC 3131

Level 3, 18-26 Dickson Av, Artarmon NSW 2064 51 Ross St (Enter via Durong St), Newstead QLD 4066 Perth

Unit 8, Rowallan St, Osborne Park WA 6017

Adelaide Mackay 474 Port Rd, Hindmarsh SA 5007 135 Sydney St, Mackay QLD 4740

ServCall_AMS.rpt Document Set ID: 7540488 Version: 1, Version Date: 22/02/2017

Appendix J Detailed Quality Assurance / Quality Control

©JBS&G Australia Pty Ltd | 52116-105322

ESDAT QA Checker

Project:52116

Filter: SDG in('519296')

Overview Summary

Count of Samples

Summary By Compound

Count of Results

Holding Times

Holding Time Errors (0)

Blanks

Field Blanks

Detects in Lab Blanks (0)

SDG's without Storage Blanks (0)

SDG's without Method Blanks (0)

Duplicates

Field and Interlab Duplicates

Lab Duplicates with high RPDs (0)

Duplicate Samples with incorrect or missing Parent Samples (0)

Samples at the same Location/Depth/Time not specified as duplicates (0)

Surrogates

Surrogate Variation > 30% or outside lab LCL or UCL (39)

Lab Control Samples

SDG's without a Laboratory Control Sample (0)

Laboratory Control Samples, Error > 30% (0)

Certified and Standard Reference Materials

Certified Reference Materials - Error > 30% (0)

Matrix Spikes

SDG's without a Matrix Spike (0)

Trip Spikes with invalid Control Sample (0)

Less than 1 matrix spike in 20 samples, or less than 1 matrix duplicate in 20 samples (2)

Matrix Spike Recoveries less than 70% or greater than 130% or outside lab LCL or UCL (0)

Trip Spike Recoveries (70% - 130% is acceptable) (6)

Inorganic

Na + CL > TDS (0)

BOD > COD(0)

BOD > COD(0)

Other

Unit Conversion Problems (0)

OriginalChemNames Requiring Validation (0)

Samples with no Results (0)

Samples associated with Wells which are not specified in the Well Table (0)

Aborted Analysis (0)

Contents

Count of Samples

Matrix Type	SOIL	WATER
First Sample Date	10/10/2016	
Last Sample Date	10/10/2016	10/10/2016
Sampling Period (days)	1	1
Number of Samples Submitted	54	2
Number of Non QA Samples Submitted	51	0
Number of Field Blanks	0	0
Number of Trip Blanks	0	1
Number of Rinsates	0	1
Number of Field Duplicates	3	0
Number of Trip Spikes	0	1
Number of Lab Duplicates	17	0
Number of LCSs	7	8
Number of CRMs	0	0
Number of Method Blanks	8	5
Number of Storage Blanks	0	0
Number of Matrix Spikes	10	5
Number of Matrix Spike Dupes	0	0

Filter: SDG in('519296')

Legacy Property / Caddens

			Num Results	Hol	ding Times	s (days)		Lab Co	ntrol Samp	oles	Method and	d Storage Bl	lanks	Laborator	y Duplicat	es	:	Surrogates		Matrix,Trip and	Compound S	Spikes	Field,Rinsa	te and Trip B	lanks	Field	d Duplicates	5
			ţ î		2 5	9	=	%		e e			e e	^		9	%_		9	%		9			e e	Δ.		=
			ma + Posit	∯ d	ple to	ple to	ptab	overy	orted	ptab	e 8	orted	ptab	A +	orted	ptab	overy	orted	ptab	overy	orted	ptab	e D	_ fed	pptab	RPD × 1	orted	ptab
Chem_Group	ChemName	Range	Non (Nor Com	Vola Grou	Sam	Sam Anal	Acce	Reco	Num	Acce	Rang	Rep	Acce	Max EQL	Rep	Acce	Rec	Num Rep	Acce	Reco	Num Rep	Acce	Rane	Num Rep	Acce	Max EQL	Num	Acce
Asbestos	Approx. Sample Mass Asbestos from ACM in Soil		5	Other Other	2	8	Y		0			0			0	N N		0			0			0			1 1	Y
	Asbestos from FA & AF in Soil		5	Other	2	8	Y		0			0			0	N		0			0			0			1	Y
	Mass ACM Mass AF		5 5	Other Other	2 2	8	Y		0			0			0	N N		0			0			0			1 1	Y
	Mass Asbestos in ACM Mass Asbestos in AF		5	Other Other	2	8	Y		0			0			0	N N		0			0			0			1	Y
	Mass Asbestos in FA		5	Other	2	8	Y		0			0			0	N		0			0			0			1	Ÿ
	Mass Asbestos in FA & AF Mass FA		5	Other Other	2	8	Y		0			0			0	N N		0			0			0			1 1	Y
Asbestos	Synthetic Fibres - Comment		5	Other	2	8	Y		0			0			0	N		0			0			0			1 1	Y
Asbestos - Trace Analysis	ACM - Comment AF - Comment		5	Other Other	2 2	8	Y		0			0			0	N N		0			0			0			1	Y
	FA - Comment		5	Other	2		Y		0			0			0	N N		0			0			0			1	Υ
	Organic Fibres - Comment Respirable Fibres - Comment		5	Other Other	2 2	8	Y		0			0			0	N N		0			0			0			1 1	Y
	·									L																		
BTEX	Benzene Ethylbenzene	0.1 mg/kg 0.1 mg/kg	39 39	VOC	3	8	Y	100 to 100 97 to 97	1	Y	ND ND	1 1	Y		0	N N		0		116 to 116 115 to 115	1 1	Y		0			3 3	Y
	Toluene	0.1 mg/kg	39	VOC	3	8	Y	99 to 99	1	Y	ND	1	Y		0	N		0		114 to 114	1	Y		0			3	Y
	Xylene (m & p) Xylene (o)	0.2 mg/kg 0.1 mg/kg	39 39	VOC	3	8	Y	95 to 95	0	Y	ND ND	1	Y		0	N N		0		113 to 113 113 to 113	1	Y		0			3	Y
	Xylene (Total)	0.3 mg/kg	39	VOC	3	8	Y	94 to 94	1	Y	ND	1	Y		0	N		0		113 to 113	1	Y		0			3	Y
Chlorinated Benzenes	Hexachlorobenzene	0.05 mg/kg	15	SVOC	3	8	Y	111 to 111	1	Y	ND	1	Υ		0	N		0		124 to 124	1	Υ		0			1	Y
Ionic Balance	Cation Exchange Capacity	0.05 meq/100g	4	Other	4	8	Y		0	\vdash	ND	1	Y		0	N	-	0			0			0	 		0	N
	EC 1:5 soil:water pH 1:5 soil:water		4	Other Other	3	8	Y		0			0		10	1	Y		0			0			0			0	N N
		0.1 ph Units	·		3	8	ı r		U			0			U	N		0			0			0			0	
Metals & Metalloids	Arsenic (Total) Cadmium	2 mg/kg 0.4 mg/kg	36 36	Other Other	3	8	Y	104 to 104 101 to 101	1	Y	ND ND	1 1	Y	18	8	Y		0		98 to 105 100 to 105	4 4	Y		0	$\vdash \neg$	15	3	Y
	Chromium (Total)	5 mg/kg	36	Other	3	8	Y	105 to 105	1	Y	ND	i	Y	14	8	Ÿ		0		96 to 108	4	Y		0		33	3	Ý
	Copper Lead	5 mg/kg 5 mg/kg	36 36	Other Other	3	8	Y	112 to 112 105 to 105	1	Y	ND ND	1 1	Y	25 15	8 8	Y		0		109 to 122 98 to 100	4	Y		0		25 11	3 3	Y
	Mercury (Inorganic)	0.1 mg/kg	36	Other	3	8	Y	115 to 115	1	Y	ND	1	Y		4	Y		0		113 to 117	3	Y		0			3	Y
	Nickel Zinc	5 mg/kg 5 mg/kg	36 36	Other Other	3	8	Y	107 to 107 111 to 111	1	Y	ND ND	1 1	Y	18 15	8 8	Y		0		96 to 110 89 to 118	4	Y		0		26 25	3 3	Y
Organochlorine Pesticides	4,4-DDE	0.05 mg/kg	15	SVOC	3	8	Y	123 to 123	1	Y	ND	1	Y		1	Y		0		130 to 130	1	Υ		0		27	1	Y
Organica il crime il esticides	Aldrin	0.05 mg/kg	15	SVOC	3	8	Ý	109 to 109	1	Y	ND	1	Y		1	Ÿ		0		112 to 112	1	Ÿ		0		21	1	Y
	alpha-BHC beta-BHC	0.05 mg/kg 0.05 mg/kg	15 15	SVOC	3	8	Y	108 to 108 108 to 108	1 1	Y	ND ND	1 1	Y		1	Y		0		122 to 122 129 to 129	1 1	Y		0			1 1	Y
	Chlordane	0.1 mg/kg	15	SVOC	3	8	Y		0	, , ,	ND	1	Y		1	Y		0			0			0			1	Y
	DDD DDT	0.05 mg/kg 0.05 mg/kg	15 15	SVOC	3	8	Y	124 to 124 113 to 113	1	Y	ND ND	1 1	Y		1	Y		0		110 to 110 114 to 114	1 1	Y		0			1 1	Y
	delta-BHC Dieldrin	0.05 mg/kg 0.05 mg/kg	15 15	SVOC	3	8	Y	125 to 125 123 to 123	1	Y	ND ND	1 1	Y		1	Y		0		126 to 126 113 to 113	1 1	Y		0			1 1	Y
	Endosulfan alpha	0.05 mg/kg	15	SVOC	3	8	Y	120 to 120	1	Y	ND	1	Ϋ́		0	N		0		122 to 122	1	Ÿ		0			1	Ý
	Endosulfan beta Endosulfan sulphate	0.05 mg/kg 0.05 mg/kg	15 15	SVOC	3	8	Y	128 to 128 108 to 108	1 1	Y	ND ND	1 1	Y		1	Y	+	0		105 to 105 115 to 115	1 1	Y		0			1 1	Y
	Endrin	0.05 mg/kg	15	SVOC	3	8	Y	116 to 116	1	Y	ND	1	Y		1	Y		0		107 to 107	1	Y		0			1	Y
	Endrin aldehyde Endrin ketone	0.05 mg/kg 0.05 mg/kg	15 15	SVOC	3	8	Y	101 to 101 115 to 115	1	Y	ND ND	1 1	Y		1	Y		0		125 to 125 123 to 123	1 1	Y		0			1 1	Y
	Heptachlor Heptachlor Epoxide	0.05 mg/kg 0.05 mg/kg	15 15	SVOC	3	8	Y	112 to 112 126 to 126	1	Y	ND ND	1 1	Y		1	Y		0		121 to 121 115 to 115	1 1	Y		0			1 1	Y
	Lindane	0.05 mg/kg	15	SVOC	3	8	Y	114 to 114	1	Y	ND	1	Ÿ		1	Ÿ		0		122 to 122	1	Ý		0			1	Ÿ
	Methoxychlor Toxaphene	0.05 mg/kg 1 mg/kg	15 15	SVOC	3	8	Y	102 to 102	0	Y	ND ND	1 1	Y		1	Y		0		108 to 108	0	Y		0			1 1	Y
Other	·						, ,	1051-105		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				_		V		^										
Other	% Clay % Moisture 103oC	1 %	49	Other Other	2	8	Y	105 to 105	0	Y	ND	0	Y	8	5	Y		0			0			0		11	3	N Y
Polycyclic Aromatic Hydrocarbons	s Acenaphthene	0.5 mg/kg	13	SVOC	3	8	Y	97 to 97	1	Y	ND	1	Y		1	Y		0		104 to 104	1	Y		0			1	Y
	Acenaphthylene	0.5 mg/kg	13	SVOC	3	8	Υ	101 to 101	1	Y	ND	1	Υ		1	Υ		0		109 to 109	1	Υ		0			1	Υ
	Anthracene Benz(a)anthracene	0.5 mg/kg 0.5 mg/kg	13 13	SVOC	3	8	Y	106 to 106 99 to 99	1	Y	ND ND	1 1	Y	-	1	Y		0		112 to 112 103 to 103	1 1	Y		0	 		1 1	Y
	Benzo(a)pyrene	0.5 mg/kg	13	SVOC	3	8		104 to 104	1	Y	ND	1	Y		1	Y		0		110 to 110	1	Y		0			1	Y
	Benzo(a)pyrene TEQ (lower bound) ¹ Benzo(a)pyrene TEQ (medium bound) ¹	0.5 mg/kg 0.5 mg/kg	13 13	SVOC	2 2	8	Y		0			0			0 0	N N	-	0			0			0		0	1 1	Y
	Benzo(a)pyrene TEQ (upper bound)	0.5 mg/kg	13	SVOC	2	8	Υ	400 : :::	0	.,		0			0	N		0		444	0			0		0	1	Υ
	Benzo(b,j)fluoranthene Benzo(g,h,i)perylene	0.5 mg/kg 0.5 mg/kg	13 13	SVOC	3	8	Y	103 to 103 71 to 71	1	Y	ND ND	1 1	Y		1	Y		0		111 to 111 70 to 70	1 1	Y		0			1 1	Y
	Benzo(k)fluoranthene Chrysene	0.5 mg/kg	13	SVOC	3	8	Y	125 to 125 112 to 112	1	Y	ND ND	1 1	Y		1	Y		0		123 to 123 121 to 121	1 1	Y		0			1 1	Y
	Dibenz(a,h)anthracene	0.5 mg/kg 0.5 mg/kg	13	SVOC	3	8	Y	74 to 74	1	Y	ND	1	Y		1	Υ		0		84 to 84	1	Υ		0			1	Y
	Fluoranthene Fluorene	0.5 mg/kg 0.5 mg/kg	13 13	SVOC	3	8	Y	107 to 107 100 to 100	1	Y	ND ND	1 1	Y		1	Y		0		118 to 118 106 to 106	1 1	Y		0	+		1 1	Y
	Indeno(1,2,3-c,d)pyrene	0.5 mg/kg	13	SVOC	3	8	Y	70 to 70	1	Y	ND	1	Ÿ		1	Y		0		74 to 74	1	Y		0			1	Y
	Naphthalene PAHs (Total)	0.5 mg/kg 0.5 mg/kg	52 13	VOC SVOC	2	8	Y	97 to 120	0	Y	ND	0	Y		0	Y N		0		98 to 126	0	Y		0			1	Y
	Phenanthrene Pyrene	0.5 mg/kg 0.5 mg/kg	13 13	SVOC SVOC	3	8	Y	91 to 91 108 to 108	1	Y	ND ND	1 1	Y		1	Y		0		101 to 101 119 to 119	1 1	Y		0			1	Y
		o.a mg/kg			1			100 10 100			שאו									119 0118								
Surrogate	4-Terphenyl-d14 Surrogate 2-fluorobiphenyl	+	0	SVOC	+		Y		0			0	$\vdash \vdash \vdash$		0	N N	89 to 105 89 to 100	14 14	Y		0	-		0	+		0	N N
	Surrogate 4-BFB		0	VOC	1		Y		0			0			0	N	50 to 122	42	N N		0			0			0	N
	Surrogate Dibutylchlorendate Surrogate TCMX		0	SVOC SVOC	\pm		Y		0			0			0	N N	95 to 149 51 to 144	16 16	N N		0	+		0			0	N N
			I	I																105 1: 100								Y
TPHs (NEDC 1000)	C10-C14 Fraction	20 mallia	20	21/00	2	٥	V I	100 to 100	1 1		ND	1 1			4 1	V .	,					· ·		1 0	!			
TPHs (NEPC 1999)	C10-C14 Fraction C10-C36 Fraction (Total)	20 mg/kg 50 mg/kg	39 39	SVOC SVOC	3 2	8	Y	109 to 109	0	Y	ND	0	Y		0	Y N		0		105 to 130	0	Y		0			3	Ý
TPHs (NEPC 1999)					_ ·	-		109 to 109		Y	ND ND ND		Y							105 to 130		Y						

Legacy Property / Caddens

			Num Results	Hol	ding Time	s (days)		Lab Co	ntrol Samp	oles	Method an	d Storage Bl	lanks	Laborate	ory Duplic	ates	I	Surrogates		Matrix,Trip and	Compound	Spikes	Field, Rinsate	and Trip B	Blanks	Field Du	uplicates
								*									%			%							
			QA mal + posite	.≥	ti to	t sis	tap	څ	, p	l ap	1	g	tap	×PD ×	P	tab	ا م	e e	table	ery .	De De	lab lab		- P	table	× FD ×	table led
			O no Grimo O mpo	onb latii	mpl	m pl	de	8	E 6	G G	nge .	E &	de	× Y	E €	deo	000	ΕĞ	Geb	ò	ΕĞ	de	uge	E g	de	X X	E de des
Chem_Group	ChemName	Range	žžš	۶ъ	S X	S A	∛	8	zž	۱×	<u> </u>	zæ	×	E E	ž ž	¥	a a	zw̃	¥	- 8	z ž	∛	R _R	zæ	٧	ĭ H	N S S
TRHs (NEPC 2013)	>C10 - C16 less Naphthalene (F2)	50 mg/kg	39	SVOC	2	8	Y		0		 	0			0	N		0		 	0		1	0		 	3 Y
,	>C10-C16 Fraction	50 mg/kg	39	SVOC	3	8		108 to 108	1	Υ	ND	1	Υ		0	N		0		103 to 124	4	Y		0			3 Y
	>C16-C34 Fraction >C34-C40 Fraction	100 mg/kg 100 mg/kg	39 39	SVOC	3	8		 	0		ND ND	1 1	Y		0	N N		0	-		0	-	+	0		+	3 Y 3 Y
	C6 - C10 less BTEX (F1)	20 mg/kg	39	VOC	2			<u> </u>	0		110	0	<u> </u>		0	N		0			0		1	0			3 Y
	C6-C10 Fraction	20 mg/kg	39	VOC	3	8	Y	91 to 91	1	Y	ND	1	Y		0	N		0		98 to 98	1	Y		0			3 Y
BTEX	Benzene	+	0	voc	2	8	Y	76 to 76	1	Y	ND	1	Y		0	N		0		84 to 86	2	Y	ND	2	Y	 	0 N
	Ethylbenzene		0	VOC	2	8	Y	101 to 101	1	Y	ND	1	Y		0	N		0		87 to 95	2	Y	ND	2	Y		0 N
	Toluene Xylene (m & p)		0	VOC	2 2	8 8		80 to 80 88 to 88	1	Y	ND ND	1 1	Y		0	N N		0		79 to 83 78 to 83	2 2	Y	ND ND	2 2	Y		0 N
	Xylene (ii)	+	0	VOC	2	8		00 10 00	0	<u> </u>	ND ND	1 1	Ÿ		0	N		0	1	80 to 89	2	Ϋ́	ND ND	2	Ý		0 N
	Xylene (Total)		0	VOC	2	8	Y	90 to 90	1	Y	ND	1	Y		0	N		0		79 to 85	2	Y	ND	2	Y		0 N
Chlorinated Benzenes	Hexachlorobenzene		0	SVOC	3	8	Y	112 to 112	1	Y	ND	1	Y		0	N		0		115 to 115	1	Y	ND	1	Y	 	0 N
																		-									
Metals & Metalloids	Arsenic (Total) Cadmium		0	Other Other	2	8	Y	89 to 89 85 to 85	1	Y	ND ND	1 1	Y		0	N N		0		91 to 91 83 to 83	1 1	Y	ND ND	1 1	Y		0 N N
	Chromium (Total)	+	0	Other	2	8	Y	84 to 84	1	Ý	ND	1 1	Ÿ		0	N		0	1	84 to 84	1	Y	ND ND	1	Y	 	0 N
	Copper		0	Other	2	8		85 to 85	1	Y	ND	1	Y		0	N		0		83 to 83	1	Y	ND	1	Y		0 N
	Lead Mercury (Inorganic)	+	0	Other Other	2	8		88 to 88 90 to 90	1 1	Y	ND ND	1 1	Y		0	N N	 	0		86 to 86 87 to 87	1 1	Y	ND ND	1 1	Y	 	0 N N
	Nickel	1	0	Other	2	8	Y	86 to 86	1	Y	ND	1	Y		0	N		0		84 to 84	1	Ý	0.001 to 0.001 mg/		N		0 N
	Zinc		0	Other	2	8	Y	86 to 86	1	Y	ND	1	Y		0	N		0		83 to 83	1	Y	ND	1	Y		0 N
Organochlorine Pesticides	4,4-DDE	+	0	SVOC	3	8	Y	75 to 75	1	Y	ND	1	Y		0	N		0		99 to 99	1	Y	ND	1	Y	 	0 N
	Aldrin		0	SVOC	3	8		108 to 108	1	Y	ND	1	Y		0	N		0		120 to 120	1	Y	ND	1	Y		0 N
	alpha-BHC beta-BHC	_	0	SVOC	3	8 8	Y	96 to 96 116 to 116	1	Y	ND ND	1 1	Y		0	N N		0	1	92 to 92 111 to 111	1 1	Y	ND ND	1 1	Y	-	0 N 0 N
	Chlordane	1	0	SVOC	3	8	-	11010110	0	<u> </u>	ND	1	Ÿ		0	N		0		111101111	0	<u> </u>	ND	1	Y	 	0 N
	DDD		0	SVOC	3	8		91 to 91	1	Y	ND	1	Y		0	N		0		114 to 114	1	Y	ND	1	Y		0 N
	DDT delta-BHC		0	SVOC	3	8	Y	117 to 117 127 to 127	1	Y	ND ND	1 1	Y		0	N N		0		120 to 120 72 to 72	1 1	Y	ND ND	1 1	Y	 	0 N N
	Dieldrin		0	SVOC	3	8		96 to 96	1	Ÿ	ND	1	Ϋ́		0	N		0		115 to 115	1	Y	ND	1	Ÿ		0 N
	Endosulfan alpha Endosulfan beta		0	SVOC	3	8		103 to 103 107 to 107	1	Y	ND ND	1 1	Y		0	N N		0		85 to 85	1 0	Y	ND ND	1 1	Y	\vdash	0 N N
	Endosulfan sulphate		0	SVOC	3	8	_	115 to 115	1	Y	ND ND	1 1	Y		0	N		0		76 to 76	1	Y	ND ND	1 1	Y		0 N
	Endrin		0	SVOC	3	8		101 to 101	1	Y	ND	1	Υ		0	N		0			0		ND	1	Y		0 N
	Endrin aldehyde Endrin ketone	_	0	SVOC	3	8	_	76 to 76 93 to 93	1	Y	ND ND	1 1	Y		0	N N		0	1	106 to 106 102 to 102	1 1	Y	ND ND	1 1	Y	-	0 N N
	Heptachlor		0	SVOC	3	8		122 to 122	1	Ý	ND	1	Ÿ		0	N		0			0	<u> </u>	ND	1	Ý		0 N
	Heptachlor Epoxide		0	SVOC	3	8		125 to 125	1	Y	ND	1 1	Y		0	N		0		125 to 125	1	Y	ND	1	Y		0 N
	Lindane Methoxychlor	+	0	SVOC	3	8		125 to 125 111 to 111	_	Y	ND ND	1 1	Y		0	N N		0		112 to 112	0	Y	ND ND	1 1	Y		0 N N
	Toxaphene		0	SVOC	3	8	Y		0		ND	1	Υ		0	N		0			0		ND	1	Y		0 N
Polycyclic Aromatic Hydrocarbons	Acenaphthene		0	SVOC	3	8	- V	85 to 85	1	V	ND	1	V		0	N		n	1		0	-	ND	1	- Y		0 N
r oryogono i tornago rigaroda borio	Acenaphthylene		0	SVOC	3	8	Ý	93 to 93	1	Ÿ	ND	1	Ÿ		0	N		0			0		ND	1	Ÿ		0 N
	Anthracene		0	SVOC	3	8		86 to 86	1	Y	ND	1 1	Y		0	N		0			0		ND ND	1	Y		0 N
	Benz(a)anthracene Benzo(a)pyrene		0	SVOC	3	8		70 to 70 96 to 96	1	Y	ND ND	1 1	Y		0	N N		0			0		ND ND	1	Y		0 N N
	Benzo(b,j)fluoranthene		0	SVOC	3	8		101 to 101	1	Υ	ND	1	Υ		0	N		0			0		ND	1	Y		0 N
	Benzo(g,h,i)perylene Benzo(k)fluoranthene		0	SVOC	3	8		70 to 70 117 to 117	1	Y	ND ND	1 1	Y		0	N N		0			0	-	ND ND	1 1	Y		0 N N
	Chrysene		0	SVOC	3	8	_	75 to 75	1	Ÿ	ND	1	Ÿ		0	N		0			0		ND	1	Ÿ		0 N
	Dibenz(a,h)anthracene		0	SVOC	3	8	_	75 to 75	1	Y	ND ND	1 1	Y		0	N		0			0		ND ND	1	Y		0 N 0 N
	Fluoranthene Fluorene	+	0	SVOC	3	8		77 to 77 90 to 90	1	Y	ND ND	1 1	Y		0	N N		0		 	0		ND ND	1	Y	 	0 N N
	Indeno(1,2,3-c,d)pyrene		0	SVOC	3	8	Y	70 to 70	1	Y	ND	1	Y		0	N		0			0		ND	1	Y		0 N
	Naphthalene PAHs (Total)	+	0	SVOC		8		80 to 125	0	Y	ND	0	Y		0	N N		0		125 to 125	1 0	Y	ND ND	1	Y	 	0 N N
	Phenanthrene		0	SVOC	3	8	Y	84 to 84	1	Y	ND	1	Y		0	N		0			0		ND	1	Y		0 N
	Pyrene		0	SVOC	3	8	Y	76 to 76	1	Y	ND	1	Y		0	N		0			0		ND	1	Y		0 N
Surrogate	4-Terphenyl-d14	+	0	SVOC	+	+	Y	 	0		1	0	 		0	N	71 to 71	1	Y	1	0	 	1	0	+	 	0 N
g	Surrogate 2-fluorobiphenyl		0	SVOC			Y		0			0			0	N	53 to 53	1	N		0			0			0 N
	Surrogate 4-BFB Surrogate Dibutylchlorendate	+	0	VOC SVOC	+	+	Y	-	0		 	0			0	N N	79 to 104 127 to 127	3 1	Y	 	0	-	 	0		 	0 N N
	Surrogate Dibutylcrilorendate Surrogate TCMX		0	SVOC	\pm		Y		0			0			0	N	76 to 76	1	Y		0			0			0 N
TDUA (NEDC 400C)					1			4041: 404		.,	ND							_		741.74		V/	MB		V		
TPHs (NEPC 1999)	C10-C14 Fraction C10-C36 Fraction (Total)	+	0	SVOC	3 2	8 8		124 to 124	0	Y	ND	1 0	Y		0	N N		0		74 to 74	1 0	Y	ND ND	1 1	Y	 	0 N N
	C15-C28 Fraction		0	SVOC	3	8	Y		0		ND	1	Y		0	N		0			0		ND	1	Y		0 N
	C29-C36 Fraction C6-C9 Fraction		0	SVOC	3 2			92 to 92	0	Y	ND ND	1 1	Y		0	N N	\vdash	0		73 to 73	0	Y	ND ND	1 1	Y		0 N
								32 10 32			ND									131013							
TRHs (NEPC 2013)	>C10 - C16 less Naphthalene (F2)		0	SVOC	2	8		400 : 400	0	.,	110	0			0	N		0		74 . 74	0		ND	1	Y		0 N
	>C10-C16 Fraction >C16-C34 Fraction	+	0	SVOC	3		Y	123 to 123	0	Y	ND ND	1 1	Y		0	N N		0		74 to 74	0	Y	ND ND	1 1	Y	+	0 N N
	>C34-C40 Fraction		0	SVOC	3	8	Y		0		ND	1	Y		0	N		0			0		ND	1	Ý		0 N
	C6 - C10 less BTEX (F1) C6-C10 Fraction		0	VOC VOC	2		Y	89 to 89	0		ND	0			0	N N		0		71 to 71	0	- V	ND ND	1	Y		0 N 0 N
					1 2		1 Y	 89 to 89 	1									. (1	1	. /1 to /1	1 1	1 Y					11 I N

Contents

Count of Results

Matrix_Type	Sample_Type	Reg	Leached	Spike_	_Compounds	Surrogate
SOIL	Normal	1753	0		0	95
SOIL	Field_D	141	0		0	7
SOIL	LAB_D	128	0		0	0
SOIL	MS	0	0		83	0
SOIL	MB	62	0		0	0
SOIL	LCS	54	0		0	0
WATER	Rinsate	64	0		0	5
WATER	MB	60	0		0	0
WATER	LCS	53	0		0	0
WATER	MS	0	0		34	0
WATER	Trip_S	6	0		0	1
WATER	Trip_B	6	0		0	1

Caddens DSI Legacy Property / Caddens

Field Blanks (WATER) Filter: SDG in('519296')

SDG	519296	519296
Field ID	RINS	TB
Sampled_Date/Time	10/10/2016	10/10/2016
Sample Type	Rinsate	Trip_B

Chem_Group	ChemName	Units	IEQL	1	1
BTEX	Benzene	mg/l	0.001	<0.001	<0.001
	Ethylbenzene	mg/l	0.001	<0.001	<0.001
	Toluene	mg/l	0.001	<0.001	<0.001
	Xylene (m & p)	mg/l	0.002	<0.002	<0.002
	Xylene (o)	mg/l	0.001	<0.001	<0.001
	Xylene (Total)	mg/l	0.003	<0.003	<0.003
	Aylene (Total)	IIIg/i	0.000	40.000	40.000
Chlorinated Benzenes	Hexachlorobenzene	mg/l	0.0001	<0.0001	
OTHER DESIGNATION	T TO A GOTTLE TO		0.0001	0.0001	
Metals & Metalloids	Arsenic (Total)	mg/l	0.001	<0.001	
The fall of the fall of the	Cadmium	mg/l	0.0002	<0.0002	
	Chromium (Total)	mg/l	0.001	<0.001	
	Copper	mg/l	0.001	<0.001	
	Lead	mg/l	0.001	<0.001	
	Mercury (Inorganic)	mg/l	0.0001	<0.0001	
	Nickel	mg/l	0.001	0.001	i
	Zinc	mg/l	0.005	<0.005	
		13			
Organochlorine Pesticides	Aldrin	mg/l	0.0001	<0.0001	
g	4,4-DDE	µg/l	0.1	<0.1	
	Dieldrin	mg/l	0.0001	<0.0001	l .
	DDD	mg/l	0.0001	<0.0001	
	alpha-BHC	mg/l	0.0001	<0.0001	-
	DDT	mg/l	0.0001	<0.0001	l
	beta-BHC	mg/l	0.0001	<0.0001	
	Chlordane	mg/l	0.001	<0.001	-
	delta-BHC	mg/l	0.0001	<0.0001	
	Endosulfan alpha	mg/l	0.0001	<0.0001	
	Endosulfan alpria Endosulfan beta	mg/l	0.0001	<0.0001	
	Endosulfan sulphate		0.0001	<0.0001	
	Endrin	mg/l	0.0001	<0.0001	.
		mg/l			<u> </u>
	Endrin aldehyde	mg/l	0.0001 0.0001	<0.0001	
	Endrin ketone	mg/l	0.0001	<0.0001	
	Heptachlor Heptachlor Epoxide	mg/l	0.0001	<0.0001	
		mg/l			
	Lindane	mg/l	0.0001	<0.0001	
	Methoxychlor	mg/l	0.0001	<0.0001	
	Toxaphene	mg/l	0.01	<0.01	
	<u> </u>	+			
Polycyclic Aromatic Hydrocarbons	Acenaphthene	mg/l	0.001	<0.001	
	Acenaphthylene	mg/l	0.001	<0.001	
	Anthracene	mg/l	0.001	<0.001	
	Benz(a)anthracene	mg/l	0.001	<0.001	
	Benzo(a)pyrene	mg/l	0.001	<0.001	
	Benzo(b,j)fluoranthene	mg/l	0.001	<0.001	
	Benzo(g,h,i)perylene	mg/l	0.001	<0.001	
	Benzo(k)fluoranthene	mg/l	0.001	<0.001	
	Chrysene	mg/l	0.001	<0.001	L
	Dibenz(a,h)anthracene	mg/l	0.001	<0.001	
	Fluoranthene	mg/l	0.001	<0.001	ļ
	Fluorene	mg/l	0.001	<0.001	
	Indeno(1,2,3-c,d)pyrene	mg/l	0.001	<0.001	
	Naphthalene	mg/l	0.001	<0.01	ļ
	Phenanthrene	mg/l	0.001	<0.001	
	Pyrene	mg/l	0.001	<0.001	
	PAHs (Total)	mg/l	0.001	<0.001	
	1				
TPHs (NEPC 1999)	C6-C9 Fraction	mg/l	0.02	<0.02	
	C10-C14 Fraction	mg/l	0.05	<0.05	
	C15-C28 Fraction	mg/l	0.1	<0.1	
	C29-C36 Fraction	mg/l	0.1	<0.1	
	C10-C36 Fraction (Total)	mg/l	0.1	<0.1	
		_			
TRHs (NEPC 2013)	>C10-C16 Fraction	mg/l	0.05	<0.05	
	>C16-C34 Fraction	mg/l	0.1	<0.1	
	>C34-C40 Fraction	mg/l	0.1	<0.1	
	C6-C10 Fraction	mg/l	0.02	<0.02	
	C6 - C10 less BTEX (F1)	mg/l	0.02	<0.02	
	>C10 - C16 less Naphthalene (F2)	mg/l	0.05	< 0.05	

Filter: SDG in('519296')

Legacy Property / Caddens

Field Duplicates (SOIL) Filter: SDG in('519296'	SDG Field ID	519296 TP03_0-0.1	519296 QC01	RPD	519296 TP14 0.2-0.3	519296 QC02	RPD	519296 TP29 0-0.1	519296 QC03	RPD	519296 TP03_0-0.1	ENVIROLAB 2016-10-11T00:00:00 QC01A		519296 TP14 0.2-0.3	ENVIROLAB 2016-10-11T00:00:00 QC02A	RPD	519296 TP29 0-0.1	ENVIROLAB 2016-10-11T00:00:00 QC03A	RPD
	Sampled Date/Time				10/10/2016	10/10/2016	5	10/10/2016	10/10/2016		10/10/2016	10/10/2016	141 5	10/10/2016	10/10/2016	5	10/10/2016	10/10/2016	5
Chem_GrdChemNamUnits Metals & MArsenic (Tdmg/kg	EQL 2 (Primary): 4 (Interlab)	8.4	7.2	15	8.5	8.9	5	8.7	9.7	11	8.4	5.0	51	8.5	8.0	6	8.7	8.0	8
Cadmium mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0
Chromium mg/kg	5 (Primary): 1 (Interlab)	20.0	20.0	0	28.0	39.0	33	42.0	52.0	21	20.0	11.0	58	28.0	25.0	11	42.0	36.0	15
Copper mg/kg	5 (Primary): 1 (Interlab)	41.0	44.0	7	32.0	41.0	25	35.0	40.0	13	41.0	29.0	34	32.0	28.0	13	35.0	27.0	26
Lead mg/kg Mercury (Ir mg/kg	5 (Primary): 1 (Interlab) 0.1	18.0 <0.1	17.0 <0.1	6	28.0 <0.1	31.0 <0.1	10	25.0 <0.1	28.0 <0.1	11	18.0 <0.1	13.0 <0.1	32	28.0 <0.1	20.0 <0.1	33	25.0 <0.1	19.0 <0.1	27
Nickel mg/kg	5 (Primary): 1 (Interlab)	21.0	22.0	5	27.0	35.0	26	33.0	39.0	17	21.0	15.0	33	27.0	23.0	16	33.0	27.0	20
Zinc mg/kg	5 (Primary): 1 (Interlab)	64.0	68.0	6	68.0	87.0	25	70.0	90.0	25	64.0	42.0	42	68.0	56.0	19	70.0	65.0	7
etalloids	20 (Drimer IV 25 (Interlet	<20.0	<20 0	0	<20.0	<200 O	0	<20.0	<20.0	0	<00.0	-25.0		<20.0	-25.0	_	<20.0	-25.0	0
TPHs (NEFC6-C9 Fracmg/kg C10-C14 Fmg/kg	20 (Primary): 25 (Interlated 20 (Primary): 50 (Prim	<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<25.0 <50.0	0	<20.0 <20.0	<25.0 <50.0	0	<20.0 <20.0	<25.0 <50.0	0
C15-C28 F mg/kg	50 (Primary): 100 (Interla	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<100.0	0	<50.0	<100.0	0	<50.0	<100.0	0
C29-C36 F mg/kg	50 (Primary): 100 (Interla	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<100.0	0	<50.0	<100.0	0	<50.0	<100.0	0
C10-C36 F mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0			<50.0			<50.0		+
TRHs (NEF>C10-C16 mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0
>C16-C34 mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0	0
>C34-C40 mg/kg	100	<100.0 <20.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0	0	<100.0	<100.0 <25.0	0	<100.0 <20.0	<100.0	0
C6-C10 Framg/kg	20 (Primary): 25 (Interlated 20 (Primary): 25	<20.0	<20.0 <20.0	0	<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<25.0 <25.0	0	<20.0 <20.0	<25.0 <25.0	0	<20.0	<25.0 <25.0	0
>C10 - C16 mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0	<50.0	<50.0	0
°C 2013)																			\perp
BTEX Benzene mg/kg Ethylbenze mg/kg	0.1 (Primary): 0.2 (Interlated on the Interlated	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.2 <1.0	0	<0.1 <0.1	<0.2 <1.0	0	<0.1 <0.1	<0.2 <1.0	0
Toluene mg/kg	0.1 (Primary): 1 (Interial)	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.5	0	<0.1	<0.5	0	<0.1	<0.5	0
Xylene (m mg/kg	0.2 (Primary): 2 (Interlab	<0.2	<0.2	0	<0.2	<0.2	0	<0.2	<0.2	0	<0.2	<2.0	0	<0.2	<2.0	0	<0.2	<2.0	0
Xylene (o) mg/kg	0.1 (Primary): 1 (Interlab	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<1.0	0	<0.1	<1.0	0	<0.1	<1.0	0
Xylene (To mg/kg	0.3	<0.3	<0.3	0	<0.3	<0.3	0	<0.3	<0.3	0	<0.3		+	<0.3		+	<0.3		+
Polycyclic Acenaphth mg/kg	0.5 (Primary): 0.1 (Interla							<0.5	<0.5	0							<0.5	<0.1	0
Acenaphth mg/kg	0.5 (Primary): 0.1 (Interla							<0.5	<0.5	0							<0.5	<0.1	0
Anthracenemg/kg Benz(a)antmg/kg	0.5 (Primary): 0.1 (Interla 0.5 (Primary): 0.1 (Interla							<0.5 <0.5	<0.5 <0.5	0			_			-	<0.5 <0.5	<0.1 <0.1	0
Benzo(a)pymg/kg	0.5 (Primary): 0.05 (Inter							<0.5	<0.5	0							<0.5	<0.05	0
Benzo(a)pymg/kg	0.5							<0.5	<0.5	0							<0.5	<0.5	0
Benzo(a)pymg/kg	0.5							0.6	0.6	0							0.6	<0.5	18
Benzo(a)pymg/kg Benzo(b,j)f/mg/kg	0.5							1.2 <0.5	1.2 <0.5	0			_				1.2 <0.5	<0.5	82
Benzo(g,h, mg/kg	0.5 (Primary): 0.1 (Interla	ab)						<0.5	<0.5	0							<0.5	<0.1	0
Benzo(k)flumg/kg	0.5							<0.5	<0.5	0							<0.5		
Chrysene mg/kg	0.5 (Primary): 0.1 (Interla							<0.5	<0.5	0						-	< 0.5	<0.1	0
Dibenz(a,h mg/kg Fluoranthe mg/kg	0.5 (Primary): 0.1 (Interlated							<0.5 <0.5	<0.5 <0.5	0							<0.5 <0.5	<0.1 <0.1	0
Fluorene mg/kg	0.5 (Primary): 0.1 (Interla							<0.5	<0.5	0							<0.5	<0.1	0
Indeno(1,2 mg/kg	0.5 (Primary): 0.1 (Interla							<0.5	<0.5	0							<0.5	<0.1	0
Naphthaler mg/kg Naphthaler mg/kg	0.5 (Primary): 1 (Interlab 0.5 (Primary): 1 (Interlab		<0.5	0	<0.5	<0.5	0	<0.5 <0.5	<0.5 <0.5	0	<0.5	<1.0	0	<0.5	<1.0	0	<0.5 <0.5	<0.1 <0.1	0
Phenanthremg/kg	0.5 (Primary): 0.1 (Interla		10.0	+ •	10.0	٠٥.٥	Ť	<0.5	<0.5	0	٠٥.٥	11.0		10.0	11.0	+ -	<0.5	<0.1	0
Pyrene mg/kg	0.5 (Primary): 0.1 (Interla	ab)						<0.5	<0.5	0							<0.5	<0.1	0
PAHs (Totamg/kg	0.5							<0.5	<0.5	0			_			-	<0.5		4
Aromatic Hydrocarbons Chlorinated Hexachlord mg/kg	0.05 (Primary): 0.1 (Inter	lah)						<0.05	<0.05	0							<0.05	<0.1	0
Benzenes	orde (commany) and (mass							0.00	0.00								5.55		
OrganochldAldrin mg/kg	0.05 (Primary): 0.1 (Inter							<0.05	<0.05	0							<0.05	<0.1	0
4,4-DDE mg/kg Dieldrin mg/kg	0.05 (Primary): 0.1 (Inter 0.05 (Primary): 0.1 (Inter			+			\vdash	0.32 <0.05	0.42 <0.05	27							0.32 <0.05	0.2 <0.1	46
DDD mg/kg	0.05 (Primary): 0.1 (Inter	lab)						<0.05	<0.05	0							<0.05	<0.1	0
alpha-BHC mg/kg	0.05 (Primary): 0.1 (Inter	lab)						<0.05	<0.05	0							<0.05	<0.1	0
DDT mg/kg beta-BHC mg/kg	0.05 (Primary): 0.1 (Inter 0.05 (Primary): 0.1 (Inter			+			\vdash	<0.05 <0.05	<0.05 <0.05	0			+			1	<0.05 <0.05	<0.1 <0.1	0
Chlordane mg/kg	0.05 (Primary), 0.1 (inter			\pm				<0.05	<0.05	0							<0.05	70.1	\pm
delta-BHC mg/kg	0.05 (Primary): 0.1 (Inter							<0.05	<0.05	0							<0.05	<0.1	0
Endosulfar mg/kg	0.05 (Primary): 0.1 (Inter			+				< 0.05	< 0.05	0						1	< 0.05	<0.1	0
Endosulfar mg/kg Endosulfar mg/kg	0.05 (Primary): 0.1 (Inter 0.05 (Primary): 0.1 (Inter			+			 	<0.05 <0.05	<0.05 <0.05	0			_			+	<0.05 <0.05	<0.1 <0.1	0
Endrin mg/kg	0.05 (Primary): 0.1 (Inter	lab)						<0.05	<0.05	0							<0.05	<0.1	0
Endrin aldemg/kg	0.05 (Primary): 0.1 (Inter	lab)		\Box			\Box	<0.05	< 0.05	0			\perp				<0.05	<0.1	0
Endrin ketdmg/kg Heptachlor mg/kg	0.05 0.05 (Primary): 0.1 (Inter	lab)		+			\vdash	<0.05 <0.05	<0.05 <0.05	0			_			1	<0.05 <0.05	<0.1	0
Heptachlor mg/kg	0.05 (Primary): 0.1 (Inter			+				<0.05	<0.05	0							<0.05	<0.1	0
Lindane mg/kg	0.05 (Primary): 0.1 (Inter	lab)						<0.05	<0.05	0							<0.05	<0.1	0
Methoxych mg/kg	0.05 (Primary): 0.1 (Inter	iab)		+			\vdash	<0.05	<0.05	0			+			1	<0.05 <1.0	<0.1	0
Toxaphenemg/kg orine Pesticides	1			+			\vdash	<1.0	<1.0	0							\1.U		+
Asbestos Approx. Sa G								570.0	693.0	19							570.0		旦
Asbestos fr %w/w								0.0	0.0	0							0.0		\Box
Mass ACM G Mass Asbe G				+-			\vdash	0.0	0.0	0			_				0.0		+
Mass FA G				+			\vdash	0.0	0.0	0					<u> </u>		0.0		+
Asbestos fr %w/w								0.0	0.0	0							0.0		\Box
Mass Asbe G				\Box		-		0.0	0.0	0							0.0		+
Mass AF G Mass Asbe G	+			+			\vdash	0.0	0.0	0			-			1	0.0		+
Mass Asbe G				+			\vdash	0.0	0.0	0		<u> </u>			<u> </u>		0.0		+
																			口
Asbestos Synthetic FCOMMEN	N1			\Box			\Box	1.0	1.0	0			\perp				1.0		$\downarrow \Box$
			l	1					L		L					1			\perp

Caddens DSI Legacy Property / Caddens

Filter: SDG in('519296'	SDG Field ID Sampled Date/Time	519296 TP03_0-0.1 10/10/2016	519296 QC01 10/10/2016		519296 TP14_0.2-0.3 10/10/2016	519296 QC02 10/10/2016		519296 TP29_0-0.1 10/10/2016	519296 QC03 10/10/2016		519296 TP03_0-0.1 10/10/2016	ENVIROLAB 2016-10-11T00:00:00 QC01A 10/10/2016	RPD	519296 TP14_0.2-0.3 10/10/2016	ENVIROLAB 2016-10-11T00:00:00 QC02A 10/10/2016	RPD	519296 TP29_0-0.1 10/10/2016	ENVIROLAB 2016-10-11T00:00:00 QC03A 10/10/2016	RPD
Asbestos - ACM - Con COMMEN	1							1.0	1.0	0							1.0	(\Box
AF - Comm COMMEN	1							1.0	1.0	0							1.0		
FA - Comm COMMEN	l							1.0	1.0	0							1.0		\Box
Organic Fit COMMEN	1							1.0	1.0	0							1.0	(\Box
Respirable COMMEN	1							1.0	1.0	0							1.0	ĺ	
Trace Analysis																			\Box
Other % Moisture %	1	17.0	19.0	11	16.0	15.0	6	15.0	15.0	0	17.0			16.0			15.0		\Box

Filter: SDG in('519296')

^{**}PDb shave only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (1-20 x EQL); 30 (20-30 x EQL); 30 (> 30 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Contents
Surrogate Variation > 30% or outside lab LCL or UCL

SDG	Expr1001	Lab_Report_Number	Sample_Type	Matrix_Type	SampleCode	Field_ID	Depth	Sampled_Date-Time Compound	Recovery %	Unit	LCL UCL	Lab_Qualifier	Lab_Comments
519296	519296	519296	Normal	SOIL	S16-Oc10337	TP01_0-0.1	TP010 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	67	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10338	TP02_0-0.1	TP020 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	147	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10341	TP03_0.2-0.3	TP030.2 - 0.3	10/10/2016 4-Bromofluorobenzene (surr.)	50	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10342	TP04_0-0.1	TP040 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	137	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10344	TP06 0-0.1	TP060 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	131	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10344	TP06_0-0.1	TP060 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	51	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10346	TP08 0-0.1	TP080 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	140	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10349	TP10 0-0.1	TP100 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	136	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10352	TP12_0-0.1	TP120 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	132	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10352	TP12 0-0.1	TP120 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	65	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10355	TP14_0-0.1	TP140 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	50	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10357	TP15 0-0.1	TP150 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	133	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10360	TP17 0-0.1	TP170 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	67	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10362	TP18 0-0.1	TP180 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	64	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10364	TP19 0-0.1	TP190 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	61	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10366	TP20 0-0.1	TP200 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	65	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10367	TP21 0-0.1	TP210 - 0.1	10/10/2016 Tetrachloro-m-xylene (surr.)	144	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10367	TP21 0-0.1	TP210 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	143	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10367	TP21 0-0.1	TP210 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	64	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10368	TP21 0.2-0.3	TP210.2 - 0.3	10/10/2016 4-Bromofluorobenzene (surr.)	69	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10369	TP22_0-0.1	TP220 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	64	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10369	TP22 0-0.1	TP220 - 0.1	10/10/2016 Tetrachloro-m-xylene (surr.)	59	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10370	TP23 0-0.1	TP230 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	137	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10370	TP23 0-0.1	TP230 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	61	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10370	TP23 0-0.1	TP230 - 0.1	10/10/2016 Tetrachloro-m-xylene (surr.)	138	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10371	TP23 0.2-0.3	TP230.2 - 0.3	10/10/2016 4-Bromofluorobenzene (surr.)	63	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10372	TP24_0-0.1	TP240 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	59	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10373	TP25_0-0.1	TP250 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	63	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10374	TP26_0-0.1	TP260 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	64	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10375	TP26_0.2-0.3	TP260.2 - 0.3	10/10/2016 4-Bromofluorobenzene (surr.)	67	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10376	TP27_0-0.1	TP270 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	141	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10378	TP28_0-0.1	TP280 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	67	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10380	TP30_0-0.1	TP300 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	66	%	50	150	
519296	519296	519296	Field D	SOIL	S16-Oc10388	QC03	TP290 - 0.1	10/10/2016 Dibutylchlorendate (surr.)	142	%	50	150	
519296	519296	519296	Field_D	SOIL	S16-Oc10388	QC03	TP290 - 0.1	10/10/2016 4-Bromofluorobenzene (surr.)	68	%	50	150	
519296	519296	519296	Field_D	SOIL	S16-Oc10388	QC03	TP290 - 0.1	10/10/2016 Tetrachloro-m-xylene (surr.)	51	%	50	150	
519296	519296	519296	Rinsate	WATER	S16-Oc10389	RINS	RINS	10/10/2016 2-Fluorobiphenyl (surr.)	53	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10393	SS02_VEGE F	VEGE PATCH	10/10/2016 Tetrachloro-m-xylene (surr.)	62	%	50	150	
519296	519296	519296	Normal	SOIL	S16-Oc10393	SS02_VEGE F	VEGE PATCH		149	%	50	150	

<u>Contents</u>
Less than 1 matrix spike in 20 samples, or less than 1 matrix duplicate in 20 samples

Matrix_Type	Number_of_Samples	Number_of_Matrix_Spike_Samples	Number_of_Matrix_Spike_Dupe_Samples	
SOIL		96	10	0
WATER		21	5	0

Contents
Trip Spike Recoveries (70% - 130% is acceptable)

SDG	Lab_Report_Number	Matrix_Type	SampleCode	Field_ID	Method_Name	Compound	Trip_Spike_Result	Trip_Spike_Control	Result_Units	Spike_Recovery_%	Acceptable	Result_Type	Lab_Comments
51929	5 519296	WATER	S16-Oc10390	TS	TRH C6-C40 - LTM-ORG-2010	Benzene	NA	NA	NA	84	Y	REG	
51929	5 519296	WATER	S16-Oc10390	TS	TRH C6-C40 - LTM-ORG-2010	Ethylbenzene	NA	NA	NA	87	Υ	REG	
51929	5 519296	WATER	S16-Oc10390	TS	TRH C6-C40 - LTM-ORG-2010	m&p-Xylenes	NA	NA	NA	78	Y	REG	
51929	5 519296	WATER	S16-Oc10390	TS	TRH C6-C40 - LTM-ORG-2010	o-Xylene	NA	NA	NA	80	Y	REG	
51929	5 519296	WATER	S16-Oc10390	TS	TRH C6-C40 - LTM-ORG-2010	Toluene	NA	NA	NA	79	Y	REG	
51929	5 519296	WATER	S16-Oc10390	TS	TRH C6-C40 - LTM-ORG-2010	Xvlenes - Total	NA	NA	NA	79	Y	REG	

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
Α	1 x Electronic	Mike Williams	21 October 2016
0	1 x Electronic	Mike Williams	27 October 2016

Document Status

Rev No.	Author	Reviewer	Approved for Issue		
		Name	Name	Signature	Date
0	Seth Molinari Rohan Hammond	Seth Molinari	Seth Molinari	Selm	27/10/2016

©JBS&G Australia Pty Ltd | 52116-105322

