DETAILED SITE INVESTIGATION REPORT

243-261 Forrester Road, North St Marys NSW 2760

Home Co. – April 2021

DOCUMENT CONTROL

DETAILED SITE INVESTIGATION REPORT

243-261 Forrester Road, North St Marys, NSW 2760

PREPARED FOR

Home Co. Andrew Boustred Development Director PO Box 19 Double Bay NSW 2028

Report reference: 2101028Rpt01FinalV01_16April21

Date: 16 April 2021

DISTRIBUTION AND REVISION REGISTER

Revision Number	Date	Description	Recipient	Deliverables	
V01	16/04/2021	Final Report 2101028Rpt01FinalV01_16April21	Geo-Logix Pty Ltd	1 Electronic Copy	
V01	16/04/2021	Final Report 2101028Rpt01FinalV01_16April21	Home Co.	1 Electronic Copy	

Issued by: Geo-Logix Pty Ltd

ABN: 86 116 892 936

B.Env Project Scientist

BSc Civil Engineering, MIEAust Associate Engineer

EXECUTIVE SUMMARY

Geo-Logix Pty Ltd (Geo-Logix) was engaged by Home Co. to conduct a Detailed Site Investigation (DSI) of the property located at 243–261 Forrester Road, North St Marys NSW. Geo-Logix understands that Home Co. plan to develop the site as a health and wellness precinct including childcare.

Geo-Logix completed a Preliminary Site Investigation (PSI) for the subject site in August 2020. The PSI identified the following:

- An asbestos containment cell exists in the north eastern corner of site. The containment cell is located at least 1 m below existing site pavements;
- Fill was likely placed across the site during development as a bulky goods store. The origin of this fill is unknown.

The objective of the DSI was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activity. The findings of this report are based on a site investigation conducted on 23 and 24 March 2020.

The subject site is located in a commercial area in North St Mary's NSW. The site comprises a rectangle shaped lot encompassing an area of 32,500 m² and is bound by Forrester Road to the north and west, St Marys Leagues Stadium to the east and various restaurants and St Marys Rugby League Club to the south. Entry into the site is via a driveway from Forrester Road to the west.

At the time of the investigation the on-site building was occupied; however, a temporary COVID-19 clinic was operating in the carpark at the north of the site and a return and earn (recycle facility) was located in the southwest corner of the site. The on site building, formerly a bulky goods store, is a large warehouse with slab on grade concrete floor. The building is currently empty and all services were observed to access the buildings through suspension from the ceiling.

A culvert for stormwater/creek was observed on the edge of the existing carpark, identified by raised concrete extending from the carpark. The stormwater/creek runs across the north of the site into an adjoining lake located to the east of the site.

Potential contaminating activities identified on the lot includes the construction of the bulky goods store and installation of asbestos containment cell. The contaminants of potential concern identified in the Phase 1 ESA included:

- Total Recoverable Hydrocarbons (TRHs);
- Benzene, toluene, ethylbenzene and xylenes, Naphthalene (BETX);
- Polyaromatic hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs); and
- Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn).

To assess for potential soil contamination Geo-Logix completed the following scope of works:

• Collection of subsurface soil samples within the fill from twenty locations on a 40 m sampling grid. The sampling grid will identify circular contamination hotspots equal to or greater than 47.2 m diameter at 95% statistical degree of certainty;

- A sample at each location was analysed for TRH, BTEXN, PAHs OCPs and heavy metals; and
- All fill samples were visually inspected for asbestos containing materials.

With the exception of Benzo(a)pyrene Toxic Equivalents (BaP TEQ) at one location within the drainage swale on the western boundary with Forrester Road, contaminants of concern were not detected at concentrations above sensitive land use criteria.

Whilst B(a)P TEQ was detected at a concentration in exceedance of the adopted residential HIL in the sample from location BH1, the concentration was below the HIL for commercial land use (40 mg/kg). As location BH1 is adjacent to Forrester Road at the western boundary of the site, and is outside of the proposed footprint of the wellness precinct and far from the proposed childcare area, the HIL for commercial land use is considered appropriate for this location. On this basis B(a)P TEQ in soil on the western boundary is not considered a condition that warrants remediation or management.

The site is considered suitable for Home Co.'s health and wellness precinct subject to management of the asbestos containment cell under an Environmental Management Plan.

TABLE OF CONTENTS

1.	INTRODUCTION1
2	SITE INFORMATION1
	2.1 Site Identification1
	2.2 Site Zoning and Land Use1
	2.3 Site Description
	2.4 Surrounding Land Use
	2.5 Topography2
	2.6 Surface Water
	2.7 Geology
	2.8 Hydrogeology2
	2.9 Underground Utilities
3	PREVIOUS ENVIRONMENTAL INVESTIGATIONS
	3.1 Phase I ESA, Geo-Logix 20103
	3.2 Asbestos Management Plan, GETEX 20133
	3.3 Preliminary Site Investigation, Geo-Logix 2020
4	POTENTIAL SITE CONTAMINATION
5	PRELIMINARY CONCEPTUAL SITE MODEL
6	DATA QUALITY OBJECTIVES
7.	ASSESSMENT CRITERIA
	7.1 Soil Assessment Criteria6
8	INVESTIGATION METHODOLOGIES
	8.1 Sampling Analysis Plan8
	8.2 Soil Sampling Methodology9
	8.3 Quality Assurance
9	INVESTIGATION RESULTS9
	9.1 Site Geology9
	9.2 Site Hydrogeology9
	9.3 Soil Analytical Results

9.4 QA/QC Results	10
10. DISCUSSION	11
11. REVISED CONCEPTUAL SITE MODEL	12
12. CONCLUSIONS	12
13. LIMITATIONS	13
14. REFERENCES	15

FIGURES

Figure 1: Site Location Map
Figure 2: Site Map

TABLES

Table 1: Summary of Soil Analytical Data – Petroleum Hydrocarbons
Table 2: Summary of Soil Analytical Data – Polyaromatic Hydrocarbons
Table 3: Summary of Soil Analytical Data – Heavy Metals
Table 4: Summary of Soil Analytical Data – Organochlorine Pesticides

ATTACHMENTS

- Attachment A: Planning Certificate
- Attachment B: Photographic Log
- Attachment C: Registered Bore Search
- Attachment D: Underground Utilities Plan
- Attachment E: Soil Borehole Logs
- Attachment F: Laboratory Reports

1. INTRODUCTION

Geo-Logix Pty Ltd (Geo-Logix) was engaged by Home Co. to conduct a Detailed Site Investigation (DSI) of the property located at 243–261 Forrester Road, North St Marys NSW (Figure 1). Geo-Logix understands that Home Co. plan to develop the site as a health and wellness precinct including childcare.

Geo-Logix completed a Preliminary Site Investigation (PSI) for the subject site in August 2020. The PSI identified the following:

- An asbestos containment cell exists in the north eastern corner of site;
- Fill was likely placed across the site during development as a bulky goods store. The origin of this fill is unknown.

The objective of the DSI was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activity. The findings of this report are based on a site investigation conducted on 23 and 24 March 2020.

2. SITE INFORMATION

2.1 Site Identification

The investigation area comprises the following properties:

Street Address	Lot and Deposited Plan (DP)	Approximate Area (m ²)
243–261 Forrester Road, North St Marys NSW	Lot 12 DP 1192443	32,500

2.2 Site Zoning and Land Use

Under the Penrith Local Environmental Plan 2010 (PLEP 2010), the site is zoned as Light Industrial (IN2). The Planning Certificate is provided in Attachment A.

2.3 Site Description

The following observations were made during field works conducted by Geo-Logix in March 2021. A photographic log is presented in Attachment B.

The subject site is located in a commercial area in North St Mary's NSW. The site comprises a rectangle shaped lot encompassing an area of 32,500 m². The lot is bound by Forrester Road to the north and west, St Marys Leagues Stadium to the east and various restaurants and St Marys Rugby League Club to the south. Entry into the site is via a driveway from Forrester Road to the west.

At the time of the investigation the on-site building was occupied; however, a temporary COVID-19 clinic was operating in the carpark at the north of the site and a return and earn (recycle facility) was located in the southwest corner of the site. The on site building, formerly a bulky goods store, is a large warehouse with slab on grade concrete floor. The building is currently empty and all services were observed to access the buildings through suspension from the ceiling.

A culvert for stormwater/creek was observed on the edge of the existing carpark, identified by raised concrete extending from the carpark. The stormwater/creek runs across the north of the site into an adjoining lake located to the east of the site.

2.4 Surrounding Land Use

At the time of the investigation, the surrounding land use comprised the following:

- **North** Forrester Road, with rural properties beyond;
- South Tennyson Avenue, with commercial properties beyond;
- West Forrester Road with Sydney weighbridges and industrial area beyond; and
- East St Marys Leagues Stadium and vacant bushland beyond.

2.5 Topography

The site is graded and relatively level with an approximate elevation of 25–26 m Australian Height Datum (AHD).

2.6 Surface Water

The nearest surface water receptor is the channel at the northwest boundary of the site. A dam is located immediately northeast of the site. Ropes Creek is located approximately 386 m northeast of the site.

2.7 Geology

Review of the NSW 1:100,000 Penrith Geology Map (Geological Survey of NSW 1991) indicates the site is underlain by Quaternary age fine grained sand, silt and clay.

2.8 Hydrogeology

Groundwater is expected to follow regional topography and flow toward the north and north east.

Reference to the NSW Groundwater Works Reports (NSW Government, 2019) indicates there are six registered groundwater bores within a 500 m radius of the site. Five of the bores are registered as monitoring bores and are located at the Service Station at the corner of Forrester Road and Christie Street, 350 m southwest of the site. Well depths were approximately eight metres. Depth to water bearing units was not noted. No information was available for the sixth bore, 350m to the east of the site. The groundwater bore search map is presented in Attachment C.

2.9 Underground Utilities

A Dial Before You Dig search was conducted to determine the presence of underground utilities which may act as conduits for contamination migration both onsite and offsite (Attachment D). The plans indicate:

• Telstra utilities enter the site from the south western. One connection runs into the centre of the site and is recorded as dead, whilst the other connection runs slightly towards the south east of the site.

3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

3.1 Phase I ESA, Geo-Logix 2010

Geo-Logix previously completed a Phase I Environmental Site Assessment (ESA) in April 2010, prior to construction of a bulky goods store at the site. The scope of works included review of historical data, site inspection and limited soil sampling. Geo-Logix concluded that the site was suitable for redevelopment as a bulky goods store.

Historical information gathered for that report was incorporated into the Geo-Logix PSI (2020).

3.2 Asbestos Management Plan, GETEX 2013

GETEX prepared an Asbestos Management Plan (AMP) for the Masters Home Improvement Store in May 2013. The asbestos management approach entailed placing a grey geo-fabric liner over the area of contaminated soil and placement of 1 m thick layer of clean fill over the top. The plan further defined methodologies and control measures to be adhered to in the event future subsurface excavation encounters the contain asbestos impacted soils. The encapsulated asbestos was identified as Non-Friable (Bonded) Asbestos. The frequency and/or concentration of bonded asbestos in the impacted soil was not discussed in the AMP.

3.3 Preliminary Site Investigation, Geo-Logix 2020

Geo-Logix prepared a Preliminary Site Investigation (PSI) in August 2020 to establish whether activities have occurred on site which may have resulted in contamination of the land. The PSI found that the site has been subject to uncontrolled filling and identified a number of contaminants of potential concern (COPCs) associated with this.

Geo-Logix concluded that the site can be made suitable for the proposed development as a health and wellness precinct subject to the implementation of a site-specific Environmental Management Plan (EMP) and completion of this DSI.

4. POTENTIAL SITE CONTAMINATION

Fill of Unknown Origin

Geo-Logix previously identified fill at the site in the 2010 and 2020 investigation and it is expected that additional filling occurred during development of the site as a Masters bulky goods store circa 2013. COPC associated will fill of unknown origin include:

- Petroleum Hydrocarbons;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Heavy Metals; and
- Asbestos

Asbestos Containment Cell

As asbestos containment cell is located in the north eastern corner of the site. In its current state, the asbestos is controlled and is not considered to present a risk to human health or the environment. Ongoing management of the cell will be required to prevent any uncontrolled exposure to construction workers and future site occupants.

5. PRELIMINARY CONCEPTUAL SITE MODEL

For site contamination to present a risk to human health and the environment there has to be a link between the contaminant and the receptor as detailed below.

Contaminant Pathway Receptor

If any of the links do not exist contaminant exposure cannot occur.

The conceptual model below was prepared prior to site investigation and considers construction and operation of a health and wellness precinct with onsite childcare.

Conceptual Site Model – Contaminants in Soil and Groundwater									
		Re	ceptors						
Pathways	Construction Workers	Wellness Precinct Occupants	Offsite Workers and Residents	Other					
Soil Ingestion/Dermal Contact/Dust	\checkmark	~	~	Terrestrial Ecology ✓					
Indoor inhalation of Vapours derived from Soil	\checkmark	~	~						
Outdoor Inhalation of Vapours derived from Soil	X*	X*	X*	Onsite Trench worker ✓					
Indoor Inhalation of Vapours Derived from Groundwater	\checkmark	~	~						
Outdoor Inhalation of Vapours Derived from Groundwater	X*	X*	X*	Onsite Trench worker ✓					
Soils Leaching to Groundwater				Ongoing Groundwater Impact ✓					
Groundwater Abstraction		\checkmark	\checkmark						
Groundwater Discharge to Surface Water				Recreation/Aquatic ecosystem ✓					
		Comments		·					
X – exposure pathway incom ✓ – exposure pathway comp Not relevant	plete no unacceptable lete potential unaccep	e risk otable risk							

* - considered incomplete due to dilution effects

6. DATA QUALITY OBJECTIVES

The objective of the investigation was to assess the site for contamination that may have originated from historical site activities to determine the suitability of the site for the proposed health and wellness precinct.

To achieve the objective, Geo-Logix has adopted the seven step Data Quality Objective (DQO) process as described in AS 4482.1–2005, US EPA (2000) and DEC (2006).

Step 1: State the problem.

The subject site may be contaminated as a result of previous and current land use. This investigation considers fill of unknown origin place during development of bulky goods store.

Step 2: Identify the decision.

The site is considered suitable for Home Co.'s health and wellness precinct subject to management of the onsite asbestos cell by an EMP .

Step 3: Identify inputs into the decision.

- Identification of issues of potential environmental concern (PSI);
- Appropriate identification of COPCs (PSI);
- Systematic soil sampling and analysis program of shallow soils across the site;
- Visual inspection of systematic shallow soil samples for presence of Asbestos Containing Materials (ACM);
- Appropriate quality assurance/control to enable an evaluation of the reliability of the analytical data; and
- Screening sample analytical results against appropriate assessment criteria for the intended land use (Residential A).

Step 4: Define the boundaries of the site.

The project boundary is defined as the area within the site boundary (243-261 Forrester Road, North St Marys NSW) to a vertical depth to native soils, approximately 1.5–2.0 mbg.

Step 5: Develop a decision rule.

To accept the assessment decision, there may be no complete exposure pathways in the revised site conceptual model following investigation.

Step 6: Specify acceptable limits on decision errors.

The field sampling methodology, sample preservation techniques, and laboratory analytical procedures must be appropriate to provide confidence in data quality so any comparison against assessment criteria can be considered reliable. This is achieved by defining and comparing results against the Data Quality Indicators (DQIs).

Step 7: Optimise the design for obtaining data.

This is achieved by sampling plan design in consideration of the available site history information, area of investigation, contaminant behaviour in the environment, and likely spatial distribution of contamination.

7. ASSESSMENT CRITERIA

The primary reference for environmental site assessment in Australia is the Amended Assessment of Site Contamination (ASC) National Environmental Protection Measure (NEPM) 1999 (NEPC, 2013). This document includes soil, soil vapour and groundwater criteria for use in evaluating potential contamination risk to human health and the environment.

The application of these investigation levels and screening levels is subject to a range of limitations and their selection and use must be in the context of the conceptual site model (CSM) relating to the nature and distribution of impacts and potential exposure pathways. Each relevant guideline is discussed further below and the adopted screening criteria are presented in summary sample analytical tables attached to this report.

7.1 Soil Assessment Criteria

The following soil assessment criteria were adopted for the investigation.

NEPM Health Based Investigation Level B (HILs A)

HILs are Tier 1 risk based generic assessment criteria used for the assessment of potential risks to human health from chronic exposure to contaminants in soil. They are intentionally conservative and based on a reasonable worst-case scenario for generic land use settings including Low Density Residential (HILs A), High Density Residential (HILs B), Open Space/Recreational (HILs C) and Commercial Industrial (HILs D). HILs A soil assessment criteria were adopted on the basis the proposed site use is a childcare.

NEPM Health Screening Levels B (HSLs A/B)

HSLs are Tier 1 risk based generic soil assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space / Recreational (HSLs C) and Commercial Industrial (HSLs D). HSL A/B for sand soil (0 - <1 m) were conservatively adopted.

NEPM Management Limits – Residential

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure. Residential management limits for fine grained soils were adopted based on the proposed land use and geology encountered.

Preliminary Asbestos Assessment Criteria

Asbestos assessment criteria are included in NEPM (1999) Amendment. Those criteria apply to the assessment of known and suspected asbestos contamination in soil and address friable and non-friable forms of asbestos. The presence of asbestos contamination was not known at the time of investigation therefore its investigation was of a preliminary nature. Given the preliminary assessment the following assessment criteria was adopted:

- No visible ACM on the site surface or in the subsurface at soil sampling locations; and
- No asbestos is detected in soil samples.

If ACM is observed further assessment may be warranted.

NEPM Soil Ecological Assessment Levels

Ecological Investigation Levels (EILs) are used for the protection of terrestrial ecosystems and have been derived for common contaminants in soil based on a species sensitivity distribution model developed for Australian conditions. EILs apply principally to contaminants in the top 2m of soil which corresponds to the root zone and habitation zone of many species. EILs have been developed for the following contaminants:

- Arsenic (As);
- Copper (Cu);
- Chromium III (CrIII);
- Nickel (Ni);
- Lead (Pb);
- Zinc (Zn);
- DDT; and
- Naphthalene.

EILs depend on specific soil physicochemical properties and land use scenarios. The protection levels for generic land use settings are:

- 99% for areas of ecological significance;
- 80% for urban residential areas and public open space; and
- 60% for commercial and industrial uses.

80% protection was adopted on the basis the proposed land use is a health and wellness precinct.

A summary of EILs adopted for site and rationale are detailed below.

Contaminant	EIL (mg/kg)	Rationale
As	100	Value for urban residential and public open space irrespective of physicochemical properties.
Cu	240	Value for urban residential and public open space based on an average CEC of 22 and pH of 7.3.
CrIII	410	Value for urban residential and public open space based on average clay content of >10%.
Ni	290	Value for urban residential and public open space based on an average CEC of 22.
Pb	1,300	Value for urban residential and public open space irrespective of physicochemical properties.
Zn	870	Value for urban residential and public open space based on an average CEC of 22 and pH of 7.3.
DDT	180	Value for urban residential and public open space irrespective of physicochemical
Naphthalene	170	properties.

In addition, Ecological Screening Levels (ESLs) have been developed. The ESLs are based on a review of Canadian guidance for petroleum hydrocarbons contamination in coarse and fine grained soil types and

application of the Australian methodology. A summary of ESLs adopted for site and rationale are detailed below.

Contaminant	EIL (mg/kg)	Rationale
F1 C6-C10	180	
F2 C10-C16	120	
F3 C16-C34	1,300	
F4 C34-C40	5,600	
Benzene	65	Value for urban residential / public open space in fine grained soil.
Toluene	105	
Ethylbenzene	125	
Xylenes (Total)	45	
Benzo(a)pyrene	33	

8. INVESTIGATION METHODOLOGIES

Geo-Logix conducted environmental investigation on 24 and 25 March 2021. Sample locations are presented in Figure 2. The investigation methodology for each lot is presented below.

8.1 Sampling Analysis Plan

Potential contaminating activities identified on the lot includes the construction of the bulky goods store and installation of asbestos containment cell. The contaminants of potential concern identified in the Phase 1 ESA included:

- Total Recoverable Hydrocarbons (TRHs);
- Benzene, toluene, ethylbenzene and xylenes, Naphthalene (BETX);
- Polyaromatic hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs); and
- Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn).

To assess for potential soil contamination Geo-Logix completed the following scope of works:

- Collection of subsurface soil samples within the fill from twenty locations on a 40 m sampling grid. The sampling grid will identify circular contamination hotspots equal to or greater than 47.2 m diameter at 95% statistical degree of certainty;
- A sample at each location was analysed for TRH, BTEXN, PAHs OCPs and heavy metals; and
- All fill samples were visually inspected for asbestos containing materials.

8.2 Soil Sampling Methodology

Soil borings BH4–BH11, BH13–BH17 and BH20 were completed using a Dingo-equipped with solid stem augers. Borings were completed to depths of approximately 0.7–1.0 mbg. Soil samples were collected directly from the auger.

The remaining borings BH1-BH3, BH12, BH18 and BH19 were completed using a hand auger to depths between 0.2 mbg to 0.8 mbg. The soil samples were collected directly from the hand auger.

Soil samples were placed in laboratory prepared jars, labelled and placed on ice in an esky for transport. A chain of custody form was prepared to accompany the esky to a NATA Accredited Laboratory for the analysis of the COPC. Quality Control procedures included the decontamination of the auger between boring locations and changing disposable gloves between samples.

Soil sample descriptions for soil samples are presented in Attachment E.

8.3 Quality Assurance

Quality control (QC) sampling was undertaken in general accordance with specifications outlined in AS4482.1, *Guide to Sampling and Investigation of Potentially Contaminated Soil.* Field QC samples were collected and included the following:

Sample Identification	Sample Type	Sample Matrix	Rate of Collection
DS1	Field duplicate of BH12/0.25-0.35	Soil	1 in 20 samples
TS1	Field triplicate of BH12/0.25-0.35	Soil	1 in 20 samples
RIN1	Soil sampling equipment rinsate	Water	1 per round of borings
Trip Blank	Transport blank sample	Soil	1 per round of borings
Trip Spike	Transport blank sample	Soil	1 per round of borings

Note – Rate of QC sample collection specified as 1 in 20 samples in AS4482.1

The laboratory internal QC procedures are consistent with NEPM policy on laboratory analysis of contaminated soils.

9. INVESTIGATION RESULTS

9.1 Site Geology

Fill material was encountered across the site to a maximum depth of 1.5m. The fill material generally consisted of clayey sand or sandy clay. Anthropogenic material including road base was observed in fill in all borings with the exception of BH1-BH3 and rebar in BH4. ACM was not observed in fill at all sample locations. Fill material generally overlies low plasticity clay.

9.2 Site Hydrogeology

Water was encountered at approximately 0.4 mbg in the western portion of the site in BH1-BH3, however these locations were adjacent to an open stormwater canal that drained into a dam to the east of the site.

9.3 Soil Analytical Results

Soil analytical results are summarised in Tables 1 through 6. Laboratory reports are presented in Attachment F.

Petroleum Hydrocarbons

Petroleum hydrocarbons were not detected at concentrations above the assessment criteria in all soil samples analysed (Table 1).

PAHs

The Benzo(a)pyrene Toxic Equivalency Quotient (TEQ) was calculated to be above residential assessment criteria for the protection of human health in sample BH1/0.3-0.4.

PAHs were not otherwise detected in soil at concentrations above assessment criteria in all samples analysed (Table 2).

OCPs

OCPs were not reported in soil samples at concentrations in excess of laboratory reporting limits (Table 3).

Heavy Metals

Arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc were not detected at concentrations greater than the assessment criteria in all soil samples analysed (Table 4).

Asbestos

ACM was not identified in soil at any sample location.

9.4 QA/QC Results

Soil duplicate/triplicate results are within the adopted acceptance criteria of 30–50% (AS4482.1) relative percent difference (RPD) with the exception of the following:

- Arsenic, nickel and zinc in soil duplicate pair BH12/0.25-0.36 and DS1; and
- TRH Fraction >C₁₆-C₃₄, arsenic, copper, nickel and in soil triplicate pair BH12/0.25-0.35 and TS1.

The RPD outliers are attributed to the heterogeneity of the soils.

COPC were not detected at concentrations above laboratory reporting limits in the rinsate samples collected from the hand auger sampling equipment indicating decontamination procedures were adequate to prevent cross contamination.

COPC were not detected in the field blank samples indicating sample handling and transport techniques were sufficient to prevent cross contamination between samples.

A summary of Laboratory QA/QC data is presented on the following table.

Report #	Analysis Within Holding Time	Surrog Recov	ate ery	Lab. Duplicate RPD %	Lab Matrix Spike Recovery	Lab. Control Sample	Lab Method Blank	
783305-S	\checkmark	\checkmark		√*	\checkmark	\checkmark	\checkmark	
783305-W	\checkmark	\checkmark		√*	\checkmark	\checkmark	\checkmark	
783523-S	\checkmark	\checkmark		√*	\checkmark	\checkmark	\checkmark	
785590-S	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
\checkmark = Pass X = Fail = not required * = refer to report text								
Quality Assurance Criteria			Quali	Quality Control Criteria				
Holding Times			Accu	Accuracy				
VOCs: 7 days soil, 7 days water SVOCs: 14 days soil, 7 days water			Surrogate, matrix spike, control sample 70–130% and 30–130% for Phenols. Surrogate recovery 50–150% and 20–130% for Phenols.					
TRH and BTEX: 14 days soil, 7 days water			Precision					
days water.			Method Blank Not detected					
Asbestos: no limit			Duplicate – No limit (<10xEQL), 0–50% (10–20xEQL), 0–200% (>20xEQL)					

Geo-Logix accepts the integrity of the analytical data.

10. DISCUSSION

Whilst B(a)P TEQ was detected at a concentration in exceedance of the adopted residential HIL in the sample from location BH1, the concentration was below the HIL for commercial land use (40 mg/kg). As location BH1 is adjacent to Forrester Road at the western boundary of the site, outside of the proposed footprint of the wellness precinct and far from the proposed childcare area, the HIL for commercial land use is considered appropriate for this location. On this basis B(a)P TEQ in soil on the western boundary is not considered a condition that warrants remediation or management.

11. REVISED CONCEPTUAL SITE MODEL

Conceptual Site Model – Contaminants in Soil and Groundwater									
		Rece	eptors						
Relevant Exposure Pathways	Construction Workers	Wellness Precinct Occupants	Offsite Workers and Residents	Other					
Soil Ingestion/Dermal Contact/Dust	Х	х	х	Terrestrial Ecology X					
Indoor inhalation of Vapours derived from Soil	Х	х	x						
Outdoor Inhalation of Vapours derived from Soil	X*	X*	X*	Onsite Trench worker X					
Indoor Inhalation of Vapours Derived from Groundwater	~	~	1						
Outdoor Inhalation of Vapours Derived from Groundwater	X*	X*	X*	Onsite Trench worker X					
Soils Leaching to Groundwater				Ongoing Groundwater Impact X					
Groundwater Abstraction		Х	х						
Groundwater Discharge to Surface Water				Recreation/Aquatic ecosystem ✓					
Comments									
X – exposure pathway incomplete no unacceptable risk									
 ✓ – exposure pathway c 	omplete potential unaccept	table risk							
Not relevant	te due to dilution effects								

A summary of the revised CSM following investigation is presented below.

12. CONCLUSIONS

The site is considered suitable for Home Co.'s health and wellness precinct subject to management of the onsite asbestos cell under an EMP.

13. LIMITATIONS

This report should be read in full, and no executive summary, conclusion or other section of the report may be used or relied on in isolation, or taken as representative of the report as a whole. No responsibility is accepted by Geo-Logix, and any duty of care that may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Geo-Logix's express written consent. Any duty of care to third parties that would or may arise in respect of persons other than the Client, but for this statement, is excluded.

Geo-Logix owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Geo-Logix. If the Client provides a copy of this report to a third party, without Geo-Logix's consent, the Client indemnifies Geo-Logix against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

The works undertaken by Geo-Logix are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. **A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.**

To the extent permitted by law, Geo-Logix makes no warranties or representations as to the:

- a. suitability of the Site for any specific use, or category of use, or
- b. potential statutory requirements for remediation, if any, of the Site,
- c. approvals, if any, that may be needed in respect of any use or category of use, or
- d. level of remediation, if any, that is warranted to render the Site suitable for any specific use, or category of use, or
- e. level of ongoing monitoring of Site conditions, if any, that is required in respect of any specific use, or category of use, or
- f. presence, extent or absence of any substance in, on or under the Site, other than as expressly stated in this report.

The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

To the extent that the information and data relied upon to prepare this report has been conveyed to Geo-Logix by the Client or third parties orally or in the form of documents, Geo-Logix has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Geo-Logix assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

Without limiting the paragraph above, where laboratory tests have been carried out by others on Geo-Logix's behalf, the tests are reproduced in this report on the assumption that the tests are accurate. Geo-Logix has not sought independently to verify the accuracy of those tests and assumes no responsibility in respect of them.

Geo-Logix assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Geo-Logix gathered data and/or took samples from the Site on its site inspections dated **24 to 25 March 2021**.

Given the nature of asbestos, and the difficulties involved in identifying asbestos fibres, despite the exercise of all reasonable due care and diligence, thorough investigations may not always reveal its presence in either buildings or fill. Even if asbestos has been tested for and those tests' results do not reveal the presence of asbestos at those specific points of sampling, asbestos or asbestos containing materials may still be present at the Site, particularly if fill has been imported at any time, buildings constructed prior to 1980 have been demolished on the Site or materials from such buildings have been disposed of on the Site.

Where the Scope of Works does not include offsite investigations, Geo-Logix provides no warranty as to offsite conditions, including the extent if any to which substances in the Site may be emanating off site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.

Where the Scope of Works does not include the investigation, sampling, monitoring or other testing of groundwater in, on or under the Site, Geo-Logix provides no warranty or representation as to the quality of groundwater on the Site or the actual or potential migration of contamination in groundwater across or off the Site.

Subsurface site conditions are typically heterogeneous, and may change with time. Samples taken from different points on the Site may not enable inferences to be drawn about the condition of areas of the Site significantly removed from the sample points, or about the condition of any part of the Site whatsoever, in particular where the proposed inferences are to be drawn a long time after the date of the report.

Geo-Logix has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently, and may change at any time after the date of this report.

14. REFERENCES

ANZECC & ARMECC (2000) *Australian and New Zealand Guidelines for Freshwater and Marine Water*, Australia and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Australian Standard (2005) AS 4482.1–2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Volatile and Semi-volatile compounds. Standards Australia.

Australian Standard (2005) AS 4482.2–1999 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 2: Volatile substances. Standards Australia.

GETEX (2013) Asbestos Management Plan, Masters Home Improvement Development Site, Forrester Road, St Marys NSW 2760, Report Reference: 7407.01.AMMP

Geo-Logix (2010) Phase 1 Environment Site Assessment Report, Part Lot 23 DP 1142130 Forrester Road, St Marys NSW. Report Ref 1001003Rpt01FinalV01_7Apr10.

Geo-Logix (2020) Preliminary Site Investigation Report, 243-261 Forrester Road, North St Marys NSW. Report Ref 2001041Rpt01FinalV01_4Aug20.

NEPC (1999) *Amended National Environmental Protection Measure (2013)*, National Environmental Protection Council.

NSW DEC (2006) Guidelines for NSW Site Auditor Scheme, NSW Department of Environment and Conservation.

NSW EPA (1995) *Contaminated Sites Sampling Design Guidelines*, NSW Environmental Protection Authority.

US EPA (2000) Data Quality Objectives Process for Hazardous Wastes Site Investigations EPAQA/G-4HW, United States Environmental Protection Agency.

FIGURES

Document Set ID: 9552413

Version: 1, Version Date: 19/04/2021

TABLES

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1 Criteria 2		Criteria 3						
	HSLs - A/B	Management	ESLs						
	Sand	Limits	Urban Res	Sample ID	BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6	BH5/0.5-0.6
	0 to <1 m	Res/Park	Fine Soil	Date	25/03/2021	24/03/2021	25/03/2021	25/03/2021	25/03/2021
TRH C ₆ -C ₁₀	-	800	-		< 20	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)	45	-	180		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	110	-	120		< 50	< 50	< 50	< 50	< 50
TRH >C16-C34	-	3,500	1,300		400	< 100	< 100	< 100	190
TRH >C34-C40	-	10,000	5,600		110	< 100	< 100	< 100	< 100
Benzene	0.5	-	65		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	160	-	105		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	55	-	125		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	40	-	45		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	3	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil.

Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1 Criteria 2		Criteria 3						
	HSLs - A/B	Management	ESLs						
	Sand	Limits	Urban Res	Sample ID	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4	BH9/0.6-0.7	BH10/0.6-0.7
	0 to <1 m	Res/Park	Fine Soil	Date	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
TRH C ₆ -C ₁₀	-	800	-		< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	45	-	180		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	110	-	120		< 50	< 50	< 50	< 50	< 50
TRH >C16-C34	-	3,500	1,300		< 100	< 100	< 100	< 100	< 100
TRH >C34-C40	-	10,000	5,600		< 100	< 100	< 100	< 100	< 100
Benzene	0.5	-	65		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	160	-	105		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	55	-	125		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	40	-	45		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	3	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil.

Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3						
	HSLs - A/B	Management	ESLs						
	Sand	Limits	Urban Res	Sample ID	BH11/0.5-0.6	BH12/0.25-0.35	DS1	RPD_DS1	TS1
	0 to <1 m	Res/Park	Fine Soil	Date	25/03/2021	24/03/2021	24/03/2021	-	24/03/2021
TRH C ₆ -C ₁₀	-	800	-		< 20	< 20	< 20	пс	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	45	-	180		< 20	< 20	< 20	пс	< 20
TRH >C10-C16	-	1,000	-		< 50	< 50	< 50	пс	58
TRH >C10-C16 less Naphthalene (F2)	110	-	120		< 50	< 50	< 50	пс	58
TRH >C ₁₆ -C ₃₄	-	3,500	1,300		< 100	120	130	8%	320
TRH >C ₃₄ -C ₄₀	-	10,000	5,600		< 100	< 100	< 100	пс	< 100
Benzene	0.5	-	65		< 0.1	< 0.1	< 0.1	пс	< 0.1
Toluene	160	-	105		< 0.1	< 0.1	< 0.1	пс	< 0.1
Ethylbenzene	55	-	125		< 0.1	< 0.1	< 0.1	пс	< 0.1
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	пс	< 0.2
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	пс	< 0.1
Xylenes - Total	40	-	45		< 0.3	< 0.3	< 0.3	пс	< 0.3
Naphthalene (MAH)	3	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil.

Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3						
	HSLs - A/B	Management	ESLs						
	Sand	Limits	Urban Res	Sample ID	RPD_TS1	BH13/0.45-0.55	BH14/1.4-1.5	BH15/0.55-0.65	BH16/0.55-0.65
	0 to <1 m	Res/Park	Fine Soil	Date	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021
TRH C ₆ -C ₁₀	-	800	-		пс	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	45	-	180		пс	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-		пс	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	110	-	120		пс	< 50	< 50	< 50	< 50
TRH >C ₁₆ -C ₃₄	-	3,500	1,300		91%	< 100	< 100	< 100	< 100
TRH >C ₃₄ -C ₄₀	-	10,000	5,600		пс	< 100	< 100	< 100	< 100
Benzene	0.5	-	65		пс	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	160	-	105		пс	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	55	-	125		пс	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-		пс	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-		пс	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	40	-	45		пс	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	3	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil.

Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3						
	HSLs - A/B	Management	ESLs						
	Sand	Limits	Urban Res	Sample ID	BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25	RIN1
	0 to <1 m	Res/Park	Fine Soil	Date	25/03/2021	24/03/2021	24/03/2021	25/03/2021	25/03/2021
TRH C6-C10	-	800	-		< 20	< 20	< 20	< 20	
TRH C ₆ -C ₁₀ less BTEX (F1)	45	-	180		< 20	< 20	< 20	< 20	
TRH >C10-C16	-	1,000	-		< 50	< 50	< 50	< 50	< 0.05
TRH >C10-C16 less Naphthalene (F2)	110	-	120		< 50	< 50	< 50	< 50	
TRH >C16-C34	-	3,500	1,300		< 100	< 100	< 100	< 100	< 0.1
TRH >C34-C40	-	10,000	5,600		< 100	< 100	< 100	< 100	< 0.1
Benzene	0.5	-	65		< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	160	-	105		< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	55	-	125		< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	40	-	45		< 0.3	< 0.3	< 0.3	< 0.3	
Naphthalene (MAH)	3	-	-		< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil.

Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3	Criteria 4						
	HSLs - A/B		ESLs	EILS						
	Sand	HILs - A	Urban Res	Urban	Sample ID	BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6	BH5/0.5-0.6
	0 to <1 m		Fine Soil	Residential	Date	25/03/2021	24/03/2021	25/03/2021	25/03/2021	25/03/2021
Acenaphthene	-	-	-	-		1.2	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		2.6	< 0.5	< 0.5	< 0.5	0.7
Benz(a)anthracene	-	-	-	-		6.7	< 0.5	< 0.5	< 0.5	< 2
Benzo(a)pyrene	-	-	33¹	-		9.3	< 0.5	< 0.5	< 0.5	< 2
Benzo(b&j)fluoranthene	-	-	-	-		7.2	< 0.5	< 0.5	< 0.5	< 2
Benzo(g.h.i)perylene	-	-	-	-		5.6	< 0.5	< 0.5	< 0.5	< 2
Benzo(k)fluoranthene	-	-	-	-		6.7	< 0.5	< 0.5	< 0.5	< 2
Chrysene	-	-	-	-		6.9	< 0.5	< 0.5	< 0.5	< 2
Dibenz(a.h)anthracene	-	-	-	-		1.3	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		24	< 0.5	< 0.5	< 0.5	3.8
Fluorene	-	-	-	-		2.1	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		5.7	< 0.5	< 0.5	< 0.5	< 2
Naphthalene (PAH)	3	-	-	170		2	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		19	< 0.5	< 0.5	< 0.5	3.5
Pyrene	-	-	-	-		21	< 0.5	< 0.5	< 0.5	3.6
Benzo(a)pyrene TEQ	-	3	-	-		13	0.6	0.6	0.6	< 2
Total PAH	-	300	-	-		121.3	< 0.5	< 0.5	< 0.5	11.6

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs.

Total concentrations in mg/kg

- = assessment criteria not available

¹CRC CARE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3	Criteria 4						
	HSLs - A/B		ESLs	EILS						
	Sand	HILs - A	Urban Res	Urban	Sample ID	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4	BH9/0.6-0.7	BH10/0.6-0.7
	0 to <1 m		Fine Soil	Residential	Date	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	-	33¹	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene (PAH)	3	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	3	-	-		0.6	0.6	0.6	0.6	0.6
Total PAH	-	300	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs.

Total concentrations in mg/kg

- = assessment criteria not available

¹CRC CARE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3	Criteria 4						
	HSLs - A/B		ESLs	EILS						
	Sand	HILs - A	Urban Res	Urban	Sample ID	BH11/0.5-0.6	BH12/0.25-0.35	DS1	RPD_DS1	TS1
	0 to <1 m		Fine Soil	Residential	Date	25/03/2021	24/03/2021	24/03/2021	-	24/03/2021
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Benzo(a)pyrene	-	-	33¹	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	0.7
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Naphthalene (PAH)	3	-	-	170		< 0.5	< 0.5	< 0.5	пс	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	0.7
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	пс	0.7
Benzo(a)pyrene TEQ	-	3	-	-		0.6	0.6	0.6	0%	0.6
Total PAH	-	300	-	-		< 0.5	< 0.5	< 0.5	пс	2.1

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs.

Total concentrations in mg/kg

- = assessment criteria not available

¹CRC CARE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3	Criteria 4						
	HSLs - A/B		ESLs	EILS						
	Sand	HILs - A	Urban Res	Urban	Sample ID	RPD_TS1	BH13/0.45-0.55	BH14/1.4-1.5	BH15/0.55-0.65	BH16/0.55-0.65
	0 to <1 m		Fine Soil	Residential	Date	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Acenaphthene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	-	33¹	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene (PAH)	3	-	-	170		пс	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	3	-	-		0%	0.6	0.6	0.6	0.6
Total PAH	-	300	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs.

Total concentrations in mg/kg

- = assessment criteria not available

¹CRC CARE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2	Criteria 3	Criteria 4						
	HSLs - A/B		ESLs	EILS						
	Sand	HILs - A	Urban Res	Urban	Sample ID	BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25	RIN1
	0 to <1 m		Fine Soil	Residential	Date	25/03/2021	24/03/2021	24/03/2021	25/03/2021	25/03/2021
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Benzo(a)pyrene	-	-	33¹	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Naphthalene (PAH)	3	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001
		2				0.6	0.6	0.6	0.6	
	-	300	-	-		0.0	0.0	0.0 < 0.5	0.0	
TOTAL PAH	-	300	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.001

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs.

Total concentrations in mg/kg

- = assessment criteria not available

¹CRC CARE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6	BH5/0.5-0.6
		Date	25/03/2021	24/03/2021	25/03/2021	25/03/2021	25/03/2021
4.4'-DDD	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	50		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	6		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg - = assessment criteria not available DS1 = duplicate of BH12/0.25-0.35 TS1 = triplicate of BH12/0.25-0.35 RIN1 = rinsate sample RPD = relative percent difference of duplicate/triplicate nc = RPD not calculated, one or both samples below laboratory reporting limit < # or ND = analyte(s) not detected in excess of laboratory reporting limit -- = sample not analysed Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6	BH5/0.5-0.6
		Date	25/03/2021	24/03/2021	25/03/2021	25/03/2021	25/03/2021
Methoxychlor	300		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	20		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin + Dieldrin	6		ND	ND	ND	ND	ND
Endosulfans - Total	270		ND	ND	ND	ND	ND
DDD + DDE + DDT	240		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-		ND	ND	ND	ND	ND

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4	BH9/0.6-0.7	BH10/0.6-0.7
		Date	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
4.4'-DDD	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	50		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	6		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4	BH9/0.6-0.7	BH10/0.6-0.7
		Date	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Methoxychlor	300		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	20		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin + Dieldrin	6		ND	ND	ND	ND	ND
Endosulfans - Total	270		ND	ND	ND	ND	ND
DDD + DDE + DDT	240		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-		ND	ND	ND	ND	ND

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH11/0.5-0.6	BH12/0.25-0.35	DS1	RPD_DS1	TS1
		Date	25/03/2021	24/03/2021	24/03/2021	-	24/03/2021
4.4'-DDD	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
4.4'-DDE	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
4.4'-DDT	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
a-BHC	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Aldrin	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
b-BHC	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Chlordanes - Total	50		< 0.1	< 0.1	< 0.1	пс	< 0.1
d-BHC	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Dieldrin	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Endosulfan I	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Endosulfan II	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Endosulfan sulphate	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Endrin	10		< 0.05	< 0.05	< 0.05	пс	< 0.05
Endrin aldehyde	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Endrin ketone	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
g-BHC (Lindane)	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Heptachlor	6		< 0.05	< 0.05	< 0.05	пс	< 0.05
Heptachlor epoxide	-		< 0.05	< 0.05	< 0.05	пс	< 0.05
Hexachlorobenzene	10		< 0.05	< 0.05	< 0.05	пс	< 0.05

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH11/0.5-0.6	BH12/0.25-0.35	DS1	RPD_DS1	TS1
		Date	25/03/2021	24/03/2021	24/03/2021	-	24/03/2021
Methoxychlor	300		< 0.2	< 0.2	< 0.2	пс	< 0.05
Toxaphene	20		< 0.1	< 0.1	< 0.1	пс	< 0.1
Aldrin + Dieldrin	6		ND	ND	ND	пс	ND
Endosulfans - Total	270		ND	ND	ND	пс	ND
DDD + DDE + DDT	240		ND	ND	ND	пс	ND
Scheduled Chemical Wastes	-		ND	ND	ND	пс	ND

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	RPD_TS1	BH13/0.45-0.55	BH14/1.4-1.5	BH15/0.55-0.65	BH16/0.55-0.65
		Date	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021
4.4'-DDD	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	50		пс	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	10		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	6		пс	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10		пс	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine PesticidesDetailed Site InvestigationProject No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	RPD_TS1	BH13/0.45-0.55	BH14/1.4-1.5	BH15/0.55-0.65	BH16/0.55-0.65
		Date	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Methoxychlor	300		пс	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	20		пс	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin + Dieldrin	6		пс	ND	ND	ND	ND
Endosulfans - Total	270		пс	ND	ND	ND	ND
DDD + DDE + DDT	240		пс	ND	ND	ND	ND
Scheduled Chemical Wastes	-		пс	ND	ND	ND	ND

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25	RIN1
		Date	25/03/2021	24/03/2021	24/03/2021	25/03/2021	25/03/2021
4.4'-DDD	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
4.4'-DDE	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
4.4'-DDT	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
a-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Aldrin	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
b-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Chlordanes - Total	50		< 0.1	< 0.1	< 0.1	< 0.1	< 0.002
d-BHC	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Dieldrin	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Endosulfan I	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Endosulfan II	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Endosulfan sulphate	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Endrin	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Endrin aldehyde	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Endrin ketone	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
g-BHC (Lindane)	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Heptachlor	6		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Heptachlor epoxide	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001
Hexachlorobenzene	10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0001

Notes:

Table 3 : Summary of Soil Analytical Data - Organochlorine Pesticides Detailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1						
	HILs - A	Sample ID	BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25	RIN1
		Date	25/03/2021	24/03/2021	24/03/2021	25/03/2021	25/03/2021
Methoxychlor	300		< 0.2	< 0.2	< 0.2	< 0.2	< 0.0002
Toxaphene	20		< 0.1	< 0.1	< 0.1	< 0.1	< 0.001
Aldrin + Dieldrin	6		ND	ND	ND	ND	ND
Endosulfans - Total	270		ND	ND	ND	ND	ND
DDD + DDE + DDT	240		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-		ND	ND	ND	ND	ND

Notes:

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2						
		EILS						
	HILs - A	Urban	Sample ID	BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6	BH5/0.5-0.6
		Residential	Date	25/03/2021	24/03/2021	25/03/2021	25/03/2021	25/03/2021
Arsenic	100	100		12	16	14	11	9.2
Cadmium	20	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	100 ¹	410 ²		41	37	43	24	30
Copper	6,000	240		33	14	17	31	19
Lead	300	1,300		130	29	80	35	26
Mercury	40	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	400	290		18	10	12	22	15
Zinc	7,400	870		130	16	120	78	47

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Total concentrations in mg/kg - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2						
		EILS						
	HILs - A	Urban	Sample ID	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4	BH9/0.6-0.7	BH10/0.6-0.7
		Residential	Date	25/03/2021	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Arsenic	100	100		7.1	6	11	9.7	14
Cadmium	20	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	100 ¹	410 ²		16	26	32	16	13
Copper	6,000	240		19	19	20	43	49
Lead	300	1,300		23	24	33	29	36
Mercury	40	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	400	290		13	19	13	8.3	30
Zinc	7,400	870		52	72	48	43	160

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Total concentrations in mg/kg - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Critoria 1	Critorio 2						
	Citteria I							
		EILS						
	HILs - A	Urban	Sample ID	BH11/0.5-0.6	BH12/0.25-0.35	DS1	RPD_DS1	TS1
		Residential	Date	25/03/2021	24/03/2021	24/03/2021	-	24/03/2021
Arsenic	100	100		11	12	6.5	59%	4.5
Cadmium	20	-		< 0.4	< 0.4	< 0.4	пс	< 0.4
Chromium	100 ¹	410 ²		18	14	15	7%	16
Copper	6,000	240		24	59	45	27%	38
Lead	300	1,300		36	33	26	24%	43
Mercury	40	-		< 0.1	< 0.1	< 0.1	пс	< 0.1
Nickel	400	290		7.6	28	19	38%	17
Zinc	7,400	870		45	120	84	35%	110

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Total concentrations in mg/kg - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2						
		EILS						
	HILs - A	Urban	Sample ID	RPD_TS1	BH13/0.45-0.55	BH14/1.4-1.5	BH15/0.55-0.65	BH16/0.55-0.65
		Residential	Date	-	25/03/2021	25/03/2021	25/03/2021	25/03/2021
Arsenic	100	100		91%	6.8	8.8	8.3	25
Cadmium	20	-		пс	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	100¹	410 ²		13%	12	24	35	13
Copper	6,000	240		43%	87	28	62	45
Lead	300	1,300		26%	36	41	30	38
Mercury	40	-		пс	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	400	290		49%	55	13	26	59
Zinc	7,400	870		9%	250	47	130	400

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Total concentrations in mg/kg - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1	Criteria 2						
		EILS						
	HILs - A	Urban	Sample ID	BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25	RIN1
		Residential	Date	25/03/2021	24/03/2021	24/03/2021	25/03/2021	25/03/2021
Arsenic	100	100		6.7	2.4	4.5	8.7	< 0.001
Cadmium	20	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.0002
Chromium	100 ¹	410 ²		13	< 5	14	19	< 0.001
Copper	6,000	240		51	11	37	34	< 0.001
Lead	300	1,300		32	7.9	46	24	< 0.001
Mercury	40	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.0001
Nickel	400	290		10	< 5	10	12	< 0.001
Zinc	7,400	870		54	16	250	52	< 0.005

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Total concentrations in mg/kg - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of BH12/0.25-0.35

TS1 = triplicate of BH12/0.25-0.35

RIN1 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria Rinsate concentrations in mg/l

Table 5 : Summary of QA/QC Analytical Data - Spike/BlankDetailed Site Investigation

Project No.: 2101028

243-261 Forrester Road North St Marys NSW 2760

	Criteria 1					
		Sample ID	TRIP BLANK	TRIP SPIKE		
		Date	24/03/2021	24/03/2021		
Benzene	-		< 0.1	94%		
Toluene	-		< 0.1	95%		
Ethylbenzene	-		< 0.1	94%		
m&p-Xylenes	-		< 0.2	92%		
o-Xylene	-		< 0.1	91%		
Xylenes - Total	-		< 0.3	91%		
Naphthalene	-		< 0.5	81%		

Notes:

Total concentrations in mg/kg

- = assessment criteria not available

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

Rinsate concentrations in mg/l

ATTACHMENT B

PHASE 1 ENVIRONMENTAL SITE ASSESSMENT

243-261 Forrester Road, North St Marys

Plate 1 – View north, empty warehouse floor.

Plate 3 – Outdoor carpark north of warehouse.

Plate 5 – View towards Forrester Road of stormwater drainage and drainage on the edge of the site.

Plate 2 – Outdoor garden store area.

Plate 4 – Looking north-east towards the former bulky goods store.

Plate 6 – Solid flight auger attachment on the Dingo.

PHASE 1 ENVIRONMENTAL SITE ASSESSMENT

243-261 Forrester Road, North St Marys

Plate 7 – Fill material encountered.

Plate 8 – Road base material encountered.

ATTACHMENT C

Groundwater Bore Search

243–261 Forrester Road,

25-6-2020

ATTACHMENT D

Caller Details

Contact:	Miss Tiffany Mabbott
Company:	Geo-Logix
Address:	Unit 2309/4 Daydream Street
	Warriewood NSW 2102

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

Your Responsibilities and Duty of Care

The lodgement of an enquiry does not authorise the project to commence. You must obtain all necessary information from any and all likely impacted asset owners prior to excavation.

- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.1100.com.au
- For more information on safe excavation practices, visit www.1100.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days.

Additional time should be allowed for information issued by post. It is your responsibility to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Dial Before You Dig service, so it is your **responsibility** to identify and contact any asset owners not listed here directly. ****** Asset owners highlighted by asterisks ****** require that you visit their offices to collect plans.

Asset owners highlighted with a hash require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
107818326	Endeavour Energy	0298534161	NOTIFIED
107818328	Jemena Gas West	1300880906	NOTIFIED
107818330	NBN Co, NswAct	1800626329	NOTIFIED
107818329	Sydney Water	132092	NOTIFIED
107818327	Telstra NSW, Central	1800653935	NOTIFIED

END OF UTILITIES LIST

Document Set ID: 9552413 Version: 1, Version Date: 19/04/2021

DBYD Underground Search Report

Date: 19/03/2021

DBYD Sequence No: 107818326

DBYD Job No: 21294566

ENDEAVOUR ENERGY ASSETS AFFECTED

Our Search has shown that **UNDERGROUND ASSETS ARE PRESENT** on our plans within the nominated enquiry location. This search is based on the graphical position of the excavation site as denoted in the DBYD customer confirmation sheet.

WARNING

- All electrical apparatus shall be regarded as live until proved de-energised. Contact with live electrical apparatus will cause severe injury or death.
- In accordance with the *Electricity Supply Act 1995*, you are obliged to report any damage to Endeavour Energy Assets immediately by calling **131 003**.
- The customer must obtain a new set of plans from Endeavour Energy if work has not been started or completed within twenty (20) working days of the original plan issue date.
- The customer must contact Endeavour Energy if any of the plans provided have blank pages, as some underground asset information may be incomplete.
- Endeavour Energy underground earth grids may exist and their location may not be shown on plans. Persons excavating are expected to exercise all due care, especially in the vicinity of padmount substations, pole mounted substations, pole mounted switches, transmission poles and towers.
- Endeavour Energy plans do not show any underground customer service mains or information relating to service mains within private property.
- Asbestos or asbestos-containing material may be present on or near Endeavour Energy's underground assets.
- Organo-Chloride Pesticides (OCP) may be present in some sub-transmission trenches.
- All plans must be printed and made available at the worksite where excavation is to be undertaken. Plans must be reviewed and understood by the crew on site prior to commencing excavation.

Material	Purpose	Location
DBYD Cover Letter	Endeavour Energy DBYD response Cover Letter	Attached
DBYD Important Information & Disclaimer	Endeavour Energy disclaimer, responsibilities and information on understanding plans	Attached
DBYD Response Plans	Endeavour Energy DBYD plans	Attached
Work Cover NSW "Work near underground assets: Guide"	Guideline for anyone involved in construction work near underground assets	Contact Work Cover NSW for a copy
Work Cover NSW "Excavation work: Code of practice"	Practical guidance on managing health and safety risks associated with excavation	URL [Click Here]
Safe Work Australia "Working in the vicinity of overhead and underground electric lines guidance material"	Provides information on how to manage risks when working in the vicinity of overhead and underground electric lines at a workplace	URL [Click Here]
Endeavour Energy Safety Brochures & Guides	To raise awareness of dangers of working on or near Endeavour Energy's assets	URL [Click Here]

SUPPLEMENTARY MATERIAL

Version: 1, Version Date: 19/04/2021

WARNING

All electrical apparatus shall be regarded as live until proved de-energised. Contact with live electrical apparatus will cause severe injury or death.

In accordance with the Electricity Supply Act 1995, you are obliged to report any damage to Endeavour Energy Assets immediately by calling 131 003.

The customer must obtain a new set of plans from Endeavour Energy if work has not been started or completed within twenty (20) working days of the original plan

The customer must contact Endeavour Energy if any of the plans provided have blank pages, as some underground asset information may be incomplete.

Endeavour Energy underground earth grids may exist and their location may not be shown on plans. Persons excavating are expected to exercise all due care,

especially in the vicinity of padmount substations, pole mounted substations, pole mounted switches, transmission poles and towers.

Endeavour Energy plans **do not** show any underground customer service mains or information relating to service mains within private property.

Asbestos or asbestos-containing material may be present on or near Endeavour Energy's underground assets.

Organo-Chloride Pesticides (OCP) may be present in some sub-transmission

All plans must be printed and made available at the worksite where excavation is to be undertaken. Plans must be reviewed and understood by the crew on site prior to commencing excavation.

INFORMATION PROVIDED BY ENDEAVOUR ENERGY

• Any plans provided pursuant to this service are intended to show the approximate location of underground assets relative to road boundaries, property fences and other structures at the time of installation.

Depth of underground assets may vary significantly from information provided on plans as a result of changes to road, footpath or surface levels subsequent to

Such plans have been prepared solely for use by Endeavour Energy staff for design, construction and maintenance purposes.

All enquiry details and results are kept in a register.

DISCLAIMER

Whilst Endeavour Energy has taken all reasonable steps to ensure that the information contained in the plans is as accurate as possible it will accept no liability for inaccuracies in the information shown on such plans.

uence No.:	107818326
e:	19/03/2021

Cadastre: © Land and Property Information 2015, 2016

Version: 1, Version Date: 19/04/2021

WARNING

All electrical apparatus shall be regarded as live until proved de-energised. Contact with live electrical apparatus will cause severe injury or death.

In accordance with the Electricity Supply Act 1995, you are obliged to report any damage to Endeavour Energy Assets immediately by calling 131 003.

The customer must obtain a new set of plans from Endeavour Energy if work has not been started or completed within twenty (20) working days of the original plan

The customer must contact Endeavour Energy if any of the plans provided have blank pages, as some underground asset information may be incomplete.

Endeavour Energy underground earth grids may exist and their location may not be shown on plans. Persons excavating are expected to exercise all due care,

especially in the vicinity of padmount substations, pole mounted substations, pole mounted switches, transmission poles and towers.

Endeavour Energy plans **do not** show any underground customer service mains or information relating to service mains within private property.

Asbestos or asbestos-containing material may be present on or near Endeavour Energy's underground assets.

Organo-Chloride Pesticides (OCP) may be present in some sub-transmission

All plans must be printed and made available at the worksite where excavation is to be undertaken. Plans must be reviewed and understood by the crew on site prior to commencing excavation.

INFORMATION PROVIDED BY ENDEAVOUR ENERGY

 Any plans provided pursuant to this service are intended to show the approximate location of underground assets relative to road boundaries, property fences and other structures at the time of installation.

Depth of underground assets may vary significantly from information provided on plans as a result of changes to road, footpath or surface levels subsequent to

Such plans have been prepared solely for use by Endeavour Energy staff for design, construction and maintenance purposes.

All enquiry details and results are kept in a register.

DISCLAIMER

Whilst Endeavour Energy has taken all reasonable steps to ensure that the information contained in the plans is as accurate as possible it will accept no liability for inaccuracies in the information shown on such plans.

uence No.:	107818326
e:	19/03/2021

Cadastre: © Land and Property Information 2015, 2016

WARNING

All electrical apparatus shall be regarded as live until proved de-energised. Contact with live electrical apparatus will cause severe injury or death.

In accordance with the *Electricity Supply Act 1995*, you are obliged to report any damage to Endeavour Energy Assets immediately by calling 131 003.

The customer must obtain a new set of plans from Endeavour Energy if work has not been started or completed within twenty (20) working days of the original plan

The customer must contact Endeavour Energy if any of the plans provided have blank pages, as some underground asset information may be incomplete.

Endeavour Energy underground earth grids may exist and their location may not be shown on plans. Persons excavating are expected to exercise all due care,

especially in the vicinity of padmount substations, pole mounted substations, pole mounted switches, transmission poles and towers.

Endeavour Energy plans do not show any underground customer service mains or information relating to service mains within private property.

Asbestos or asbestos-containing material may be present on or near Endeavour Energy's underground assets.

Organo-Chloride Pesticides (OCP) may be present in some sub-transmission

All plans must be printed and made available at the worksite where excavation is to be undertaken. Plans must be reviewed and understood by the crew on site prior to commencing excavation.

INFORMATION PROVIDED BY ENDEAVOUR ENERGY

• Any plans provided pursuant to this service are intended to show the approximate location of underground assets relative to road boundaries, property fences and other structures at the time of installation.

Depth of underground assets may vary significantly from information provided on plans as a result of changes to road, footpath or surface levels subsequent to

Such plans have been prepared solely for use by Endeavour Energy staff for design, construction and maintenance purposes.

All enquiry details and results are kept in a register.

DISCLAIMER

Whilst Endeavour Energy has taken all reasonable steps to ensure that the information contained in the plans is as accurate as possible it will accept no liability for inaccuracies in the information shown on such plans.

uence No.:	107818326
e:	19/03/2021

Cadastre: © Land and Property Information 2015, 2016

Version: 1, Version Date: 19/04/2021

uence No.:	107818326
e:	19/03/2021

Version: 1, Version Date: 19/04/2021

uence No.:	107818326
e:	19/03/2021

uence No.:	107818326
e:	19/03/2021

uence No.:	107818326
e:	19/03/2021

BEFORE COMMENCING EXCAVATION YOU MUST READ AND UNDERSTAND ALL INFORMATION PROVIDED IN THE DBYD RESPONSE AND LISTED BELOW

BACKGROUND

Endeavour Energy is able to make available plans of its underground assets to persons who intend to undertake excavation works in Endeavour Energy's distribution area. Any plans provided to you are made available subject to the provisions set out below, in the provided plans, and in the Endeavour Energy DBYD response Cover Letter.

We have set out below important information regarding the recommended procedures that should be followed when using this service and also the extent of our responsibility in respect of any plans provided. It is very important that you read and understand all the information and disclaimers provided below before excavating.

Information Provided by Endeavour Energy:

- Any plans provided pursuant to this service are intended to show the approximate location of underground assets relative to road boundaries, property fences and other structures at the time of installation.
- Depth of underground assets may vary significantly from information provided on plans as a result of changes to road, footpath or surface levels subsequent to installation.
- Such plans have been prepared solely for use by Endeavour Energy staff for design, construction and maintenance purposes.
- All enquiry details and results are kept in a register.

DISCLAIMER

Whilst Endeavour Energy has taken all reasonable steps to ensure that the information contained in the plans is as accurate as possible it will accept no liability for inaccuracies in the information shown on such plans.

CUSTOMER REQUESTS AND RESPONSIBILITIES

- Endeavour Energy expects to be able to provide relevant plans within 48 hours after a request is made.
- If the enquiry falls within the Transmission Mains area, additional notification requirements shall be complied with as per the instructions in the response Cover Letter.
- Endeavour Energy retains copyright over all plans and details provided in response to a customer's request.
- Persons excavating are expected to exercise all due care in the vicinity where underground assets are indicated and will be held responsible for any damage to any underground assets (including any Endeavour Energy property) or any other loss caused (including consequential losses) as a result of such excavations.
- All underground assets should be visually located by soft digging (pot holing) or hand digging.
- A person who undertakes excavation work is subject to duties and responsibilities under the <u>Work</u> <u>Health and Safety Act 2011</u> and <u>Work Health and Safety Regulation 2011</u>. Please refer to the Work Cover NSW "Work near underground assets: Guide" and "Excavation work: Code of practice" which contain practical advice for working near underground utility services.
- Any damage to Endeavour Energy's assets must be immediately reported on 131 003.
- In all cases of electric shock or suspected electric shock the victim shall immediately be transported to hospital or medical centre for treatment.
- If conduit material cannot be identified, it should be assumed to contain asbestos material.
- Endeavour Energy plans are frequently updated to record changes to underground assets. All plans are valid for **20** working days from the date of issue.

If further clarification is required, please contact: Endeavour Energy Phone: (02) 9853 4161 (8:00am-4:30pm Mon-Fri) Emergency Phone Number: 131 003

EXAMPLE OF HOW TO READ ENDEAVOUR ENERGY PLANS

Document Set ID: 9552413 Version: 1, Version Date: 19/04/2021

IDENTIFYING ASBESTOS DUCTS

1. Duct codes E, F and G identify Fibro Conduits

If underground details have not been captured and drawings are used, the method for identifying asbestos ducts and standards are different for the different utilities that amalgamated with Endeavour Energy. Using Reticulation Drawings, there are numerous ways to determine if a duct route has asbestos ducts, refer to following examples:

3. AC (Asbestos Cement) acronym

 The duct codes G,H,J,K,L,M Q,R,S,T,U,V,W & X under each configuration are used on old Blue Mountains drawings to identify Asbestos

4. Fibrolite (asbestos) ducts

5. Yellow triangle identifies Fibro Conduits

STANDARD UNDERGROUND SYMBOLS / LABELS

NOTE: If symbology has not been provided on the plan use symbols as shown below.

SYMBOLS & ACRONYMS		DUCT CODE LABLES
🗋 or	Street light column	B = 50 mm PVC
	Padmount substation	D = 125mm PVC
or	Overground pillar (O.G.Box)	E = 100mm Fibro Conduit (Asbestos)
	Underground pit	F = 140mm Fibro Conduit (Asbestos)
	Duct run	G = 150mm Fibro Conduit (Asbestos)
	Cable run	DEPTH & LOCATION LABELS
88	Typical duct section	0.5- 0.7 COV = 0.5m – 0.7m
Typical unde	Tunical underbara agation	0.9 COV = 0.9m Depth
	Typical underbore section	UNK COV = Depth Unknown
\otimes	Blocked duct	LOC UNK = Location Unknown
٠	Cable section	0.9 PL = Located 0.9m from Property Line
Δ	Asbestos warning	
	STJ, PBJ, TTJ	
STJ	Straight through joint	
PBJ	Parallel branch joint	
TTJ	Transition through joint	
•	Underground to overhead pole	
SL	Streetlight conductor	
SC	Service cable	
SE	Cable sealed end	
SF	Service Feeder	
OS	Out of Service	
O.A.M.	Over awning main	
U.A.M.	Under awning main	
N.I.S.	Not in service	
	Fence/dimensioning	
<u> </u>	Shared trenching	
	Service point of attachment	

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. Document Set 10:955249 giagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. Version: 1, Version Date: 19/04/2021

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. Document Set Dis953249 giagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. Version: 1, Version Date: 19/04/2021

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. Document Set 10:953243 diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. Version: 1, Version Date: 19/04/2021

Jemena Gas Network Protection

Assets Affected

This information is only valid for 28 days from the date of issue

In reply to your enquiry, there are **Gas Mains** in the vicinity of your intended work, as generally illustrated on the attached map. There may also be other mains or services at the location, as discussed in the warning below. **For an explanation of the map, please see the information below and the legend attachment.**

Please note that you have a duty of care to ensure that Jemena gas mains are not compromised or damaged during any future development or construction work.

Excavation Guidelines

It is essential the location of gas pipe/s are confirmed by carefully pot-holing by hand excavation prior to proceeding with mechanical excavation in the vicinity of gas pipes. If you cannot locate the gas main, contact the local depot.

In accordance with clause 34(5) of the Gas Supply (Safety and Network Management) Regulation 2013 (NSW), you should be informed that all excavation, (including pot-holing by hand to confirm the location of pipes) should be performed in accordance with "*Work Near Underground Assets Guideline*" published in 2007 by the Work Cover Authority.

A copy of this Guideline is available at: www.safework.nsw.gov.au

DBYD Administration 1300 880 906

Warning: The enclosed plans show the position of Jemena Gas Networks (NSW) Ltd's underground gas mains and installations in public gazetted roads only. <u>Individual customers' services and services belonging to other third parties are not included</u> on these plans. These plans have been prepared solely for the use of Jemena Gas Networks (NSW) Ltd and Jemena Asset Management Pty Ltd (together "Jemena") and any reliance placed on these plans by you is entirely at your own risk. The plans may show the position of underground mains and installations relative to fences, buildings etc., as they existed at the time the mains etc were installed. The plans may not have been updated to take account of any subsequent change in the location or style of those features since the time at which the plans were initially prepared. Jemena makes no warranty as to the accuracy or completeness of the enclosed plans and does not assume any duty of care to you nor any responsibility for the accuracy, adequacy, suitability or completeness of the plans or for any error, omission, lack of detail, transmission failure or corruption in the information provided. Jemena does not accept any responsibility for any loss that you or anyone else may suffer in connection with the provision of these plans, however that loss may arise (including whether or not arising from the negligence of Jemena, its employees, agents, officers or contractors).

The recipient of these plans must use their own care and diligence in carrying out their works and must carry out further surveys to locate services at their work site. Persons excavating or carrying out other earthworks will be held responsible for any damage caused to Jemena's underground mains and equipment. In accordance with the Work Near Underground Assets Guideline published in 2007 by Work Cover Authority, Jemena recommends that you carry out potholing by hand to accurately confirm the location of gas mains and installation prior to commencing excavations.

In case of Emergency Phone 131 909 (24 hours)

Admin 1300 880 906

Dec 2020 ver2

Network Mains

 Proposed New Main (coloured as per kPa)
 Proposed Isolate (coloured as per kPa)
 Unknown kPa
 2kPa Low Pressure gas main
 7kPa Low Pressure gas main
 30kPa Medium pressure gas main
 100kPa Medium Pressure gas main
 210kPa Medium Pressure gas main
 300kPa Medium Pressure gas main
 400kPa Medium Pressure gas main
 1050kPa High Pressure gas main
 3500kPa High Pressure gas main
7000kPa High Pressure gas main
 >7000kPa Transmission pipeline
 Isolated Service - Former Med/High Pressure
 Isolated Steel Main -Treat as High Pressure

Conduit or Casing Size & Material (see conduit material codes)

Critical Main -Treat as High Pressure (Main coloured as per kPa)

Exposed Main section

- below, no code assume no protection CE Concrete Encased UNK Unknown Type Steel Plate PP PE Plate
- Concrete Slab CS

- Siphon Network Valve High Pressure Main Line Valve (=>1050kPa) High Pressure Automatic Line Break Valve (>1050kPa) Distribution Regulator Set (=<1050kPa)
 - High Pressure Regulating Station (>1050kPa)

Network Assets

Annotations				
Pipe ar	Pipe and Conduit Material Codes			
NY	Nylon		NB	Nominal Bore – Cast Iron
PE	Polyethy	lene	ST	Steel
P/PL	Plastic (ι	indefined)	C/CO	Copper
PVC	Polyvinyl	Chloride		
Pipe code combinations and dimension references				
(6)NB 50MM NY 50mm Nylon main inserted into 6 inch (Nominal Bore) Cast Iron pipe				

50MM 32MM NY 32mm Nylon main inserted into 50mm Steel pipe

- ~1.5 Distance (in metres) of main from Boundary Line (MBL)
- MBK Distance in Metres Back of Kerb
- MKL Distance in Metres from Kerb Line
- MEBL Distance in Metres from Eastern Boundary Line (North/South/West)
- MCL Distance in Metres from Centre Line of Road
- MFL Distance in Metres from Fence Line

Working near **nbn**™ cables

nbn has partnered with Dial Before You Dig to give you a single point of contact to get information about **nbn** underground services owned by **nbn** and other utility/service providers in your area including communications, electricity, gas and other services. Contact with underground power cables and gas services can result in serious injury to the worker, and damage and costly repairs. You must familiarise yourself with all of the Referral Conditions (meaning the referral conditions referred to in the DBYD Notice provided by **nbn**).

Practice safe work habits

Once the DBYD plans are reviewed, the Five P's of Excavation should be adopted in conjunction with your safe work practices (which must be compliant with the relevant state Electrical Safety Act and Safe Work Australia "Excavation Work Code of Practice", as a minimum) to ensure the risk of any contact with underground **nbn** assets are minimised.

Plan: Plan your job by ensuring the plans received are current and apply to the work to be performed. Also check for any visual cues that may indicate the presence of services not covered in the DBYD plans.

Prepare: Prepare for your job by engaging a DBYD qualified Plant Locator to help interpret plans and identify on-site assets. Contact **nbn** should you require further assistance.

Pothole: Nondestructive potholing (i.e. hand digging or hydro excavation) should be used to positively locate **nbn** underground assets with minimal risk of contact and service damage.

Protect: Protecting and supporting the exposed **nbn** underground asset is the responsibility of the worker. Exclusion zones for **nbn** assets are clearly stated in the plan and appropriate controls must be implemented to ensure that encroachment into the exclusion zone by machinery or activities with the potential to damage the asset is prevented.

Proceed: Proceed only when the appropriate planning, preparation, potholing and protective measures are in place.

Working near nbn< cables</th>Image: Strain of the state of the stat

Once all work is completed, the excavation should be re-instated with the same type of excavated material unless specified by **nbn**. Please note:

- Construction Partners of **nbn** may require additional controls to be in place when performing excavation activities.
- The information contained within this pamphlet must be used in conjunction with other material supplied as part of this request for information to adequately control the risk of potential asset damage.

Contact

All **nbn**[™] network facility damages must be reported online <u>here</u>. For enquiries related to your DBYD request please call 1800 626 329.

Disclaimer

This brochure is a guide only. It does not address all the matters you need to consider when working near our cables. You must familiarise yourself with other material provided (including the Referral Conditions) and make your own inquiries as appropriate. **nbn** will not be liable or responsible for any loss, damage or costs incurred as a result of reliance on this brochure.

This document is provided for information purposes only. This document is subject to the information classification set out on this page. If no information classification has been included, this document must be treated as UNCLASSIFIED, SENSITIVE and must not be disclosed other than with the consent of nbn co. The recipient (including third parties) must make and rely on their own inquiries as to the currency, accuracy and completeness of the information contained herein and must not use this document other than with the consent of nbn co. Imited. All rights reserved.

То:	Miss Tiffany Mabbott
Phone:	Not Supplied
Fax:	Not Supplied

Dial before you dig Job #:	21294566	
Sequence #	107818330	
Issue Date:	19/03/2021	
Location:	243 Forrester Road, North St Marys, NSW, 2760	

Indicative Plans

1
2

Level 13, 100 Mount Street, North Sydney NSW 2060 © 2021 nbn co limited | ABN 86 136 533 741

Level 13, 100 Mount Street, North Sydney NSW 2060 © 2021 nbn co limited | ABN 86 136 533 741

Emergency Contacts

You must immediately report any damage to the **nbn**[™] network that you are/become aware of. Notification may be by telephone - 1800 626 329.

То:	Miss Tiffany Mabbott
Phone:	Not Supplied
Fax:	Not Supplied

Dial before you dig Job #:	21294566	
Sequence #	107818330	
Issue Date:	19/03/2021	
Location:	243 Forrester Road, North St Marys, NSW, 2760	

Information

The area of interest requested by you contains one or more assets.

nbn™ Assets	Search Results
Communications	Asset identified
Electricity	No assets

In this notice **nbn™ Facilities** means underground fibre optic, telecommunications and/or power facilities, including but not limited to cables, owned and controlled by **nbn™**

Location of **nbn™** Underground Assets

We thank you for your enquiry. In relation to your enquiry at the above address:

- nbn's records indicate that there <u>ARE</u> nbn™ Facilities in the vicinity of the location identified above ("Location").
- nbn indicative plan/s are attached with this notice ("Indicative Plans").
- The Indicative Plan/s show general depth and alignment information only and are not an exact, scale or accurate depiction of the location, depth and alignment of **nbn™** Facilities shown on the Plan/s.
- In particular, the fact that the Indicative Plans show that a facility is installed in a straight line, or at uniform depth along its length cannot be relied upon as evidence that the facility is, in fact, installed in a straight line or at uniform depth.
- You should read the Indicative Plans in conjunction with this notice and in particular, the notes below.
- You should note that, at the present time, the Indicative Plans are likely to be more accurate in showing location of fibre optics and telecommunications cables than power cables. There may be a variation between the line depicted on the Indicative Plans and the location of any power cables. As such, consistent with the notes below, particular care must be taken by you to make your own enquiries and investigations to precisely locate any power cables and manage the risk arising from such cables accordingly.
- The information contained in the Indicative Plan/s is valid for 28 days from the date of issue set out above. You are expected to make your own inquiries and perform your own investigations (including engaging appropriately qualified plant locators at your cost to locate **nbn™** Facilities during any activities

you carry out on site).

We thank you for your enquiry and appreciate your continued use of the Dial Before You Dig Service. For any enquiries related to moving assets or Planning and Design activities, please visit the **nbn** <u>Commercial Works</u> website to complete the online application form. If you are planning to excavate and require further information, please email <u>dbyd@nbnco.com.au</u> or call 1800 626 329.

Notes:

- 1. You are now aware that there are **nbn™** Facilities in the vicinity of the above property that could be damaged as a result activities carried out (or proposed to be carried out) by you in the vicinity of the Location.
- 2. You should have regard to section 474.6 and 474.7 of the *Criminal Code Act 1995* (CoA) which deals with the consequences of interfering or tampering with a telecommunications facility. Only persons authorised by **nbn** can interact with **nbn's** network facilities.
- 3. Any information provided is valid only for **28 days** from the date of issue set out above.

Referral Conditions

The following are conditions on which **nbn** provides you with the Indicative Plans. By accepting the plans, you are agreeing to these conditions. These conditions are in addition, and not in replacement of, any duties and obligations you have under applicable law.

- nbn does not accept any responsibility for any inaccuracies of its plans including the Indicative Plans. You are
 expected to make your own inquiries and perform your own investigations (including engaging appropriately
 qualified plant locators at your expense to locate nbn[™] Facilities during any activities you carry out on site).
- 2. You acknowledge that **nbn** has specifically notified you above that the Indicative Plans are likely to be more accurate in showing location of fibre optics and telecommunications cables than power cables. There may be a variation between the line depicted on the Indicative Plans and the location of any power cables.
- 3. You should not assume that **nbn**[™] Facilities follow straight lines or are installed at uniformed depths along their lengths, even if they are indicated on plans provided to you. Careful onsite investigations are essential to locate the exact position of cables.
- 4. In carrying out any works in the vicinity of **nbn™** Facilities, you must maintain the following minimum clearances:
 - 300mm when laying assets inline, horizontally or vertically.
 - 500mm when operating vibrating equipment, for example: jackhammers or vibrating plates.
 - 1000mm when operating mechanical excavators.
 - Adherence to clearances as directed by other asset owner's instructions and take into account any uncertainty for power cables.
- 5. You are aware that there are inherent risks and dangers associated with carrying out work in the vicinity of underground facilities (such as **nbn™** fibre optic,copper and coaxial cables,and power cable feed to **nbn™** assets).Damage to underground electric cables may result in:
 - Injury from electric shock or severe burns, with the possibility of death.
 - Interruption of the electricity supply to wide areas of the city.
 - Damage to your excavating plant.
 - Responsibility for the cost of repairs.
- You must take all reasonable precautions to avoid damaging nbn[™] Facilities. These precautions may include but not limited to the following:
 - All excavation sites should be examined for underground cables by careful hand excavation. Cable cover slabs if present must not be disturbed. Hand excavation needs to be undertaken with extreme care to minimise the likelihood of damage to the cable, for example: the blades of hand equipment should be aligned parallel to the line of the cable rather than digging across the cable.
 - If any undisclosed underground cables are located, notify **nbn** immediately.
 - All personnel must be properly briefed, particularly those associated with the use of earth-moving

equipment, trenching, boring and pneumatic equipment.

- The safety of the public and other workers must be ensured.
- All excavations must be undertaken in accordance with all relevant legislation and regulations.
- 7. You will be responsible for all damage to **nbn**[™] Facilities that are connected whether directly, or indirectly with work you carry out (or work that is carried out for you or on your behalf) at the Location. This will include, without limitation, all losses expenses incurred by **nbn** as a result of any such damage.
- 8. You must immediately report any damage to the **nbn**[™] network that you are/become aware of. Notification may be by telephone 1800 626 329.
- 9. Except to the extent that liability may not be capable of lawful exclusion, **nbn** and its servants and agents and the related bodies corporate of **nbn** and their servants and agents shall be under no liability whatsoever to any person for any loss or damage (including indirect or consequential loss or damage) however caused (including, without limitation, breach of contract negligence and/or breach of statute) which may be suffered or incurred from or in connection with this information sheet or any plans(including Indicative Plans) attached hereto. Except as expressly provided to the contrary in this information sheet or the attached plans(including Indicative Plans), all terms, conditions, warranties, undertakings or representations (whether expressed or implied) are excluded to the fullest extent permitted by law.

State/Territory	Documents
	Work Health and Safety Act 2011
	Work Health and Safety Regulations 2011
National	Safe Work Australia - Working in the Vicinity of Overhead and Underground
	Electric Lines (Draft)
	Occupational Health and Safety Act 1991
	Electricity Supply Act 1995
NSW	Work Cover NSW - Work Near Underground Assets Guide
	Work Cover NSW - Excavation Work: Code of Practice
VIC	Electricity Safety Act 1998
	Electricity Safety (Network Asset) Regulations 1999
	Electrical Safety Act 2002
	Code of Practice for Working Near Exposed Live Parts
SA	Electricity Act 1996
TAS	Tasmanian Electricity Supply Industry Act 1995
14/ 4	Electricity Act 1945
	Electricity Regulations 1947
NT	Electricity Reform Act 2005
	Electricity Reform (Safety and Technical) Regulations 2005
ACT	Electricity Act 1971

All works undertaken shall be in accordance with all relevant legislations, acts and regulations applicable to the particular state or territory of the Location. The following table lists all relevant documents that shall be considered and adhered to.

Thank You,

nbn DBYD

Date: 19/03/2021

Level 13, 100 Mount Street, North Sydney NSW 2060 © 2021 nbn co limited | ABN 86 136 533 741

This document is provided for information purposes only. This document is subject to the information classification set out on this page. If no information classification has been included, this document must be treated as UNCLASSIFIED, SENSITIVE and must not be disclosed other than with the consent of nbn co. The recipient (including third parties) must make and rely on their own inquiries as to the currency, accuracy and completeness of the information contained herein and must not use this document other than with the consent of nbn co.

Copyright © 2021 nbn co Limited. All rights reserved.

Level 13, 100 Mount Street, North Sydney NSW 2060 © 2021 nbn co limited | ABN 86 136 533 741

Guide to reading Sydney Water DBYD Plans

Asset Information

Legend

Sewer			
Sewer Main (with flow arrow & size type text)			
Disused Main	220 PVC		
Rising Main			
Maintenance Hole (with upstream depth to invert)	1.7		
Sub-surface chamber			
Maintenance Hole with Overflow chamber	-		
Ventshalft EDUCT	¢		
Ventshaft INDUCT			
Property Connection Point (with chainage to downstream MH)	so t		
Concrete Encased Section	Concrete Encased		
Terminal Maintenance Shaft			
Maintenance Shaft	Õ		
Rodding Point	— •«		
Lamphole			
Vertical			
Pumping Station	——O		
Sewer Rehabilitation	SP0882		
Pressure Sewer			
Pressure Sewer Main			
Pump Unit (Alarm, Electrical Cable, Pump Unit) ————————————————————————————————————	<u>A</u> •		
Property Valve Boundary Assembly			
Stop Valve	——×——		

Reducer / Taper . Flushing Point

Vacuum Sewer

Pressure Sewer Main	
Division Valve	
Vacuum Chamber	—Ф
Clean Out Point	<u> </u>

Stormwater

Stormwater Pipe	
Stormwater Channel	
Stormwater Gully	

Stormwater Maintenance Hole

Property Details

Water

Private Mains Potable Water Main	<u>.</u>
Recycled Water is shown as per Potable above. Colour as indicated	
Reservoir	
Vertical Bends	$\rightarrow \leftarrow$
Reducer / Taper	
Scour	<u> </u>
Valve	<u> </u>
Air Valve	
Closed Stop Valve	<u> </u>
Stop Valve with Tapers	
Stop Vale with By-pass	<u>,</u>
Stop Valve	~ ×
Maintenance Hole	
Hydrant	
Restrained Joints - Recycled	
Restrained Joints - Potable	
Special Supply Conditions - Recycled	
Special Supply Conditions - Potable	
Water Main - Recycled	
Proposed Main - Potable	
Disconnected Main - Potable	
WaterMain - Potable (with size type text)	200 PVC

Recycled Water Main Sewer Main Symbols for Private Mains shown grey

Asset Information

Pipe Types

ABS	Acrylonitrile Butadiene Styrene	AC	Asbestos Cement
BRICK	Brick	CI	Cast Iron
CICL	Cast Iron Cement Lined	CONC	Concrete
COPPER	Copper	DI	Ductile Iron
DICL	Ductile Iron Cement (mortar) Lined	DIPL	Ductile Iron Polymeric Lined
EW	Earthenware	FIBG	Fibreglass
FL BAR	Forged Locking Bar	GI	Galvanised Iron
GRP	Glass Reinforced Plastics	HDPE	High Density Polyethylene
MS	Mild Steel	MSCL	Mild Steel Cement Lined
PE	Polyethylene	PC	Polymer Concrete
PP	Polypropylene	PVC	Polyvinylchloride
PVC - M	Polyvinylchloride, Modified	PVC - O	Polyvinylchloride, Oriented
PVC - U	Polyvinylchloride, Unplasticised	RC	Reinforced Concrete
RC-PL	Reinforced Concrete Plastics Lined	S	Steel
SCL	Steel Cement (mortar) Lined	SCL IBL	Steel Cement Lined Internal Bitumen Lined
SGW	Salt Glazed Ware	SPL	Steel Polymeric Lined
SS	Stainless Steel	STONE	Stone
vc	Vitrified Clay	WI	Wrought Iron
WS	Woodstave		

Further Information

Please consult the Dial Before You Dig enquiries page on the Sydney Water website

For general enquiries please call the Customer Contact Centre on 132 092

In an emergency, or to notify Sydney Water of damage or threats to its structures, call 13 20 90 (24 hours, 7 days)

IMPORTANT INFORMATION - DIAL BEFORE YOU DIG

Attention: You must read the information below

The material provided or made available to you by Sydney Water (including on the Sydney Water website) in relation to your Dial Before You Dig enquiry (**Information**) is provided on each of the following conditions, which you are taken to have accepted by using the Information:

- 1 The Information has been generated by an automated system based on the area highlighted in the "Locality Indication Only" window on your Caller Confirmation. It is your responsibility to ensure that the dig site is properly defined when submitting your Dial Before You Dig enquiry and, if the Information does not match the dig site, to resubmit your enquiry for the correct dig site.
- 2 Neither Sydney Water nor Dial Before You Dig make any representation or give any guarantee, warranty or undertaking (express or implied) as to the currency, accuracy, completeness, effectiveness or reliability of the Information. The Information, including Sydney Water plans and work-as-executed diagrams, amongst other things:
 - (a) may not show all existing structures, including Sydney Water's pipelines, particularly in relation to newer developments and in relation to structures owned by parties who do not participate in the Dial Before You Dig service;
 - (b) may be out of date and not show changes to surface levels, road alignments, fences, buildings and the like;
 - (c) is approximate only and is therefore not suitable for scaling purposes; and
 - (d) does not show locations of property services (often called house service lines) belonging to or servicing individual customers, which are usually connected to Sydney Water's structures.
- 3 You are responsible for, amongst other things:
 - (a) exposing underground structures, including Sydney Water's pipelines, by pot-holing using hand-held tools or vacuum techniques so as to determine the precise location and extent of structures before any mechanical means of excavation are used;
 - (b) the safe and proper excavation of and for underground works and structures, including having regard to the fact that asbestos cement pipelines, which can pose a risk to health, may form part of Sydney Water's water and sewerage reticulation systems;
 - (c) protecting underground structures, including Sydney Water's pipelines, from damage and interference;
 - (d) maintaining minimum clearances between Sydney Water's structures and structures belonging to others;
 - (e) ensuring that backfilling of excavation work in the vicinity of Sydney Water's structures complies with Sydney Water's standards contained on its website or otherwise communicated to you;
 - (f) notifying Sydney Water immediately of any damage caused or threat of damage to Sydney Water's structures;
 - (g) ensuring that plans are approved by Sydney Water (usually signified by stamping) prior to landscaping or building over or in the vicinity of any Sydney Water structure; and
 - (h) ensuring that the Information is used only for the purposes for which Sydney Water and Dial Before You Dig intended.

- 4 You acknowledge that you use the Information at your own risk. In consideration for the provision of the Dial Before You Dig service and the Information by Sydney Water and Dial Before You Dig, to the fullest extent permitted by law:
 - (a) all conditions and guarantees concerning the Information (whether as to quality, outcome, fitness, care, skill or otherwise) expressed or implied by statute, common law, equity, trade, custom or usage or otherwise are expressly excluded and to the extent that those statutory guarantees cannot be excluded, the liability of Sydney Water and Dial Before You Dig to you is limited to either of the following as nominated by Sydney Water in its discretion, which you agree is your only remedy:
 - (i) the supplying of the Information again; or
 - (ii) payment of the cost of having the Information supplied again;
 - (b) in no event will Sydney Water or Dial Before You Dig be liable for, and you release Sydney Water and Dial Before You Dig from, any Loss arising from or in connection with the Information, including the use of or inability to use the Information and delay in the provision of the Information:
 - (i) whether arising under statute or in contract, tort or any other legal doctrine, including any negligent act, omission or default (including wilful default) by Sydney Water or Dial Before You Dig; and
 - (ii) regardless of whether Sydney Water or Dial Before You Dig are or ought to have been aware of, or advised of, the possibility of such loss, costs or damages;
 - (c) you will indemnify Sydney Water and Dial Before You Dig against any Loss arising from or in connection with Sydney Water providing incorrect or incomplete information to you in connection with the Dial Before You Dig service; and
 - (d) you assume all risks associated with the use of the Dial Before You Dig and Sydney Water websites, including risk to your computer, software or data being damaged by any virus, and you release and discharge Sydney Water and Dial Before You Dig from all Loss which might arise in respect of your use of the websites.
- 5 **"Sydney Water**" means Sydney Water Corporation and its employees, agents, representatives and contractors. "**Dial Before You Dig**" means Dial Before You Dig Incorporated and its employees, agents, representatives and contractors. References to "**you**" include references to your employees, agents, representatives, contractors and anyone else using the Information. References to "**Loss**" include any loss, cost, expense, claim, liability or damage (including arising in connection with personal injury, death or any damage to or loss of property and economic or consequential loss, lost profits, loss of revenue, loss of management time, opportunity costs or special damages). To the extent of any inconsistency, the conditions in this document will prevail over any other information provided to you by Sydney Water and Dial Before You Dig.

In an emergency, or to notify Sydney Water of damage or threats to its structures, call 13 20 90 (24 hours, 7 days)

Further information and guidance is available in the Building Development and Plumbing section of Sydney Water's website at www.sydneywater.com.au, where you will find the following documents under 'Dial Before You Dig':

- Avoid Damaging Water and Sewer Pipelines
- Water Main Symbols
- Depths of Mains
- Guidelines for Building Over/Adjacent to Sydney Water Assets
- Clearances Between Underground Services

Or call 13 20 92 for Customer Enquires.

Note: The lodging of enquiries via **www.1100.com.au** will enable you to receive colour plans in PDF format 24 hours a day, 7 days a week via email.

This communication is confidential. If you are not the intended recipient, please destroy all copies immediately. Sydney Water Corporation prohibits unauthorised copying or distribution of this communication.

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Document Set ID: 9552413

Version: 1, Version Date: 19/04/2021

Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 107818327		
	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present		
TELSTRA CO	ORPORATION LIMITED A.C.N. 051 775 556	in plot area. Thease read the Duty of Care and		
Gene	erated On 19/03/2021 15:14:19	any assistance.		

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Document Set ID: 9552413

Version: 1, Version Date: 19/04/2021

Search for the closest Certified Locating Organisation (CLO) to your work-site

at the following website: https://dbydlocator.com/certified-locating-organisation/

Read the terms of use - Click accept.

A national map and an A-Z list of all Certified Locating Organisations is now available. You have filtering options.

Make the map full screen, 'fly' around and zoom into your district.

Click the nearest marker to link to that CLO's details OR click 1.Search 2.Dropdown Menu 3.Radius

Type the town name for Example: Hobart and choose the radius for Example: 50klms (as below)

This example search brings four results. Scroll down to see all four CLO's details at once

OR click the **T** map marker to go directly to that organisations contact details.

<u></u>	All Contilled Locating Organitudiens	Search	0
Kales + bobert			
-			
Map Satelite	telenter tenter till till tenenter	Date of the second seco	
	Material Sector	ADDED TO THE THE ADDED TO ADDE	
10	Andres Andres and Andres	and the second s	-

Chose the closest Locator indicated OR simply scroll down to see them all.

Telstra is aware of each Certified Locating Organisation **and** their employee locators.

Locator skills have been tested, and the Organisation has calibrated location and safety equipment.

Each Certified Locator working for a CLO is issued with a photo ID Card, authorising them to access Telstra pits and manholes for the purpose of cable and plant locations.

Please ask to see your Locators' CLO ID Card.

TELSTRA CORPORATION ACN 051 775 556

IMPORTANT:

When working in the vicinity of telecommunications plant you have a "Duty of Care" that must be observed. Please read and understand all the information and disclaimers provided below.

Telstra network is complex and requires expert knowledge to interpret information, to identify and locate components, to pothole underground assets for validation and to safely work around assets without causing damage. If you are not an expert and/or qualified in these areas, then you must not attempt these activities. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers. The 5 P's to prevent damage to Telstra assets are listed below. Construction activities and/or any activities that potentially may impact on Telstra's assets must not commence without first undertaking these steps. Construction activities can include anything that involves breaking ground, potentially affecting Telstra assets.

If you are designing a project it is recommended that you also undertake these steps to validate underground assets prior to committing to your design.

All damages to Telstra Network must be reported immediately

- Call **13 22 03** Say "Damages" at the voice prompt, then press 1 to speak to an Operator
- Or report online
 <u>https://service.telstra.com.au/customer/general/forms/report-damage-to-telstra-equipment</u>

(The following pages contain more detail on each step below and the contact details to seek further advice. AS5488-2013 is the Australian Standard for the Classification of Subsurface Utility Information.)

1 PLAN:

The essential first step in preventing damage -

You must have current Telstra plans via the DBYD process. Telstra advises that the accuracy of the information provided by Telstra conforms to Quality Level D as defined in AS5488-2013. This means the information is indicative only, not a precise location. The actual location may differ substantially from that shown on the plans - refer to steps 2 & 3 to determine actual location prior to proceeding with construction.

2 PREPARE:

The essential second step in preventing damage -

Engage a Telstra Accredited Plant Locator. To be able to trace and identify individual subsurface cables and ducts requires access to Telstra pits and manholes. Only a Telstra Accredited Plant Locator (TAPL) is authorised to access Telstra network for locating purposes. A TAPL can interpret plans, validate visible assets and access pits and manholes to undertake electronic detection of underground assets prior to further validation. All Telstra assets must be located, validated and protected prior to commencing construction. If you are not authorised to do so by Telstra, you must not access Telstra network or locate Telstra network. All Telstra Accredited Plant Locators are required to have DBYD Locator Certification.

3 POTHOLE:

The essential third step in preventing damage -

All Telstra assets must be positively identified (i.e. validated), by physically sighting them. For underground assets this can be done by potholing by hand or using non-destructive vacuum extraction methods (Refer to 'validation' as defined in AS5488-2013 QL-A). Underground assets located by electronic detection alone (step 2), are not deemed to be 'validated' and must not be used for construction purposes. Some TAPL's can assist with non-destructive potholing for validation purposes. If you cannot validate the Telstra network, you must not proceed with construction. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

TELSTRA CORPORATION ACN 051 775 556

4 PROTECT:

The essential fourth step in preventing damage -

Telstra assets must be protected to avoid damage from construction activities. Minimum working distances around Telstra network must be maintained. These distances are provided in this document. Telstra can also provide advice and assistance in regards to protection – refer to the following pages.

5 PROCEED:

Only proceed when the above steps have been completed.

STEP 1 - PLAN Dial Before You Dig / Telstra Plans

The actual location of Telstra assets may differ substantially from that shown on the plans. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for the accuracy shown on the plans. Steps 2 and 3 must also be undertaken to determine actual location of network.

- Telstra DBYD plans are not suitable for displaying Telstra network within a Telstra exchange site. For advice on Telstra network within a Telstra exchange site contact Telstra Plan Service on 1800 653 935.
- Telstra owns and retains the copyright in all plans and details provided in conjunction with the applicant's request. The applicant is authorised to use the plans and details only for the purpose indicated in the applicant's request. The applicant must not use the plans or details for any other purpose.
- Telstra plans or other details are provided only for the use of the applicant, its servants, agents or Telstra Accredited Plant Locators. The applicant must not give the plans or details to any parties other than these, and must not generate profit from commercialising the plans or details.
- Please contact Telstra Plan Services immediately should you locate Telstra assets not indicated on these plans.
- Telstra, its servants or agents shall not be liable for any loss or damage caused or occasioned by the use of
 plans and or details so supplied to the applicant, its servants and agents, and the applicant agrees to indemnify
 Telstra against any claim or demand for any such loss or damage.
- Please ensure Telstra plans and information provided remains on-site at all times throughout the inspection, location and construction phase of any works.
- Telstra plans are valid for 60 days after issue and must be replaced if required after the 60 days.
- **Emergency situations receiving Telstra plans** Telstra's automated mapping system (TAMS) will provide a fast response for emergency situations (faster than an operator can provide manually via a phone call see below for fast response requirements). Automated responses are normally available 24/7.

To receive a fast automated response from Telstra your request must -

- Be a web request lodged at DBYD (www.1100.com.au). The request will be then forwarded to Telstra.
- > Contain your current email address so you can receive the automated email response.
- Be for the purposes of 'mechanical excavation' or other ground breaking DBYD activity. (Requests with activity types such as conveyancing, planning & design or other non-digging activities may not be responded to until the next business day).
- Be for an area less than 350 metres in size to obtain a PDF map (over 350 metres will default to DWF due to size) this does not include congested CBD areas where only DWF may be supplied.
- > Be for an area less than 2500 metres in size to obtain a DWF map (CBD's less)
- Data Extraction Fees. In some instances a data extraction fee may be applicable for the supply of Telstra information. Typically a data extraction fee may apply to large projects, planning and design requests or requests to be supplied in non-standard formats. For further details contact Telstra Plan Services.
- Electronic plans PDF and DWF maps If you have received Telstra maps via email you will have received the maps as either a PDF file (for smaller areas) or DWF file (for larger area requests). All requests over approximately *350m or in congested CBD areas can only be supplied in DWF format. There are size limits on what can be provided. (* actual size depends on geographic location of requested area). If you are unable to launch any one of the softcopy files for viewing and printing, you may need to download and install one or more of the free viewing and printing products such as Adobe Acrobat Reader (for PDF files) or Autodesk Design Review (for DWF files) available from the internet

TELSTRA CORPORATION ACN 051 775 556

- Pdf files PDF is the default softcopy format for all requests for areas up to approx *350m in length. (*depends on geographic location of request). The PDF file is nominally formatted to A3 portrait sheet however it can be printed on any size sheet that your printer supports, e.g. either as the full sheet or selected areas to suit needs and legibility. (to print a selected area zoom up and print 'current view') If there are multiple layers of Telstra network you may receive up to 2 sheets in the single PDF file attachment supplied. There are three types or layers of network normally recorded local network, mains cables or a combined layer of local and mains (usually displayed for rural or semi-rural areas). If mains cable network is present in addition to local cables (i.e. as separate layer in a particular area), the mains will be shown on a separate sheet. The mains cable information should be read in conjunction with the local cable information.
- DWF files DWF is the default softcopy format for all requests for areas that are over 350m in length. Maximum length for a DWF automated response is approx 2500m - depending on geographic location of request (manually-processed plans may provide larger coverage). The DWF files differ from PDF in that DWF are vector files made up of layers that can be turned on or off and are not formatted to a specific sheet size. This makes them ideal for larger areas and for transmitting electronically.

How to view Telstra DWF files –

Telstra DWF files come with all layers turned on. You may need to turn individual layers on or off for viewing and printing clarity. Individual layer names are CC (main cable/conduit), DA (distribution area network) and sometimes a combined layer - CAC. Layer details can be viewed by either picking off the side menu or by selecting 'window' then 'layers' off the top menu bar. Use 'layers' to turn individual layers off or on (double click or right click on layer icon).

How to print Telstra DWF files –

DWF files can be printed on any size sheet – either their entirety or by selected areas of interest. Some DWF coverage areas are large and are not suited to printing legibly on a single A4 sheet - you may need several prints if you only have an A4 printer. Alternatively, an A3, A1 or larger printer could be used. To print, zoom in or out and then, by changing the 'print range' settings, you can print what is displayed on your screen to suit your paper size. If you only have a small printer, e.g. A4, you may need to zoom until the text is legible for printing (which is why you may need several prints). To print what is displayed on your screen the 'view' setting should be changed from 'full page' to 'current view'. The 'current sheet' setting should also be selected. You may need to print layers separately for clarity and legibility. (Details above on how to turn layers on or off)

How to change the background colour from white to black (when viewing) Telstra DWF files –

If using Autodesk Design Review the background colour can be changed by selecting 'Tools' then 'options' then 'sheet'. Tick the box 'override published paper colours' and select the colour required using the tab provided.

STEP 2 – PREPARE Telstra Accredited Plant Locator (TAPL):

Utilising a TAPL is an essential part of the process to identify network and to trace subsurface network prior to validating. A TAPL can provide plan interpretation, identification and electronic detection. This will assist in determining the position of subsurface assets prior to potholing (validating). Some TAPL's can also assist in validating underground detected network. Electronic detection is only an indication of the existence of underground network and can be subject to interference from other services and local conditions. Electronic detection must not be used solely to determine location for construction purposes. The electronic (indicative) subsurface measurements must be proven by physically sighting the asset (see step 3 – Pothole).

- All TAPL's locating Telstra network must be able to produce a current photo ID card issued by Telstra. A list of TAPL's is provided with the Telstra Dial Before You Dig plans.
- All TAPL's in addition to the Telstra photo ID card must also have current DBYD Locator Certification with ID card.

- Telstra does not permit external parties (non-Telstra) to access or conduct work on Telstra network. Only Telstra staff, Telstra contractors or locators whom are correctly accredited are authorised to work on or access Telstra manholes, pits, ducts, cables etc. This is for safety as well as for legal reasons.
- The details of any contract, agreement or retainer for site assistance to locate telecommunications plant shall be for you to decide and agree with the Telstra Accredited Plant Locator engaged. Telstra is not a party to any contract entered into between you and a Telstra Accredited Plant Locator.
- Payment for the site assistance will be your responsibility and payment details must be agreed before the engagement is confirmed.
- Telstra does not accept any liability or responsibility for the performance of or advice given by a Telstra Accredited Plant Locator. Accreditation is an initiative taken by Telstra towards the establishment and maintenance of competency standards. However, performance and the advice given will always depend on the nature of the individual engagement.
- Neither the Telstra Accredited Plant Locator nor any of its employees are an employee or agent for Telstra. Telstra is not liable for any damage or loss caused by the Telstra Accredited Plant Locator or its employees.

• Electronically derived subsurface measurements (e.g. depths/alignments by locating devices)

<u>All locator provided measurements for Telstra assets must have the AS5488-2013 quality level specified</u> - (e.g. QL-A. B. C or D). These quality levels define the accuracy of subsurface information and are critical for determining how the information is later used – for example if suitable for excavation purposes.

1) An example of a subsurface measurement with <u>no</u>quality level specified – (i.e. not to be used)

Telstra cover - 0.9m

The measurement above has no AS5488-2013 quality level specified and **must not** be provided by a locator or <u>used for design or construction</u>. This is because it is not known whether the measurement is actual or derived (where 'actual' means validated and 'derived' means assumed and not validated, e.g. electronic or other). Typically damages occur by constructors incorrectly using unvalidated measurements as actual measurements.

2) An example of a subsurface measurement with quality level B specified –

Telstra cover - 0.9m (QL-B)

Where (QL-B) complies with AS5488-2013 QL-B (for example an electronic location that complies with QL-B)

(Note QL-B means it has <u>not</u> been validated and must not be used for construction purposes around Telstra network, however it would assist further investigation to determine the actual location)

3) An example of a subsurface measurement with the quality level A specified –

Telstra cover - 0.6m (QL-A)

Where (QL-A) complies with AS5488-2013 QL-A (and is deemed suitable for excavation purposes). In this example the asset has been electronically located first, (QL-B) and then physically exposed (QL-A).

Note -Telstra will seek compensation for damages caused to it its property and losses caused to Telstra and its customers if unvalidated subsurface measurements are used for construction and subsequently result in damage to Telstra assets. Only measurements conforming to AS5488-2013 (QL-A) are deemed by Telstra to be validated measurements.

• Rural landowners - Rural Locations Subsidy Scheme Where Telstra-owned cable crosses agricultural land, Telstra <u>may</u> provide on-site assistance with cable location. <u>You must contact Telstra</u> <u>Plan Services to determine eligibility and to request the service</u>.

Please note the following –

- If eligible, the <u>location assistance must be approved and organised by Telstra</u>. Telstra will not pay for a location that has not been approved and facilitated by Telstra (Telstra is not responsible for payment assistance when a customer engages a locator directly).
- Telstra will only "subsidise" the location up to \$330 (Incl. GST). This will cover one hour on-site location only, private lead-in locations are for lead-ins 100m or longer. Any time required in addition to Telstra-funded time can be purchased directly from the assigned Telstra Accredited Plant Locator.
- This service does NOT include the use Mechanical Aids or Hydro Excavation (Vac Trucks) to locate and should be discussed between the Accredited Plant Locator and the private rural landowner
- > The exact location, including depth of cables, must be validated by potholing, which may not be covered by this service.

TELSTRA CORPORATION ACN 051 775 556

- > This service is nominally only available to assist private rural land owners.
- This service nominally covers one hour on-site only, private lead-in locations are for lead-ins 100m or longer. Any time required in addition to Telstra-funded time can be purchased directly from the assigned Telstra Accredited Plant Locator.
- > This service does not apply to previously located network at the same location (i.e. it is a once off).
- > This service does not apply to other carriers' cables (marked as 'OC' on Telstra plans).

STEP 3 – POTHOLE

Validation as defined in AS5488-2013 (QL-A).

After utilising a Telstra Accredited Plant Locator and prior to commencing construction, any electronically detected underground network must be positively identified (validated) by physically sighting it. This can be done by careful hand digging or using non-destructive water jet methods to expose the network.

Manual potholing needs to be undertaken with extreme care and by employing techniques least likely to damage cables. For example, align shovel blades and trowels parallel to the cable rather than digging across the cable. Some Telstra Accredited Plant Locators are able to provide or assist with non-destructive potholing methods to enable validation of underground cables and ducts.

If you cannot validate the underground network then you must not proceed with construction. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

Important note: The construction of Telstra's network dates back over many years. Some of Telstra's pits and ducts were manufactured from asbestos-containing cement. You must take care in conducting any works in the vicinity of Telstra's pits and ducts. You must refrain from in any way disturbing or damaging Telstra's network infrastructure when conducting your works. We recommend that before you conduct any works in the vicinity of Telstra infrastructure that you ensure your processes and procedures eliminate any possibility of disturbing, damaging or interfering in any way with Telstra's infrastructure. Your processes and procedures should incorporate appropriate measures having regard to the nature of this risk. For further information -

https://www.telstra.com.au/consumer-advice/digging-construction/relocating-network-assets

STEP 4 – Protect:

You must maintain the following minimum clearance distances between construction activity and the validated position of Telstra plant.

Jackhammers/Pneumatic Breakers	Not within 1.0m of actual validated location.
Vibrating Plate or Wacker Packer Compactor	Not within 0.5m of actual validated location of Telstra ducts.
	be used across Telstra ducts.
Boring Equipment (in-line, horizontal and vertical)	Not within 2.0m of actual validated location . Constructor to hand dig or use non-destructive water jet method (pothole) and expose plant.
Heavy Vehicle Traffic (over 3 tonnes)	Not to be driven across Telstra ducts (or plant) with less than 600mm cover. Constructor to check actual depth via hand digging.
Mechanical Excavators, Farm ploughing and Tree Removal	Not within 1.0m of actual validated location. Constructor to hand dig or use non-destructive water jet method (pot-hole) and expose plant.

TELSTRA CORPORATION ACN 051 775 556

DOC Version 28 (2nd March 2020)

- For blasting or controlled fire burning please contact Telstra Plan Services.
- If conducting roadworks all existing Telstra pits and manholes must be a minimum of 1.2m in from the back of kerb after the completion of your work.
- After the completion of any ground work in footways or roadway whereby the existing levels are being changed the depth of cover of the existing Telstra asset at the completion of work must not be less than the existing level before work commenced.

Regardless of whether the surface is being raised or lowered, any work impacting the depth of cover of Telstra underground assets should not commence before consultation with Telstra Network Integrity representatives, to discuss the possibility of '*protection*' or relocation (including lowering of the asset)".

- For clearance distances relating to Telstra pillars, cabinets and RIMs/RCMs please contact Telstra Plan Services.
- If Telstra plant is situated wholly or partly where you plan to work (i.e. in conflict, where a pit or manhole would be in a driveway or other vehicle thoroughfare), then Telstra's Network Integrity Group must be contacted to discuss possible engineering solutions to protect Telstra assets.
 Please phone 1800 810 443 or email <u>NetworkIntegrity@team.telstra.com</u>
- You are not permitted to relocate or alter or repair any Telstra assets or network under any circumstances.

It is a criminal offence under the *Criminal Code Act 1995* (Cth) to tamper or interfere with communication facilities owned by a carrier. Heavy penalties may apply for breach of this prohibition, and any damages suffered, or costs incurred by Telstra as a result of any such unauthorised works may be claimed against you.

Only Telstra and its contractors may access and conduct works on Telstra's network (including its plant and assets). This requirement is to ensure that Telstra can protect the integrity of its network, avoid disruption to services and ensure that the relocation meets Telstra's requirements.

If Telstra relocation or protection works are part of the agreed solution, then payment to Telstra for the cost of this work shall be the responsibility of the principal developer, constructor or person for whom the work is performed. The principal developer or constructor will be required to provide Telstra with the details of their proposed work showing how Telstra's plant is to be accommodated and these details must be approved by the Regional Network Integrity Manager prior to the commencement of site works.
 Please phone 1800 810 443 or email <u>NetworkIntegrity@team.telstra.com</u>
 Further information - https://www.telstra.com.au/consumer-advice/digging-construction/relocating-network-assets

Damage to Telstra's network must be reported immediately – 132 203 Say "Damages" at the voice prompt, then press 1 to speak to an Operator

Or report online:

https://service.telstra.com.au/customer/general/forms/report-damage-to-telstra-equipment

- You will be held responsible for all plant damage that occurs or any impacts to Telstra's network as a result of your construction activities. This includes interfering with plant, conducting unauthorised modification works and interfering with Telstra's assets in a way that prevents Telstra from accessing or using its assets in the future.
- Telstra reserves all rights to recover compensation for loss or damage to its cable network or other property including consequential losses.

FURTHER INFORMATION - CONTACTS

NATURAL DISASTERS

Natural Disasters include (amongst other things) earthquakes, cyclones, floods and tsunamis. In the case of such events, urgent requests for plans or information relating to the location of Telstra network can be made directly to Telstra Network Integrity Team Managers as follows:

NSW –	John McInerney	0419 485 795
NT/WA/QLD –	Glenn Swift	0419 660 147
SA/VIC/TAS -	David Povazan	0417 300 947

TELSTRA PLAN SERVICES

- for all <u>Telstra</u> Dial Before You Dig related enquiries

Email - Telstra.Plans@team.telstra.com

Phone - 1800 653 935 (general enquiries, business hours only)

Accredited plant locator enquiries	(07)34551011	
Telstra easements -	Glen	(07)34551011

*Please note - to make a Telstra plan enquiry the plans must be current (within 60 days of issue). If your plans have expired you will need to submit a new request via DBYD prior to contacting Telstra Plan Services.

Information for new developments (developers, builders, home owners) Telstra Smart Communities - https://www.telstra.com.au/smart-community

Asset relocations

Please phone 1800 810 443 or email NetworkIntegrity@team.telstra.com

https://www.telstra.com.au/consumer-advice/digging-construction/relocating-network-assets

Telstra offers free Cable Awareness Presentations, if you believe you or your company would benefit from this offer please contact Network Integrity on 1800 810 443 or <u>NetworkIntegrity@team.telstra.com</u>

PRIVACY NOTE

Your information has been provided to Telstra by DBYD to enable Telstra to respond to your DBYD request. Telstra keeps your information in accordance with its privacy statement entitled "Protecting Your Privacy" which can be obtained from Telstra either by calling 1800 039 059 or visiting our website at <u>www.telstra.com.au/privacy</u>

LEGEND

For more info contact a Telstra Accredited Locater or Telstra Plan Services 1800 653 935

- 50 -10 - 10 - 20.0 One 50mm PVC between two 6-pi along the same r AS -[cable ntomaton] EA -[cable n

One 50mm PVC conduit (P50) containing a 50-pair and a 10-pair cable between two 6-pits, 20.0m apart, with a direct buried 30-pair cable along the same route.

Two separate conduit runs between two footway access chambers (manholes) 245m apart. A nest of four 100mm PVC conduits (P100) containing assorted cables in three ducts (one being empty) and one empty 100mm concrete duct (C100) along the same route.

WARNING: Telstra plans and location information conform to Quality Level 'D' of the Australian Standard AS 5488 - Classification of Subsurface Utility Information. As such, Telstra supplied location information is indicative only. Spatial accuracy is not applicable to Quality Level D. Refer to AS 5488 for further details. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans. FURTHER ON SITE INVESTIGATION IS REQUIRED TO VALIDATE THE EXACT LOCATION OF TELSTRA PLANT PRIOR TO COMMENCING CONSTRUCTION WORK. A plant location service is an essential part of the process to validate the exact location of Telstra assets and to ensure the asset is protected during construction works. The exact position of Telstra assets can only be validated by physically exposing it. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

ATTACHMENT E

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2101028
Hole Depth:	0.50 m
Date Started:	25/03/2021
Date Completed:	25/03/2021

Project Name:	St Marys Detailed Site Investigation				
Location / Site:	243-261 Forrester Road, North St Marys NSW				
Client:	Home Co.				
Contractor:	N/A				
Method:	Hand Auger				

Mothod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
Γ											
		0.08		z				***	FILL- moderate brown (5YR 4/4), 5% clay, 90% sand, 5% \ gravel, poorly compacted. / FILL- moderate brown (5YR 3/4), 90% clay, 5% silt, 5%	damp damp	
	<u> </u>	_	D	z	BH1/0.3-0.4	Ē		\bigotimes	gravel, medium plasticity, moderately compacted.		
╞		0.5				┢		×××	Terminated at 0.50 m Target depth.		
		-									
		0									
		-									
.au		- <u>1</u> .5									
reumad.com		-									
lite at www.		2.0									
by laurte wt		-									
AM - drawn		-									
1 11:26:00		-									
GDT 4/6/2		_									
S.GPJ GL 	Abbreviations Additional Comments										
8 ST MARY	H High D Disturbed SPT Standard Penetration Test. M Medium U Undisturbed DCP Dynamic Cone Penetrometer L Low B Bulk PP Pocket Penetrometer Z Zaro R Representative Water Landar										
21 210102 				C J Ash	Jar V Asbestos V	Enc Stat	ountere blised G	d Ground Groundwal	water Ier		
	R	U	M	A	Log Drawn	n By	: La	urie W	/hite Logged By: Tiffany Mab Checked By: Tiffany Mab	bott bott	Date: 25/03/2021 Date: 06/04/2021

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2101028
Hole Depth:	0.44 m
Date Started:	24/03/2021
Date Completed:	24/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	N/A
Method:	Hand Auger

	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material C	escription		Moisture	Obser	vations / Comments
		0.10	D	Z	BH2/0.0-0.1	Fil		\bigotimes	FILL- moderate brown (5YR 3 sand, poorly compacted.	4), 20% clay, 5%	silt, 75%	damp		
1	≦ ⊽	-	D	z	BH2/0.2-0.3	Natural	сн		Sandy CLAY- moderate red (sand, high plasticity, soft.	5R 5/4), 50% clay,	40%	wet		
I 2101028 ST MARYS.GPJ GL.GDT 4/6/21 11:26:01 AM - drawn by leurle white at www.reurnad.com.au	Abbr Hydro H H L L Z Z	 	ns	Saar D U B R R C J J Astr	nple Type Strea Disturbed SPT Undisturbed DCP Bulk PP Representativo Jar Vate Aebestos Ž	ngth T Star Dyn Poc F Levi Enco Star	esting dard Parnic C ket Pen sts ountere	enetration one Penetration di Groundwat	Terminated at 0.44 m Groundwater encountered at 0	.44m. Additional Comment Groundwater enco	bs	n.		
06202	þ.	1	LNA	A	Log Drawr	By	: La	urie W	/hite	Logged By:	Tiffany Mab	bott	Date:	24/03/2021
31							ma@reamaa.com.aa	Checked By:	Tiffany Mab	bott	Date:	06/04/2021		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.40 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Site Investigation				
Location / Site:	243-261 Forrester Road, North St Marys NSW				
Client:	Home Co.				
Contractor:	N/A				
Method:	Hand Auger				

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
HA		-	D	z	BH3/0.2-0.35	Ē			FILL- moderate reddish brown (10R 4/6), 20 sand, poorly compacted.	0% clay, 80% wet	
		<u>0</u> .5 - -							Terminated at 0.40 m Hole collapsing due to water.		
		_ _ <u>1</u> .0 _ _									
drawn by laurle white at www.reumad.com.au		- _ <u>1</u> .5 _									
		_ <u>2</u> .0 _ _									
GDT 4/6/21 11:26:02 AM		<u>2</u> .5 - -									
2101028 ST MARYS.GPJ GL	Nobrev Tydrocz T Higt Med Low Zerc	3.0 ineviations rocarbon Odour Sample Type High D Disturbed Medium U Undisturbed Low B Bulk Zero R Representations C Continuous J Jar Aeb Asbestos		nple Type Stree Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Confinuous Jar Jar Z	Strength Testing rbod SPT sturbed DCP ynarric Cone Penetrometer PP Pocket Penetrometer imuous Imuous Imuous Imuous stablead Groundwater stablead Groundwater		Additional Co Test Located in w cometer water er	nmenta aterway.			
	Log Drawn By: Laurie White					: La	urie V	hite Logged Checked	By: Tiffany Mabbott By: Tiffany Mabbott	Date: 25/03/2021 Date: 06/04/2021	

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.60 m 25/03/2021 Date Started: 25/03/2021 Date Completed:

Project Name:	St Marys Detailed Site Investigation					
Location / Site:	243-261 Forrester Road, North St Marys NSW					
Client:	Home Co.					
Contractor:						
Method:	Solid Flight Auger (Dingo)					

Depth (mBGL) USCS Symbol Method Water Level Sample Type Material Type Graphic Log HC Odour Material Description Observations / Comments Moisture Sample ASPHALT. 0.05 Asphalt & roadbase. damp FILL- moderate brown (5YR 4/4), 20% clay, 70% sand, Reinforcement bar encountered. 10% gravel, poorly compacted. SFA Ē 0.5 z D BH4/0.5-0.6 Terminated at 0.60 m Target depth. 1.0 1.5 11:26:03 AM - drawn by laurle white at www.reumad.com.au 2.0 2.5 4/6/21 GL.GDT 2101028 ST MARYS.GPJ Abbreviations Additional Comments Hydroc irbon Odou icie Tvo Strength Testing Hydrocanoo H High M Medium L Low Z Zero gen Teasing Standard Penetration Test Dynamic Cone Penetrometa Pocket Penetrometar Disturbed Undisturbed SPT DCP D U B R C Bulk PP Representat ∇ Encountered Groundwate J Asi Jer V Stabilised Groundwater L0G2021 Log Drawn By: Laurie White Logged By: **Tiffany Mabbott** Date: 25/03/2021

Checked By:

Tiffany Mabbott

ā

UMAD

Date: 06/04/2021

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.60 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription		Moisture	Obser	vations / Comments
T 4/6/21 11:28:04 AM - drawn by laurie white at www.reumad.com.au SFA		0.10		z	BH5/0.5-0.6				ASPHALT. FILL- dark greyish brown (10) sand, 10% gravel, moderately Terminated at 0.60 m Target depth.	R 4/2), 30% clay, compacted.	60%	dry	Asphalt & roa	adbase.
10 3.0 3.0 3.0 Abbreviations Hydrocarbon Odour Sample Type Strength Testing H High D Disturbed SPT V U Undisturbed DCP Dynamic Cone Penetrometer Z Zaro R Representative C Cardinuous J Jar Jar V Encountered Groundwater Stablastic Group Abbastos V Encountered Groundwater Log Drawn By: Laurie White									i Test. torneter / water ter /hite	Additional Comman	ts		Date:	25/03/2021

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au
 Project Number:
 2101028

 Hole Depth:
 0.50 m

 Date Started:
 25/03/2021

 Date Completed:
 25/03/2021

Pr	oject	Name		St Marys [)et a	lled	Site	ə investigation	
Lo	catio	n / Site):	243-261 Fo	orre	ster	Roa	ad, North St Marys NSW	
CI	ient:			Home Co.					
C	ontrac	tor:							
M	ethod			Solid Fligh	t A	uger	, 1	(Dingo)	
	Ê					5			

_												
Mathad	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Do	escription	Moisture	Observations / Comments
ſ												
Γ		0.05							ASPHALT.			Asphalt & roadbase.
A TO	5	_ _ _ 0.5	D	z	BH6/0.4-0.5	Fil			FILL- moderate brown (5YR 3/ 10% gravel, moderately compa	4), 20% clay, 70% cted.	is sand, moist	
2101028 ST MARYS.GPJ GL.GDT 4/6/21 11:26:05 AM - drawn by laurle white at www.raurnad.com.au	Abbra Hydro H Hig M Me Z Ze	U.5 U.5 I I I I I I I I I I I I I I I I I I I	13 ISdour	San D U B R C J Acti	mple Type Strue Disturbed SFT Undisturbed DOP Buk PP Representative Continuous Jar Zabastos Z	ngth T Star Por Poc ar Leve Stal	esting dard partic C ket Per	renetration one Pene eterometer	Terminated at 0.50 m Target depth.	Additional Comment	8	
Log Drawn By: Laurie White						: La	urie V	Vhite	Logged By: Checked By:	Tiffany Mabbott Tiffany Mabbott	Date: 25/03/2021 Date: 06/04/2021	

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.60 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Site Investigation
r rojeot rianio.	or marys botaling one investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material C	Description		Moisture	Obser	vations / Comments
													Acabalt & m	adhasa
		- 0.20						~~~~~	AUTHALI.					
HA		_ 0.5	D	z	BH7/0.3-0.4	Fill			FILL- moderate brown (5YR 4 10% gravel, low plasticity, mo	/4), 45% clay, 45% derately compacte	6 sand, d.	damp	Reworked cl gravel.	ay mixed with sand &
									Terminated at 0.60 m Target depth.					
		<u>1</u> .0												
om.au		_ <u>1.5</u>												
et www.reumad.cr		-												
n by laurie white		2.0												
1:26:06 AM - draw		2.5												
GL.GDT 4/6/21 1														
Abbreviations Additional Comments 9 Abbreviations Additional Comments Hydrocarbon Odour Sample Type Strength Testing H High D Disturbed SPT K M Medum U Indisturbed DP Dynamic Cone Penetrometer L Low B Bulk PP V X Representative Water Levels C C orninuous J Jar J Jar J Stablestos V Stablestor														
Chr							urie V	/hite	Logged By: Checked By:	Tiffany Mabi Tiffany Mabi	oott	Date: Date:	25/03/2021 06/04/2021	

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au
 Project Number:
 2101028

 Hole Depth:
 1.00 m

 Date Started:
 25/03/2021

 Date Completed:
 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material C	escription	Moisture	Observations / Comments
		- 0.20							ASPHALT.			Asphalt & roadbase.
SFA		-	D	z	BH8/0.3-0.4				FILL- moderate yellowish brow 5% silt, 10% gravel, high plas	vn (10YR 5/4), 85% licity, poorly compa	% clay, dam acted.	qr
		-	D	z	BH8/0.5-0.6	₫			FILL- dark yellowish orange (1 poorly compacted.	10YR 6/6), 100% s	and, dam	Potential service, continued with hand auger.
H		-	D	z	BH8/0.7-0.8				FILL- dark reddish brown (10 high plasticity, poorly compact	R 3/4), 95% clay, 5 æd.	5% silt, dam	q
slGDT 4/6/21 11:26:07 AM - drawn by laurte white at www.raumad.com.au		<u>1.0</u>							Terminated at 1.00 m Target depth.			
21 2101028 ST MARYS.GPJ(Abbreviations Additional Comments Hydrocarbon Odour Sample Type Strength Testing H High D Distribut SPT H High D Disturbed SPT L Low B Bulk PP Z Zero R Ropresentative C Continuous J Jar J Jar Jar Asb Asbestos Stabilised Groundwater											
Description Log Drawn By: Laurie White Logged By: Tiffany Mabbott Date: 2 Checked By: Tiffany Mabbott Date: 0								Date: 25/03/2021 Date: 06/04/2021				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.75 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Si	te investigation
Location / Site:	243-261 Forrester R	oad, North St Marys NSW
Client:	Home Co.	
Contractor:		
Method:	Solid Flight Auger	(Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Des	cription	Moisture	Observations / Comments
.GPJ GL.GDT 4/6/21 11:26:08 AM - drawn by laurie white at www.reumad.com.au			Sample	HC Odo	BH9/0.6-0.7	Fill Material		Graphic	CONCRETE. FILL- moderate brown (5YR 4/4) 10% gravel, low plasticity, poorly Terminated at 0.75 m Target depth.	Additional Comments	sand, damp	Reworked clay.
021 2101028 ST MARY:	H High D Disturbed SPT Standard Penetration Test. M Medium U Undisturbed DCP pynamic Cone Penetrometer L Low B Built PP Pocket Penetrometer Z Zero R Representative G Continuous V Encountered Groundwater J Jar V Encountered Groundwater Asb Asbestos V Stabilized Groundwater											
GLOG2	Log Drawn By: Laurie White Logged By: Tiffany Mabbott Date: 25/03/2021 Checked By: Tiffany Mabbott Date: 06/04/2021											

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au
 Project Number:
 2101028

 Hole Depth:
 0.70 m

 Date Started:
 25/03/2021

 Date Completed:
 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
8		a.15							CONCRETE.		
		-							FILL- moderate brown (5YR 3/4), 90% silt, 5 5% gravel, poorly compacted.	% fine sand, damp	
SFA		-				Ē		\bigotimes			
		-	D	z	BH10/0.6-0.7						
		-						×××	Terminated at 0.70 m Target depth.		
		1.0									
		-									
		-									
		- <u>1</u> .5									
id.com.al		-									
w.reuma		-									
lifte at ww		2.0									
aurie wr		-									
rawn by		-									
9 AM - 0		2.5									
11:26:0		-									
T 4/6/21		-									
		3.0									
RYS.GP	lydroca Iydroca	viation arbon O	s dour	Sar D	nple Type Stren Disturbed SOT	ngith Ti	esting _{rdar} t P	anatrativa	Additional Corr	ments	
B ST MA	Mec Low Zen	ium S		UBR	Undisturbed DCP Bulk PP Representative Wate	Dyn Pod r Leve	amic Co ket Pen Mas	ne Penel etrometer	rmeter		
210102				C J Ash	Jar V Asbestos V	Enc Stat	ountere bilised G	d Ground Groundwal	valor of		
062021	o fi	1	14		Log Drawn	ı By:	La	urie W	'hite Logged B	by: Tiffany Mabbott	Date: 25/03/2021
1									Checked B	ly: Tiffany Mabbott	Date: 06/04/2021

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.70 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Site Investigation							
Location / Site:	243-261 Forrester Road, North St Marys NSW							
Client:	Home Co.							
Contractor:								
Method:	Solid Flight Auger (Dingo)							

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
20	-	<u>a.15</u> -							CONCRETE. FILL- moderate brown (5YR 4/4), 80% clay, 10% gravel, medium plasticity, moderately compacted	6 silt, 10% damp 1.	
SFA			D	z	BH11/0.5-0.6	Ē			Terminated at 0.70 m Target depth.		
		1.0 							- <u>9</u>		
nad.com.au		- - <u>1</u> .5									
laurle white at www.reu		_ _ _2.0 _									
1:26:10 AM - drawn by		- 2.5									
3PJ GL.GDT 4/6/21 1		3.0									
2101028 ST MARYS.G	Abbreviations Additional Comments Hydrocarbon Odour Sample Type Strength Testing H High D. Disturbed SPT M Medium U. Undisturbed DCP D Disturbed DCP Disturbed DP Disturbed DCP Disturbed DCP Disturbed DCP Disturbed DCP Disturbed DCP Disturbed DCP Disturbed DCP										
GLLOG2021	Log Drawn By: Laurie White Logged By: Tiffany Mabbott Date: 25/03/2021 Checked By: Tiffany Mabbott Date: 06/04/2021								Date: 25/03/2021 Date: 06/04/2021		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.46 m Date Started: 24/03/2021 Date Completed: 24/03/2021

Project Name:	St Marys Detailed Site Investigation								
Location / Site:	243-261 Forrester Road, North St Marys NSW								
Client:	Home Co.								
Contractor:									
Method:	Solid Flight Auger (Dingo)								

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
2101028 ST MARYS.GPJ GL.GDT 4/6/21 11:28:11 AM - drawn by laurie white at www.reumad.com.au	Abbrecher Abbrecher H Hax Low Z Zen	B a.15 - a.36 - <td>B D D D</td> <td>JT Z Z J Ast</td> <td>BH12/0.25-0.35 DS1, TS1 BH12/0.35-0.45 BH12/0.35-0.45 January Street Distribution Distribution Distribution PP Representative Continuous Jan O Asbestos</td> <td>Star Distant Distant Distant Distant Distant Distant Distant Distant Distant Distant</td> <td>esting dard Pan ket Pan ket Pan ket Pan</td> <td></td> <td>CONCRETE. FILL- moderate brown (5YR 3/4), 10% silt, 80% sand, 10% gravel, well compacted. FILL- moderate brown (5YR 3/4), 10% clay, 10% silt, 40% sand, 40% gravel, well compacted. Terminated at 0.46 m on gravel. Terminated at 0.46 m on gravel. Additional Comments Text comeans watar ar</td> <td>dry damp</td> <td>Roadbase, basalt gravel.</td>	B D D D	JT Z Z J Ast	BH12/0.25-0.35 DS1, TS1 BH12/0.35-0.45 BH12/0.35-0.45 January Street Distribution Distribution Distribution PP Representative Continuous Jan O Asbestos	Star Distant Distant Distant Distant Distant Distant Distant Distant Distant Distant	esting dard Pan ket Pan ket Pan ket Pan		CONCRETE. FILL- moderate brown (5YR 3/4), 10% silt, 80% sand, 10% gravel, well compacted. FILL- moderate brown (5YR 3/4), 10% clay, 10% silt, 40% sand, 40% gravel, well compacted. Terminated at 0.46 m on gravel. Terminated at 0.46 m on gravel. Additional Comments Text comeans watar ar	dry damp	Roadbase, basalt gravel.
	Log Drawn By: Laurie White Logged By: Tiffany Mabbott Date: 24/03/2021 Checked By: Tiffany Mabbott Date: 06/04/2021										

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au
 Project Number:
 2101028

 Hole Depth:
 0.55 m

 Date Started:
 25/03/2021

 Date Completed:
 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

	Method Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
ſ											
ľ		0.15							ASPHALT.		Asphalt & roadbase.
	SFA	- - 0.5	D	Z	BH13/0.45-0.55	Ē			FILL- dark greyish brown (10YR 4/2), 5% clay, 80% sand, 15% gravel, moderately compacted.	damp	
		-							Terminated at 0.55 m Target depth.		
		_ <u>1</u> .0 _ _									
Leurau.com.au											
OY IBUILD WILLIE BL WWW		_ _2.0 _									
1 IIMRIN - MIN 71 .07.11		_ 2.5									
		- 3.0									
	Abbreviations Sample Type Strength Testing H High D Disturbed SPT M Medium U Undisturbed DCP L Low B Bulk PP Z Zero R Representative C Cantinuous J Jar Y Abbreviation Encountered Groundwater Statistical Strength Testing					nsting Idard P amic Co ket Pen bits ountere bilised G	enetration one Pene etrometer d Ground coundwa	Additional Comments rometer water ler			
	Log Drawn By: Laurie White								/hite Logged By: Tiffany Ma Checked By: Tiffany Ma	bbott bbott	Date: 25/03/2021 Date: 06/04/2021

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2101028
Hole Depth:	1.60 m
Date Started:	25/03/2021
Date Completed:	25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

	Method Michoe I and	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
ŀ									ASPHALT.		Asphalt & roadbase.
		-		z	BH14/0.2-0.35				FILL- moderate yellowish brown (10YR 5/4), 90% clay, 10% gravel, medium plasticity, well compacted.	dry	Reworked clay.
		0.5		z					FILL- dark yellowish orange (10YR 6/6), 95% clay, 5% gravel, medium plasticity, well compacted.	dry	
	SFA SFA	- - - - - - - - -	<u>460</u> - - 1.0 - - -		BH14/1.4-1.5	H.H.			FILL- dark greyish brown (10YR 4/2), 90% clay, 10% gravel, high plasticity, poorly compacted.	damp	Reworked clay. (J, ASB bag)
m.au		1.50		Z	BH14/1.5-1.6	Nat.	CL		CLAY- pale reddish brown (10R 5/4), 100% clay, high	dry	
GL.GDT 4/6/21 11:26:13 AM - drawn by laurle white at www.reurnad.cu		- - - - - - - - - - - - - - - - - - -							Terminated at 1.60 m Target depth.		
1 2101028 ST MARYS.GPJ	Additional Comments Additional Co										
GLLOG202	Logged By: Tiffany Mabbott Date: 25/03/2021 Checked By: Tiffany Mabbott Date: 06/04/2021										

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au
 Project Number:
 2101028

 Hole Depth:
 0.70 m

 Date Started:
 25/03/2021

 Date Completed:
 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

114411	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription		Moisture	Obser	vations / Comments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	A 18							CONCRETE.					
4 LO	5	 0.5	D	Z	BH15/0.55-0.65	Ē			FILL- moderate brown (5YR 3, 10% gravel, low plasticity, poo	/4), 60% clay, 30% rly compacted.	5 sand, d	damp	Reworked cla	ay.
		- - 1.0							Terminated at 0.70 m Target depth.					
umad.com.au		- <u>1</u> .5 -												
wn by laurie white at www.r		- - 2.0 -												
)T 4/6/21 11:26:15 AM - 078		- _2.5 - -												
	AL/	- 3.0								Addition - 1 0				
21 2101028 ST MARYS.G	Abbreviations       Additional Comments         Hydrocarbon Odour       Sample Type       Strength Testing         High       D Disturbed       SPT       Standard Penetration Test         M Medum       U Undisturbed       DCP       Dynamic Cone Penetrometer         L Low       B Bulk       PP       Pocket Penetrometer         Z Zero       R Representative       Wear Levels         C Continuous       Image: Continuous       Encountered Groundwater         J Jar       Jar       Stabilized Groundwater													
Log Drawn By: Laurie White Logged By: Tiffany Mabbott Date: 25/03/20 Checked By: Tiffany Mabbott Date: 06/04/20							25/03/2021 06/04/2021							



Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.65 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Mathod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
- 55		<u>a.15</u> -						×	CONCRETE. FILL- moderate brown (5YR 4/4), 80% clay, 20% gravel, low plasticity, poorly compacted.	damp	
SEA		 	D	Z	BH16/0.55-0.65	Ē			Terminated at 0.65 m Target depth.		
		_ 1.0 							- ·		
imad.com.au	<u>1.5</u>										
<u>y laurie white at www.re</u> u		_ 2.0 									
1 11:26:16 AM - drawn b		2.5									
/S.GPJ GL.GDT 4/6/21	30     -     -       30     -     -       30     -     -       Abbreviations     -       Hydrocarbon Odour     Sample Type								Additional Comments		
in     ingrit     D     Distribution     D/D     Piratric Concernation test       M     Medum     U     Undistructed     D/D     Pymaric Concernation       M     Low     B     Bulk     PP     Pockat Panetrometer       Z     Zaro     R     Representative     Water Levels       C     C     Continuous     V     Encountered Groundwater       Aeb     Aeb Asbestos     V     Stabilised Groundwater											
	R	U	M	A.	Log Drawn	By:	La	urie W	/hite Logged By: Tiffany M Checked By: Tiffany M	abbott abbott	Date: <b>25/03/2021</b> Date: <b>06/04/2021</b>



Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.70 m Date Started: 25/03/2021 Date Completed: 25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
SFA CC M	M	<u>a</u> .15 - - - - 1.0 - - - - -	D .	z	а ВН17/0.5-0.65	Fill	5	9 <b>9</b>	CONCRETE. FILL- moderate brown (5YR 4/4), 30% clay, 60% sand, 10% gravel, poorly compacted. Terminated at 0.70 m Target depth.		
1/21 11:26:17 AM - drawn by laurie white at www.reumad.com.au											
Note       3.0       Sample Type       Strength Testing         Abbreviations       Disturbed       SPT       Strength Testing         H High       Disturbed       Dynamic Cone Penetrometer         Z Zero       R Representative       OC Continuous         J Jar       Abbreviation         Abbreviations       B Buk         PP       Pocket Penetrometer         Water Levels       C Continuous         J Jar       Stabilised Groundwater         Abbreviation       Low         Abbreviation       B Suk         V       Disturbed         J Jar       Stabilised Groundwater         Stabilised Groundwater       Stabilised Groundwater								enetration ne Penel strometer d Ground iroundwal urie W	Additional Comments Test veter er Thite Logged By: Tiffany Ma Checked By: Tiffany Ma	bbott	Date: <b>25/03/2021</b> Date: <b>06/04/2021</b>



Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: 2101028 Hole Depth: 0.80 m Date Started: 24/03/2021 Date Completed: 24/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	
Method:	Solid Flight Auger (Dingo)

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
								\$X.*5.3			
8		0.15							CONCRETE.		
		-	D	z	BH18/0.2-0.3				FILL- pale brown (5YR 5/2), 10% silt, 80% sar gravel, well compacted.	nd, 10% dry	Roadbase.
SFA		- 0.5	D	z	BH18/0.45-0.55	Ē			FILL- pale red (10R 6/2), 90% clay, 5% sand, medium plasticity, moderately compacted.	5% gravel, damp	Crushed concrete / roadbase.
_ D Z BH18/0.6-0.75									FILL- 20% clay, 60% sand, 20% gravel, mode compacted.	rately dry	
		-							Terminated at 0.80 m refusal on gravel.		
		-									
2											
LCOM.8		-									
Bumac		F									
WWW.											
/hite at		2.0									
		F									
n py i		Ē									
- drav											
18 AN		2.5									
11:26		F									
4/6/21											
<u>1</u>		Ļ									
ಶL ನ_		3.0									
Operations       Additional Comments         Pytrocarbon Odour       Sample Type       Strength Testing         H High       D Disturbed       SPT         M Medum       U Undisturbed       DCP         L Low       B Bulk       PP         Pocket Penetrometer       Water Levels         C Continuous       J Jer         J Jer       V         N       Abbestos											
06202	2.	1	N ₄	A	Log Drawn	By:	La	urie V	hite Logged By	Tiffany Mabbott	Date: 24/03/2021
Ę T		- 6	U.						Checked By	Tiffany Mabbott	Date: 06/04/2021



Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2101028
Hole Depth:	0.26 m
Date Started:	24/03/2021
Date Completed:	24/03/2021

Project Name:	St Marys Detailed Site Investigation									
Location / Site:	243-261 Forrester Road, North St Marys NSW									
Client:	Home Co.									
Contractor:	N/A									
Method:	Hand Auger									

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription		Moisture	Obse	vations / Comments
		Z       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>B B B B B B B B B B B B B B B B B B B</td><td>T Z S B U B</td><td>BH19/0.16-0.26</td><td>Start Dyna</td><td>esting dard Parne</td><td>to to to to to to to to to to</td><td>CONCRETE. FILL- moderate brown (5YR 3/ gravel, well compacted. Terminated at 0.26 m on gravel.</td><td>4), 5% silt, 80% s Additional Comman</td><td>sand, 15%</td><td>damp</td><td>Roadbase.</td><td></td></t<>	B B B B B B B B B B B B B B B B B B B	T Z S B U B	BH19/0.16-0.26	Start Dyna	esting dard Parne	to to to to to to to to to to	CONCRETE. FILL- moderate brown (5YR 3/ gravel, well compacted. Terminated at 0.26 m on gravel.	4), 5% silt, 80% s Additional Comman	sand, 15%	damp	Roadbase.	
			NA.	K C J Ast	Continuous Jar Z Asbestos Ž	Enci Stab	ts xuntere illsed G Lai	d Groundwat iroundwat urie W	water ler /hite	Logged By:	Tiffany Mabi	ott	Date:	24/03/2021



Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2101028
Hole Depth:	1.20 m
Date Started:	25/03/2021
Date Completed:	25/03/2021

Project Name:	St Marys Detailed Site Investigation
Location / Site:	243-261 Forrester Road, North St Marys NSW
Client:	Home Co.
Contractor:	N/A
Method:	Solid Flight Auger

1-4-1	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
									ASPHALT.		Asphalt & roadbase.
410	C D	<u>0.15</u> - - - - - - 1.0	D	Z	BH20/0.15-0.25	IL4			FILL- moderate brown (5YR 3/4), 90% clay, 10% gravel, high plasticity, moderately compacted.	damp	
rT 4/6/21 11:26:20 AM - drawn by laurie white at www.reumad.com.au		- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _							Terminated at 1.20 m Target depth.		
21 2101028 ST MARYS.GPJ GL.GI	Abbra Hydrod H Hig M Ma L Lox Z Zai	viation arbon C h dum	IS Xdour	San D U B R C J Aet	mple Type Stren Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Continuous V Jar V D Asbestos V	gith Tu Stan Dyn: Poci Flowe Enci Stab	esting Idard Pr amic Co ket Pen Is buntere illised G	enetration ne Pene strometer d Ground	Additional Comments rometer water ter		
	R	I	M	A	Log Drawn	By:	La	urie W	/hite Logged By: Tiffany Checked By: Tiffany	Mabbott Mabbott	Date: 25/03/2021 Date: 06/04/2021

ATTACHMENT F

### **Geo-Logix Pty Ltd**

### **CHAIN OF CUSTODY**

Page | of 2

Building Q2, Level 3 2309/4 Daydream St Warriewood, NSW 2102

ABN: 86 116 892 936

P: (02) 9979 1722 F: (02) 9979 1222

	ANALYSIS REQUIRED																													
Lab ID	Sample ID	Date	soil	water	Vatr is	paint, filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	VOCs	BTEXN	DAHe	PCBs	ocps	OPPs	Phenols	Metals - M8	Metals - Lead	Metals - Specify **	TCLP		Asbestos (WA DOH) Foreion Materials	Conductivity (EC)	Hd		Hold	suiteB9	Eurofins MGT Suite Codes
	BH1/0.3-0.4	25/3/21	X																										RA	B1 TRH/BTEXN B1A TRH/MAH
	BH2/0.0-0.1	24/3/21	Х																									×		B2 TRH/BTEXN/Pb
	BH2/0.2-0.3	24/3/21	X																										×	B2A TRH/MAH/Pb
	BH3/0.2-02	5 25/3/21	1																										×	B4 TRH/BTEXN/PAH
	BH4/0.5-0.6	25/3/21	11																										×	B4A TRH/BTEXN/PAH/Phenols
	BH5/0.5-0.6	25/3/21	IT										T	T		1							1		1	1			X	B6 TRH/BTEXN/M8
	BH6/0.4-0.5	25/3/21	11								T	1	T	1	1	1	1						T	1	1	1			×	B7 TRH/BTEXN/PAH/M8
-	RH7/0.2-0.4	25/2/21	IT							1	1	1	1	+	+	1	1					+	1	1	1	1			×	B7A TRH/BTEXN/PAH/Phenois/M8 B8 TRH/VOC/PAH/M8
	BH8/0.3-0.4	25/3/21	H							1	1	+	t	+	+	1	1					+	+	+	t				×	B9 TRH/BTEXN/PAH/OCP/M8
	BH8/0.5-0.6	15/2/21	Ħ		1	1				1	t	+	t	+	+	-				-			+	+	+	+		×	~	B10 TRH/BTEXN/PAH/OCP/OPP/M8 B11 Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3/NO3
	B48/0.7-08	25/3/21	H									+	t	+	+	-						-	+	+	+	1	-	(~ V)		B11A B11/Alkalinity
	BHQ/A/-AZ	15/2/21	H	-	+					1	-	+	t	+	+		-					-	+	+	+	+		~	×	B11B B11/EC/TDS B12 TPH/BTEXN/Oxygenates/Ethanol
	Q1110/06-07	2-12/2	H	+	-	-				-		+-	+	+	+	-	-					-	+	+	+	-		 -	×	B12A TRH/BTEXN/Oxygenates
	DHIU/0.0-0.T	25/3/4	++	-	+		-			+	t	+	+	+	+	+	-				-	-	+	-	+	-		 -		B13 OCP/PCB
	51110.5-0.6	25/5121	$\mathbb{H}$	-	+	-	_			-	-	+	-	+	+	+	-	-		-		-	+	-	+	-	-	 _	X	B15 OCP/OPP
	BH1210.25-0	35 24/3/21	1		-					-	-	+	-	-	_							_	_	_	-	-		_	X	B16 TDS/SO4/CH4/Alk/BOD/COD/HPC/CUB
	BH12/0.35-0.4	5 24/3/21																										×		B17 SO₄/NO₃/Fe++/HPC/CUB
	BH13/0.45-05	\$ 25/3/21																											X	B18 CI-/SO ₄ /pH
	BH1410.2-0-3	5 25/3/21	*																									X		B19 N/P/K B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr **, Cr **, Fe **, Fe **, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb

			Chain of Custody		
	00	01/2/01			
_					
R					
					Version: V1

#### **Geo-Logix Pty Ltd** 2 Building Q2, Level 3 2309/4 Daydream St Warriewood, NSW 2102 ABN: 86 116 892 936 P: (02) 9979 1722 F: (02) 9979 1222 ANALYSIS REQUIRED Matrix Asbestos (WA DOH) Asbestos (ID only) \$ Foreign Materials Conductivity (EC) Metals - Specify IRH - C10 - C40 5 TRH - C6 - C10 **Eurofins MGT Suite** Metals - Lead paint, filters COMPOSITE Metals - M8 3 Codes Phenols BTEXN SUITE vocs PAHs PCBs OCPs OPPs water TCLP other Hold soil air 핌 Lab ID Sample ID Date Comments B1 TRH/BTEXN X 25/3/21 × Jar BASB bag RH14/1.4-1.5 B1A TRH/MAH BH14/1.5-1.6 25/3/21 x B2 TRH/BTEXN/Pb B2A TRH/MAH/Pb BH15/0.55-065 25/3/21 X B3 PAH/Phenols BH16/0.55-0.65 25/3/21 X B4 TRH/BTEXN/PAH B4A TRH/BTEXN/PAH/Phenois BHI7/0.5-0.65 25/3/21 X B5 TRH/BTEXN/M7 BH18/0.2-0.3 24/3/21 x B6 TRH/BTEXN/M8 B7 TRH/BTEXN/PAH/M8 X BH18/0.45-0.5 24/3/21 B7A TRH/BTEXN/PAH/Phenols/M8 BH18/0.6-0.75 24/3/21 Х B8 TRH/VOC/PAH/M8 89 TRH/BTEXN/PAH/OCP/M8 X BH14/0.16-0.25 24/3/21 B10 TRH/BTEXN/PAH/OCP/OPP/M8 4 X BH20/0.15-0.25 25/3/21 B11 Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3/NO3 B11A B11/Alkalinity 25/3/21 Х × RIN1 B11B B11/EC/TDS 24/3/21 × 051 X B12 TRH/BTEXN/Oxygenates/Ethanol Send to melbourne B12A TRH/BTEXN/Oxygenates Х × TS1 24/3/21 B13 OCP/PCB Trio Blank X B14 OCP/OPP B15 OCP/OPP/PCB X Trip Spike B16 TDS/SO4/CH2/Alk/BOD/COD/HPC/CUB

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr 5+, Cr 3+, Fe 2+, Fe 3+, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb

. 12 10

**Chain of Custody** 

12

B17 SO₄/NO3/Fe++/HPC/CUB B18 CI-/SO₄/pH B19 N/P/K

B20 CEC/%ESP/Ca/Ma/Na/K

2

CHAIN OF CUSTODY



ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

#### Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254 & 14271

Sydney Unit F3. Building F Brisbane 
 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 NATA # 1261 Site # 18217

1/21 Smallwood Place NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

#### **Sample Receipt Advice**

Company name:	Geo-Logix P/L
Contact name:	Ted Lilly
Project name:	ST MARY DSI
Project ID:	2101028
Turnaround time:	5 Day
Date/Time received	Mar 26, 2021 1:35 PM
Eurofins reference	783305

#### **Sample Information**

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 10.7 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### Notes

Vials not received for RIN1 - volatile analysis cancelled.

#### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone : or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ted Lilly - tlilly@geo-logix.com.au.

## Global Leader - Results you can trust

	eurofi	ns		Australia													New Zealand		
	50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com				Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1264 8 14271	S U 175 1 ) L P	Sydney Unit F3, Building F 75 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217					Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794		F 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736		Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ADN. 3	50 005 085 521 web.	www.euronns.com.a		s@euronns.com	Sile # 1254 & 14271										5110 # 237	730			
Co Ad	ompany Name: Idress:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102	P/L 91 3, 2309/4 Da	aydream St			O Re Pl Fa	rder N eport none: ax:	No.: #:		PO4473 TM 783305 02 9979 1722 02 9979 1222						Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	РМ
Pro Pro	oject Name: oject ID:	ST MARY D 2101028	SI														Eurofins Analytical	Services Manager : L	Jrsula Long
	Sample Detail					HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene				
Melt	bourne Laborate	ory - NATA Site	# 1254 & 142	271												-			
Syd	ney Laboratory	- NATA Site # *	18217			X	X	X	X	X	X	X	X	X	X	1			
Bris	bane Laborator	y - NATA Site #	# 20794													-			
Pert	h Laboratory - I	NATA Site # 23	/36													-			
May	Tield Laboratory															-			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											-			
1	BH1/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50163								Х	Х		]			
2	BH2/0.2-0.3	Mar 24, 2021		Soil	S21-Ma50164								Х	Х					
3	BH3/0.2-0.35	Mar 25, 2021		Soil	S21-Ma50165								Х	Х					
4	BH4/0.5-0.6	Mar 25, 2021		Soil	S21-Ma50166								Х	Х					
5	BH5/0.5-0.6	Mar 25, 2021		Soil	S21-Ma50167								х	Х					
6	BH6/0.4-0.5	Mar 25, 2021		Soil	S21-Ma50168								х	Х					
7	BH7/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50169								х	Х					
8	BH8/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50170								Х	Х					
9	BH9/0.6-0.7	Mar 25, 2021		Soil	S21-Ma50171								Х	Х		J			

🔅 eurofins				Australia Melhourne Svdnev												Nowcastlo		New Zealand	
ABN: 50 005 085 521 web:	: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.co		<b>Testing</b> @eurofins.com	Melbourne         Sydney           6 Monterey Road         Unit F3, Building F           Dandenong South VIC 3175         16 Mars Road           Phone : +61 3 8564 5000         Lane Cove West NSW 2066           NATA # 1261         Phone : +61 2 9900 8400           N Site # 1254 & 14271         NATA # 1261 Site # 18217			8 1/ 066 P 0 N 17	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794				Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736		Newcastle 4/52 Industrial Drive Mayfield East NSW 2 PO Box 60 Wickham Phone : +61 2 4968 8	304 2293 3448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290		
Company Name: Address:	Geo-Logi Bld Q2 Le Warriewo NSW 210	x P/L evel 3, 2309/4 Day od 2	dream St			Oi Re Pi Fa	der N eport none: ix:	lo.: #:	F 7 0 0	PO447 78330 02 997 02 997	73 TM 5 79 172 79 122	22				Received: Due: Priority: Contact Name	•:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Project Name: Project ID:	ST MARY 2101028	( DSI														Eurofins Analy	tical	Services Manager : l	Jrsula Long
Sample Detail					HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene					
Melbourne Laborato	ory - NATA S	bite # 1254 & 1427	<b>′</b> 1												-				
Sydney Laboratory		# 18217			X	X	X	X	X	X	X	X	X		-				
Berth Laboratory	Y - NATA SIL	e # 20794 23736												+	-				
Mayfield Laboratory		23730													-				
External Laboratory	,														1				
10 BH10/0.6-0.7	Mar 25, 202	:1	Soil	S21-Ma50172								х	Х		1				
11 BH11/0.5-0.6	Mar 25, 202	1	Soil	S21-Ma50173								Х	Х						
12 BH12/0.25- 0.35	Mar 24, 202	1	Soil	S21-Ma50174								х	х						
13 BH13/0.45- 0.55	Mar 25, 202	:1	Soil	S21-Ma50175								х	х						
14 BH14/1.4-1.5	Mar 25, 202	1	Soil	S21-Ma50176								Х	Х	_	4				
15 BH15/0.55- 0.65	Mar 25, 202	1	Soil	S21-Ma50177								x	x						
16 BH16/0.55- 0.65	Mar 25, 202	1	Soil	S21-Ma50178								х	х						
17 BH17/0.5-0.65	Mar 25, 202	1	Soil	S21-Ma50179								Х	Х						

🛟 eurofins				Australia Melhourno Sydnov													New Zealand	
ABN: 50 005 085 521 web: w	Environment Testing			Melbourne         Sydney           6 Monterey Road         Unit F3, Building F           Dandenong South VIC 3175         16 Mars Road           Phone : +61 3 8564 5000         Lane Cove West NSW 2066           NATA # 1261         Phone : +61 2 9900 8400           m         Site # 1254 & 14271         NATA # 1261 Site # 18217					8 1 0666 P 0 N 17	Brisbane         Perth           1/21 Smallwood Place         2/91 Leach Highway           Murarrie QLD 4172         Kewdale WA 6105           Phone : +61 7 3902 4600         Phone : +61 8 9251 9600           NATA # 1261 Site # 20794         NATA # 1261           Site # 23736         Site # 23736					ch Highway WA 6105 ⊧61 8 9251 9600 1261 736	4/52 Industrial Drive Mayfield East NSW 2304 600 PO Box 60 Wickham 225 Phone : +61 2 4968 8444	Auckland 35 O'Rorke Road Penrose, Auckland Phone : +64 9 526 8 IANZ # 1327	Christchurch 43 Detroit Drive 1061 Rolleston, Christchurch 767 45 51 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102	P/L 9/3, 2309/4 Dayo	dream St			O Ro Pl Fa	rder N eport none: ax:	No.: #:	 - (	PO44 78330 02 99 02 99	73 TM )5 79 172 79 122	22				Received: Due: Priority: Contact Name:	Mar 26, 2021 Apr 6, 2021 5 Day Ted Lilly	1:35 PM
Project Name: Project ID:	2101028	151														Eurofins Analytic	al Services Mana	ger : Ursula Long
	Sample Detail felbourne Laboratory - NATA Site # 1254 & 14271					Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene				
Melbourne Laborato	NATA Site	e # 1254 & 1427	1		v		v		v	v	v	v	v	v	-			
Brisbane Laboratory	· NATA Site #	10217			^								^	$\uparrow$	4			
Perth Laboratory - N	$\frac{7 - 10ATA Site}{23}$	736													-			
Mayfield Laboratory		150													-			
External Laboratory																		
18 BH18/0.6-0.75	Mar 24, 2021	s	Soil	S21-Ma50180								х	х		1			
19 BH19/0.16- 0.25	Mar 24, 2021	S	Soil	S21-Ma50181								х	x					
20 BH20/0.15- 0.25	Mar 25, 2021	S	Soil	S21-Ma50182								х	x					
21 RIN1	Mar 25, 2021	V	Vater	S21-Ma50183		X	Х	Х	X	Х					4			
22 DS1	Mar 24, 2021	s	Soil	S21-Ma50184				<u> </u>				Х	Х		4			
23 TRIP BLANK	Mar 24, 2021	<u> </u> S	Soil	S21-Ma50186							X	<u> </u>			4			
24 TRIP SPIKE	Mar 24, 2021	<u> </u> s	Soil	S21-Ma50187										X	4			
25 TRIP SPIKE LAB	Mar 24, 2021	S	Soil	S21-Ma50188										x	-			
26 BH2/0.0-0.1	Mar 24, 2021	S	Soil	S21-Ma50189	Х										]			

ABN: 5	0 005 085 521 web: v	15	Environmer		Melbourne	S	Svdnev			Australia Nitherror Distance									
		www.eurofins	s.com.au email: Enviro	NT LESTING	6 Monterey Road Dandenong South VIC 31' Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	175 1 L F N	Jnit F3, E 6 Mars F ane Cov Phone : + NATA # 1	Building Road ve West -61 2 99 1261 Sit	F NSW 2 900 840 te # 182	1, N 2066 P 0 N 17	/21 Sma /urarrie hone : - IATA # 1	e allwood QLD 4 ⁷ +61 7 39 1261 Sit	Place 172 902 4600 e # 2079	P 2 K 0 F 94 N S	Perth 2/91 Leac Kewdale N Phone : + NATA # 1 Site # 237	ch Highway WA 6105 61 8 9251 9600 261 736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Co Ad	mpany Name: dress:	Geo-L Bld Q2 Warrie NSW 2	.ogix P/L 2 Level 3, 2309/4 ewood 2102	Daydream St		Order No.: Report #: Phone: Fax:					PO4473 TM 783305 02 9979 1722 02 9979 1222						Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Pro Pro	oject Name: oject ID:	ST M/ 21010	ARY DSI 028														Eurofins Analytical	Services Manager : I	Jrsula Long
	Sample Detail				HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene					
Melb	ourne Laborato	ry - NAT	A Site # 1254 & ⁻	14271															
Sydı	ney Laboratory ·	NATA S	Site # 18217			Х	Х	Х	Х	Х	Х	X	Х	Х	Х				
Bris	bane Laboratory	/ - NATA	Site # 20794																
Pert	h Laboratory - N	ATA Site	e # 23736													-			
May	field Laboratory																		
Exte	rnal Laboratory	Man OF	2024	Cail	C04 Ma50400	V													
21		Mar 25, 2	2021	Soil	S21-Wa50190	×	-					-				ł			
29	BH12/0.35- 0.45	Mar 24, 2	2021	Soil	S21-Ma50191	X													
30	BH14/0.2-0.35	Mar 25, 2	2021	Soil	S21-Ma50193	Х													
31	BH14/1.5-1.6	Mar 25, 2	2021	Soil	S21-Ma50194	Х													
32	BH18/0.2-0.3	Mar 24, 2	2021	Soil	S21-Ma50195	Х													
33	BH18/0.45- 0.55	Mar 24, 2	2021	Soil	S21-Ma50196	х													
Test	Counts		·	·		8	1	1	1	1	1	1	21	21	2	]			



### Certificate of Analysis

## **Environment Testing**

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	
Report	
Project name	
Project ID	
Received Date	

783305-S ST MARY DSI 2101028 Mar 26, 2021

Ted Lilly

				1		
Client Sample ID			BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50163	S21-Ma50164	S21-Ma50165	S21-Ma50166
Date Sampled			Mar 25, 2021	Mar 24, 2021	Mar 25, 2021	Mar 25, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	290	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	78	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	368	< 50	< 50	< 50
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	72	90	79	90
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	400	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	110	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	510	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	13	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	13	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	13	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	1.2	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	2.6	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	6.7	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	9.3	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	7.2	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	5.6	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	6.7	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	6.9	< 0.5	< 0.5	< 0.5



Client Sample ID			BH1/0.3-0.4	BH2/0.2-0.3	BH3/0.2-0.35	BH4/0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50163	S21-Ma50164	S21-Ma50165	S21-Ma50166
Date Sampled			Mar 25, 2021	Mar 24, 2021	Mar 25, 2021	Mar 25, 2021
Test/Reference	LOR	Unit		, i	, i	
Polycyclic Aromatic Hydrocarbons	Lon	Onic				
Dibenz(a,b)anthracene	0.5	ma/ka	1.3	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	ma/ka	24	< 0.5	< 0.5	< 0.5
Fluorene	0.5	ma/ka	2.1	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	5.7	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	2.0	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	19	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	21	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	121.3	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	98	65	75	68
p-Terphenyl-d14 (surr.)	1	%	108	115	131	99
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methowychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Texephone	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.00	ma/ka	< 0.00	< 0.00	< 0.00	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	127	122	141	82
Tetrachloro-m-xylene (surr.)	1	%	108	69	76	79
Heavy Metals						
Arsenic	2	mg/kg	12	16	14	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	41	37	43	24
Copper	5	mg/kg	33	14	17	31
Lead	5	mg/kg	130	29	80	35
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	18	10	12	22
Zinc	5	mg/kg	130	16	120	78
% Moisture	1	%	14	18	17	12



Sample Matrix         Soil	Client Sample ID			BH5/0.5-0.6	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4
Eurotins Sample No.         S21-Ma50167         S21-Ma50168         S21-Ma50169         S21-Ma50169         S21-Ma50169         Mar 25, 2021         Ref C-0         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C&lt;</thc<>	Sample Matrix			Soil	Soil	Soil	Soil
Date Sampled         Mar 25, 2021         Construction           TRH C16-C3         Cold         Cold </td <td>Eurofins Sample No.</td> <td></td> <td></td> <td>S21-Ma50167</td> <td>S21-Ma50168</td> <td>S21-Ma50169</td> <td>S21-Ma50170</td>	Eurofins Sample No.			S21-Ma50167	S21-Ma50168	S21-Ma50169	S21-Ma50170
Tatic Recoverable Hydrocarbons - 1999 NEPM Fractions         Unit         Interview           TRN C6-C9         20         mg/kg         < 20	Date Sampled			Mar 25, 2021	Mar 25, 2021	Mar 25, 2021	Mar 25, 2021
Total Recoverable Hydrocarbons - 1999 NEPM Fractions         International and the second		LOR	Unit				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C10-C14	20	ma/ka	< 20	< 20	< 20	< 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C15-C28	50	ma/ka	120	< 50	< 50	< 50
TRH C10-C36 (Total)         50         mg/kg         230         < 60         < 60         < 60           BTEX                                                                                                              <	TRH C29-C36	50	mg/kg	110	< 50	< 50	< 50
BTEX </td <td>TRH C10-C36 (Total)</td> <td>50</td> <td>mg/kg</td> <td>230</td> <td>&lt; 50</td> <td>&lt; 50</td> <td>&lt; 50</td>	TRH C10-C36 (Total)	50	mg/kg	230	< 50	< 50	< 50
Benzene         0.1         mg/kg         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1 <t< td=""><td>BTEX</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	BTEX						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene         0.1         mg/kg         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1	Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
o-Xylene $0.1$ $mg/kg$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.1$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.3$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$	m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Xylenes - Total*         0.3         mg/kg         < 0.3         < 0.3         < 0.3         < 0.3         < 0.3         < 0.3           4-Bromofluorobenzene (surr.)         1         %         90         89         95         94           Total Recoverable Hydrocarbohs - 2013 NEPM Fractions                Naphthalene ^{W02} 0.5         mg/kg         < 2.0	o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromofluorobenzene (surr.)         1         %         90         89         95         94           Total Recoverable Hydrocarbons - 2013 NEPM Fractions         0.5         mg/kg         <0.5	Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total Recoverable Hydrocarbons - 2013 NEPM Fractions         Image Number of the image of	4-Bromofluorobenzene (surr.)	1	%	90	89	95	94
Naphthalene ^{N02} 0.5         mg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5           TRH C6-C10         20         mg/kg         < 20	Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10 less BTEX (F1) ^{No4} 20 $mg/kg$ < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20	TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH >C16-C34	100	mg/kg	190	< 100	< 100	< 100
TRH >C10-C40 (total)*         100         mg/kg         190         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100	TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons         Number of the system of the	TRH >C10-C40 (total)*	100	mg/kg	190	< 100	< 100	< 100
Benzo(a)pyrene TEQ (lower bound) *         0.5         mg/kg         < 2         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6	Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (medium bound)*         0.5         mg/kg         <2         0.6         0.6         0.6           Benzo(a)pyrene TEQ (upper bound)*         0.5         mg/kg         3.3         1.2         1.2         1.2           Acenaphthene         0.5         mg/kg         <0.5	Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 2	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (upper bound) *         0.5         mg/kg         3.3         1.2         1.2         1.2           Acenaphthene         0.5         mg/kg         <0.5	Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	< 2	0.6	0.6	0.6
Acenaphthene0.5 $mg/kg$ < 0.5< 0.5< 0.5< 0.5< 0.5Acenaphthylene0.5 $mg/kg$ < 0.5	Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	3.3	1.2	1.2	1.2
Acenaphthylene0.5mg/kg< 0.5< 0.5< 0.5< 0.5< 0.5Anthracene0.5mg/kg0.7< 0.5	Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene         0.5         mg/kg         0.7         < 0.5         < 0.5         < 0.5           Benz(a)anthracene         0.5         mg/kg         < 2	Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene         0.5         mg/kg         <2         <0.5         <0.5         <0.5           Benzo(a)pyrene         0.5         mg/kg         <2	Anthracene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene         0.5         mg/kg         < 2         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5	Benz(a)anthracene	0.5	mg/kg	< 2	< 0.5	< 0.5	< 0.5
Benzo(b8)/filloranthene***         0.5         mg/kg $< 2$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$ <td></td> <td>0.5</td> <td>mg/kg</td> <td>&lt; 2</td> <td>&lt; 0.5</td> <td>&lt; 0.5</td> <td>&lt; 0.5</td>		0.5	mg/kg	< 2	< 0.5	< 0.5	< 0.5
Benzo(g.n.))perylene         0.5         mg/kg         < 2         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5	Benzo(b&j)fluoranthene ¹⁰⁷	0.5	mg/kg	< 2	< 0.5	< 0.5	< 0.5
Benzo(k)iluorantinene         0.5         mg/kg         <2         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5 </td <td>Benzo((g.n.l))perviene</td> <td>0.5</td> <td>mg/kg</td> <td>&lt; 2</td> <td>&lt; 0.5</td> <td>&lt; 0.5</td> <td>&lt; 0.5</td>	Benzo((g.n.l))perviene	0.5	mg/kg	< 2	< 0.5	< 0.5	< 0.5
Chrysene         0.5         Ing/kg         < 2         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5 <th< td=""><td>Chrysene</td><td>0.5</td><td>mg/kg</td><td>&lt;2</td><td>&lt; 0.5</td><td>&lt; 0.5</td><td>&lt; 0.5</td></th<>	Chrysene	0.5	mg/kg	<2	< 0.5	< 0.5	< 0.5
Diberiz(a.tr)antifiadene         0.5         Intg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0	Dihanz(a h)anthracana	0.5	mg/kg	< 2	< 0.5	< 0.5	< 0.5
Hudralitiene       0.3       Hig/kg       3.5       < 0.5       < 0.5       < 0.5         Fluorene       0.5       mg/kg       < 0.5       state       < 0.5       < 0.5       < 0.5       < 0.5         Indeno(1.2.3-cd)pyrene       0.5       mg/kg       < 2       < 0.5       < 0.5       < 0.5       < 0.5         Naphthalene       0.5       mg/kg       < 0.5       mg/kg       3.5       < 0.5       < 0.5       < 0.5         Phenanthrene       0.5       mg/kg       3.5       < 0.5       < 0.5       < 0.5       < 0.5         Pyrene       0.5       mg/kg       3.6       < 0.5       < 0.5       < 0.5       < 0.5         Total PAH*       0.5       mg/kg       11.6       < 0.5       < 0.5       < 0.5       < 0.5         2-Fluorobiphenyl (surr.)       1       %       135       134       132       132         p-Terphenyl-d14 (surr.)       1       %       INT       INT       INT       INT		0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indefine       0.5       Ing/kg       < 0.5       < 0.5       < 0.5       < 0.5       < 0.5         Indeno(1.2.3-cd)pyrene       0.5       mg/kg       < 2	Eluoropo	0.5	mg/kg	5.0	< 0.5	< 0.5	< 0.5
Naphthalene         0.5         mg/kg         < 2         < 0.5         < 0.5         < 0.5           Phenanthrene         0.5         mg/kg         3.5         < 0.5	Indeno(1.2.3-cd)ovrepe	0.5	ma/ka	~ 0.0	~ 0.5	~ 0.5	~ 0.5
Napitiliareire         0.5         Ing/kg         <0.5         K0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5	Nanhthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene         0.5         mg/kg         3.6         < 0.5         < 0.5         < 0.5           Total PAH*         0.5         mg/kg         11.6         < 0.5	Phenanthrene	0.5	mg/kg	<u> </u>	< 0.5	< 0.5	< 0.5
Total PAH*         0.5         mg/kg         0.6         0.6         0.7           2-Fluorobiphenyl (surr.)         1         %         135         134         132         132           p-Terphenyl-d14 (surr.)         1         %         INT         INT         INT         INT	Pyrene	0.5	ma/ka	3.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)         1         %         135         134         132         132           p-Terphenyl-d14 (surr.)         1         %         INT         INT         INT         INT	Total PAH*	0.5	ma/ka	11.6	< 0.5	< 0.5	< 0.5
p-Terphenyl-d14 (surr.) 1 % INT INT INT INT	2-Fluorobiphenyl (surr.)	1	%	135	134	132	132
	p-Terphenyl-d14 (surr.)	1	%	INT	INT	INT	INT



Client Sample ID			BH5/0.5-0.6	BH6/0.4-0.5	BH7/0.3-0.4	BH8/0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50167	S21-Ma50168	S21-Ma50169	S21-Ma50170
Date Sampled			Mar 25, 2021	Mar 25, 2021	Mar 25, 2021	Mar 25, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	INT	INT	INT	INT
Tetrachloro-m-xylene (surr.)	1	%	INT	141	136	127
Heavy Metals						
Arsenic	2	mg/kg	9.2	7.1	6.0	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	30	16	26	32
Copper	5	mg/kg	19	19	19	20
Lead	5	mg/kg	26	23	24	33
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	15	13	19	13
Zinc	5	mg/kg	47	52	72	48
% Moisture	1	%	12	11	12	15



Client Sample ID			BH9/0.6-0.7	BH10/0.6-0.7	BH11/0.5-0.6	BH12/0.25-0.35
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50171	S21-Ma50172	S21-Ma50173	S21-Ma50174
Date Sampled			Mar 25, 2021	Mar 25, 2021	Mar 25, 2021	Mar 24, 2021
	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit				
TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
TRH C10-C14	20	ma/ka	< 20	< 40	< 40	< 20
TRH C15-C28	50	ma/ka	< 50	< 50	< 50	110
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	110
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	95	86	96
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	120
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	120
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	71	50	89	51
p-Terphenyl-d14 (surr.)	1	%	103	99	115	109



Client Sample ID				RH10/0 6-0 7	BH11/0 5-0 6	BH12/0 25-0 25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma501/1	S21-Ma501/2	S21-Ma50173	S21-Ma50174
Date Sampled			Mar 25, 2021	Mar 25, 2021	Mar 25, 2021	Mar 24, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	INT	INT	INT	INT
Tetrachloro-m-xylene (surr.)	1	%	72	66	69	67
Heavy Metals						
Arsenic	2	mg/kg	9.7	14	11	12
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	13	18	14
Copper	5	mg/kg	43	49	24	59
Lead	5	mg/kg	29	36	36	33
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	8.3	30	7.6	28
Zinc	5	mg/kg	43	160	45	120
% Moisture	1	%	12	8.5	18	11



Sample Matrix         Soil
Eurofins Sample No.         S21-Ma50175         S21-Ma50176         S21-Ma50177
Date Sampled         Mar 25, 2021         Mar 25, 2021<
Test/Reference         LOR         Unit         Initial 20, 2011         Initial 20
Total Recoverable Hydrocarbons - 1999 NEPM Fractions         Image: Construction of the constr
TRH C6-C9         20         mg/kg         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20
TRH C10-C14         20         mg/kg         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20         < 20
TRH C15-C28 50 50 50 50 50 50 50
TRH C29-C36     50     mg/kg     < 50     < 50     < 50
TRH C10-C36 (Total)     50     mg/kg     < 50     < 50     < 50
BTEX
Benzene 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Folderic         O.1         mg/kg         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1 <t< td=""></t<>
Entrybelizerie         0.1         mg/kg         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1
Original         O.1         Ingring         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1
Ayienes - Iotal         0.5         Ingrkg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5
Total Recoverable Hydrocarbons - 2013 NEPM Fractions
$\frac{1}{100} \frac{1}{100} \frac{1}$
$\frac{11(1100-010)}{20} = \frac{20}{100} = \frac{20}{20} = \frac{20}$
TRH >C10-C16         50         mg/kg         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50         < 50
$\frac{11 (1 \ge 0.0 \le 10)}{11 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \le 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge 0.0 \le 10)} = \frac{11 (1 \ge 0.0 \le 10)}{10 (1 \ge$
$\frac{1100}{100} = \frac{100}{100} =$
TRH > C34-C40         100         mg/kg         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100
TRH >C10-C10 (total)*         100         mg/kg         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100         < 100
Polycyclic Aromatic Hydrocarbons
1000000000000000000000000000000000000
Benzo(a)pyrene TEQ (lower bound) * 0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5
Benzo(a)pyrene TEQ (medium bound)         0.5         mg/kg         0.0         0.0         0.0         0.0           Benzo(a)pyrene TEQ (medium bound) *         0.5         mg/kg         1.2         1.2         1.2         1.2
Acenaphthene $0.5$ mg/kg $-0.5$ $-0.5$ $-0.5$
Acenaphthene         0.5         mg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5
Anthracene $0.5$ mg/kg $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$
$\frac{1}{10000000000000000000000000000000000$
Benzo(a) pyrepe $0.5 \text{ mg/kg} < 0.5 < 0.5 < 0.5 < 0.5$
Benzo(b&i)fluoranthene ^{N07} $0.5$ mg/kg $< 0.5$ $< 0.5$ $< 0.5$
Benzo(a, b, i)pervlene $0.5$ mg/kg $< 0.5$ $< 0.5$ $< 0.5$ $< 0.5$
Benzo(k)fluoranthene $0.5$ mg/kg $< 0.5$ $< 0.5$ $< 0.5$
$\frac{1}{2} \frac{1}{12} $
Dibenz(a b)anthracene $0.5$ mg/kg $< 0.5$ $< 0.5$ $< 0.5$
Electric field in the set of the
Protection $0.5$ mg/kg $< 0.5$ $< 0.5$ $< 0.5$ Eluorene $0.5$ $mg/kg$ $< 0.5$ $< 0.5$ $< 0.5$
Indeno(12.3-cd)pyrene 0.5 mg/kg < 0.5 < 0.5 < 0.5
Naphthalene $0.5 \text{ mg/kg} < 0.5 < 0.5 < 0.5 < 0.5$
Phenanthrene         0.5         mg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5
Pyrene         0.5         mg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5
Total PAH*         0.5         mg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5
2-Fluorobiphenyl (surr.) 1 % 65 68 62 59
p-Terphenyl-d14 (surr.) 1 % 92 118 102 110



		1		1	1	1
Client Sample ID			BH13/0.45-0.55	BH14/1.4-1.5	BH15/0.55-0.65	BH16/0.55-0.65
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50175	S21-Ma50176	S21-Ma50177	S21-Ma50178
Date Sampled			Mar 25, 2021	Mar 25, 2021	Mar 25, 2021	Mar 25, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	143	INT	144	INT
Tetrachloro-m-xylene (surr.)	1	%	77	80	68	72
Heavy Metals						
Arsenic	2	mg/kg	6.8	8.8	8.3	25
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	24	35	13
Copper	5	mg/kg	87	28	62	45
Lead	5	mg/kg	36	41	30	38
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	55	13	26	59
Zinc	5	mg/kg	250	47	130	400
% Moisture	1	%	11	14	12	12



Client Sample ID			BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50179	S21-Ma50180	S21-Ma50181	S21-Ma50182
Date Sampled			Mar 25, 2021	Mar 24, 2021	Mar 24, 2021	Mar 25, 2021
	LOP	Lloit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit				
	20	ma/ka	< 20	< 20	< 20	~ 20
TRH C10-C14	20	ma/ka	< 20	< 20	< 20	< 20
TRH C15-C28	50	ma/ka	< 50	< 50	< 50	< 50
TRH C29-C36	50	ma/ka	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	ma/ka	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
m&n-Xylenes	0.1	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
	0.2	ma/ka	< 0.2	< 0.1	< 0.1	< 0.1
Xvlenes - Total*	0.1	ma/ka	< 0.1	< 0.3	< 0.1	< 0.1
4-Bromofluorobenzene (surr.)	1	<u>%</u>	92	88	61	77
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	70	02	00		
Naphthalene ^{N02}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	ma/ka	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	ma/ka	< 20	< 20	< 20	< 20
TRH >C10-C16	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C10-C16 less Nanhthalene (E2) ^{N01}	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C16-C34	100	ma/ka	< 100	< 100	< 100	< 100
TRH >C34-C40	100	ma/ka	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	ma/ka	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	100	mg/kg				(100
Benzo(a)pyrene TEO (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	ma/ka	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (incertain bound) *	0.5	ma/ka	1.2	12	1.2	1.2
Acenaphthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	68	66	68	58
p-Terphenyl-d14 (surr.)	1	%	92	83	87	92



			1	1		1
Client Sample ID			BH17/0.5-0.65	BH18/0.6-0.75	BH19/0.16-0.25	BH20/0.15-0.25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50179	S21-Ma50180	S21-Ma50181	S21-Ma50182
Date Sampled			Mar 25, 2021	Mar 24, 2021	Mar 24, 2021	Mar 25, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	135	89	109	107
Tetrachloro-m-xylene (surr.)	1	%	71	90	90	87
Heavy Metals						
Arsenic	2	mg/kg	6.7	2.4	4.5	8.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	13	< 5	14	19
Copper	5	mg/kg	51	11	37	34
Lead	5	mg/kg	32	7.9	46	24
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	10	< 5	10	12
Zinc	5	mg/kg	54	16	250	52
% Moisture	1	%	13	11	16	15



Client Sample ID			DS1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50184	S21-Ma50186	S21-Ma50187
Date Sampled			Mar 24, 2021	Mar 24, 2021	Mar 24, 2021
Test/Reference	LOR	Unit			, i
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Cint			
TRH C6-C9	20	ma/ka	< 20	-	-
TRH C10-C14	20	mg/kg	22	-	-
TRH C15-C28	50	mg/kg	110	-	-
TRH C29-C36	50	mg/kg	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	132	-	-
BTEX	•				
Benzene	0.1	mg/kg	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	INT	92	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-
TRH >C16-C34	100	mg/kg	130	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	130	-	-
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	102	-	-
p-Terphenyl-d14 (surr.)	1	%	92	-	-



Client Sample ID			DS1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Ma50184	S21-Ma50186	S21-Ma50187
Date Sampled			Mar 24, 2021	Mar 24, 2021	Mar 24, 2021
Test/Reference	LOR	Unit			
Organochlorine Pesticides	LOIN	Onit			
Chlordanos Total	0.1	ma/ka	< 0.1		
	0.1	mg/kg	< 0.05	-	-
4.4 - DDD	0.05	mg/kg	< 0.05	-	-
	0.05	mg/kg	< 0.05	-	-
	0.05	mg/kg	< 0.05	-	-
	0.05	mg/kg	< 0.05		
h-BHC	0.05	mg/kg	< 0.05		
d-BHC	0.05	mg/kg	< 0.05	_	
Dieldrin	0.05	mg/kg	< 0.05		
	0.05	mg/kg	< 0.05		
Endosulfan II	0.05	mg/kg	< 0.05		
Endosulfan sulphate	0.05	mg/kg	< 0.05		
Endrin	0.05	mg/kg	< 0.05	_	_
Endrin aldebyde	0.05	mg/kg	< 0.05		
Endrin ketone	0.05	mg/kg	< 0.05		
	0.05	mg/kg	< 0.05	-	-
Hostochlor	0.05	mg/kg	< 0.05	-	-
Heptachlor opovide	0.05	mg/kg	< 0.05	-	-
Heyachlorobenzene	0.05	mg/kg	< 0.05	-	-
Mothovychlor	0.05	mg/kg	< 0.03	-	-
Toyanhana	0.2	mg/kg	< 0.2		
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05		
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05		
Vic EPA IWPG 621 OCP (Total)*	0.05	mg/kg	< 0.03		
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2		
Dibuty/chlorendate (surr.)	1	111g/Kg %	125		
Tetrachloro-m-xylene (surr.)	1	/0 %	90	_	_
Heavy Metals	•	70			
	2	ma/ka	6.5		
Cadmium	0.4	mg/kg	0.5	-	-
Chromium	5	mg/kg	15	-	-
Copper	5	mg/kg	45		
	5	ma/ka	26	_	_
Mercury	01	ma/ka	< 0.1	_	_
Nickel	5	ma/ka	19	_	_
Zinc	5	mg/kg	84	_	_
	0	mg/kg	04		
% Moisture	1	%	14	_	_
Total Recoverable Hydrocarbons		70			
Naphthalene	1	%	-	-	81
BTEX					
Benzene	1	%	-	-	94
Ethylbenzene	1	%	-	-	94
m&p-Xylenes	1	%	-	-	92
o-Xylene	1	%	-	-	91
Toluene	1	%	-	-	95
Xylenes - Total	1	%	-	-	91
4-Bromofluorobenzene (surr.)	1	%	-	-	94


### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 01, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Apr 01, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Apr 01, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Mar 26, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi				Australia													New Zealand	
ABN: 5	V: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofi				Melbourne    Sydney    Bi      6 Monterey Road    Unit F3, Building F    1/:      Dandenong South VIC 3175    16 Mars Road    Mi      Phone : +61 3 8564 5000    Lane Cove West NSW 2066    PI      NATA # 1261    Phone : +61 2 9900 8400    N.      om    Site # 1254 & 14271    NATA # 1261 Site # 18217					Brisbane    Perth      1/21 Smallwood Place    2/91 Leach Highway      Murarrie QLD 4172    Kewdale WA 6105      Phone : +61 7 3902 4600    Phone : +61 8 9251 9600      NATA # 1261 Site # 20794    NATA # 1261      Site # 23736    Site # 23736					ch Highway WA 6105 -61 8 9251 9600 -261 736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290	
Co Ad	mpany Name: dress:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102	P/L I 3, 2309/4 Da	aydream St			O R( Pl Fa	rder I eport hone: ax:	No.: #:		PO447 78330 02 997 02 997	73 TM 5 79 172 79 122	22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Pro Pro	oject Name: oject ID:	ST MARY D 2101028	SI														Eurofins Analytical	Services Manager :	Ursula Long
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene				
Neib	ourne Laborato	NATA Site	# 1254 & 142	271		v	- v	×	v	v	v	v	v	v	v	1			
Brist	ane Laboratory	- NATA Site #	10217 £ 20794			~		^			^			^		-			
Perti	h Laboratory - N	ATA Site # 23	736													-			
Mavf	ield I aboratory		150						1							1			
Exte	rnal Laboratory															1			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	BH1/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50163								х	Х		-			
2	BH2/0.2-0.3	Mar 24, 2021		Soil	S21-Ma50164								Х	Х		-			
3	BH3/0.2-0.35	Mar 25, 2021		Soil	S21-Ma50165		<u> </u>		<u> </u>		<u> </u>		Х	Х		-			
4	BH4/0.5-0.6	Mar 25, 2021		Soil	S21-Ma50166								X	Х		4			
5	BH5/0.5-0.6	Mar 25, 2021		Soil	S21-Ma50167								X	Х		4			
6	BH6/0.4-0.5	Mar 25, 2021		Soil	S21-Ma50168				-				X	Х	-	-			
7	BH7/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50169				-				X	Х	-	-			
8	BH8/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50170								X	Х		-			
9	BH9/0.6-0.7	Mar 25, 2021		Soil	S21-Ma50171								Х	Х		]			

Australia				Australia	stralia												New Zealand		
ABN: 50 005 085 521 web:	50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com.au			Meibourne    Sydney      6 Monterey Road    Unit F3, Building F      Dandenong South VIC 3175    16 Mars Road      Phone : +61 3 8564 5000    Lane Cove West NSW 2066      NATA # 1261    Phone : +61 2 9900 8400      n    Site # 1254 & 14271					8 1, 1066 P 0 N 17	Brisbane    Pern      1/21 Smallwood Place    2/91 Leach Highway      Murarie QLD 4172    Kewdale WA 6105      Phone : +61 7 3902 4600    Phone : +61 8 9251 9600      NATA # 1261 Site # 20794    NATA # 1261      Site # 23736    Site # 23736						Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone :: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	Geo-L Bld Q2 Warrie NSW 2	ogix P/L 2 Level 3, 23 wood 2102	09/4 Daydream St			O Ri Pi Fa	rder f eport none: ax:	No.: #:	  - 	PO447 78330 02 997 02 997	73 TM 5 79 172 79 122	22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM	
Project Name: Project ID:	ST M/ 21010	ARY DSI 28														Eurofins Analytica	l Services Manager :	Ursula Long	
		Sample	Detail		HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene					
Melbourne Laborate	ory - NAT	A Site # 125	64 & 14271																
Sydney Laboratory	- NATA S	ite # 18217			Х	X	Х	X	X	Х	X	Х	Х	X	4				
Brisbane Laborator	y - NATA	Site # 2079	4																
Perth Laboratory - I	NATA Site	e # 23736												_					
Mayfield Laboratory	/																		
External Laboratory	/   Mar 05 /	2024	0	C04 Mac 0470								×	v		4				
11 BH11/0.6-0.7	Mar 25, 2	2021	5011 Soil	S21-Ma50172										_	4				
12 BH12/0.25- 0.35	Mar 24, 2	2021	Soil	S21-Ma50173								x	x		-				
13 BH13/0.45- 0.55	Mar 25, 2	2021	Soil	S21-Ma50175								х	х						
14 BH14/1.4-1.5	Mar 25, 2	2021	Soil	S21-Ma50176								Х	Х		1				
15 BH15/0.55- 0.65	Mar 25, 2	2021	Soil	S21-Ma50177								x	x						
16 BH16/0.55- 0.65	Mar 25, 2	2021	Soil	S21-Ma50178								х	х						
17 BH17/0.5-0.65	Mar 25, 2	2021	Soil	S21-Ma50179								Х	Х						

🔅 eurofins 🗉 🛛 🔺				Australia										New Zealand					
ABN: 50 005 085 521 web	Environment Testin					Melbourne    Sydney      6 Monterey Road    Unit F3, Building F      Dandenong South VIC 3175    16 Mars Road      Phone : +61 3 8564 5000    Lane Cove West NSW 2066      NATA # 1261    Phone : +61 2 9900 8400      m    Site # 1254 & 14271						allwood QLD 4 ⁻ -61 7 39 1261 Sit	Place 172 902 460 e # 207	0 F 94 F	Perth 2/91 Lead Kewdale Phone : + NATA # 1 Site # 233	ch Highway WA 6105 +61 8 9251 9600 1261 736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
Company Name: Address:	Geo-Lo Bld Q2 Warriev NSW 2	ogix P/ Level wood 102	′L 3, 2309/4 Dayc	Iream St			O Ro Pl Fa	rder I eport none: ax:	No.: #:	-	PO447 78330 02 997 02 997	73 TM 5 79 172 79 122	22 22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	РМ
Project Name: Project ID:	ST MAI 210102	RY D8 28	SI														Eurofins Analytical	Services Manager :	Jrsula Long
Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene				
Melbourne Labora	tory - NATA	Site	# 1254 & 14271					×				×	×	×		-			
Sydney Laborator	Y - NATA SI	te # 10	8217			X	X	X	X	X	X	X	X	X		_			
Brisbane Laborato	NATA Sito	5110 # # 227	20794													-			
Mayfield Laborator	INATA SILE	# 231	30				+		+		+					4			
External Laborator	rv										1					-			
18 BH18/0.6-0.75	5 Mar 24, 2	021	s	oil	S21-Ma50180								x	x		-			
19 BH19/0.16- 0.25	Mar 24, 2	021	S	oil	S21-Ma50181								x	x					
20 BH20/0.15- 0.25	Mar 25, 2	021	s	oil	S21-Ma50182								х	х					
21 RIN1	Mar 25, 2	021	V	Vater	S21-Ma50183		X	Х	X	X	Х					1			
22 DS1	Mar 24, 2	021	s	oil	S21-Ma50184				<u> </u>				X	Х		1			
23 TRIP BLANK	Mar 24, 2	021	s	oil	S21-Ma50186				<u> </u>			X				_			
24 TRIP SPIKE	Mar 24, 2	021	s	oil	S21-Ma50187				<u> </u>						X	_			
25 TRIP SPIKE LAB	Mar 24, 2	021	s	ioil	S21-Ma50188										x				
26 BH2/0.0-0.1	Mar 24, 2	021	S	oil	S21-Ma50189	Х													

BN: 50 005 085 521 web: ww	Envi	ronment Testing	Melbourne	S	wdnov												
	w.eurofins.com.au	email: EnviroSales@eurofins.com	6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 75 1 Li P N	Init F3, E 6 Mars F ane Cov Phone : + IATA # 1	Building Road ve West 61 2 99 261 Sit	F NSW 2 900 8400 te # 182	8 1/ 066 P 0 N 17	risbane (21 Sma lurarrie ( hone : + ATA # 1	allwood QLD 41 -61 7 39 1261 Sit	Place 172 902 4600 e # 2079	F 2 k 0 F 94 N S	Perth 2/91 Leac Kewdale V Phone : +6 NATA # 12 Site # 237	h Highway WA 6105 61 8 9251 9600 261 ′36	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: - +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone: 0800 856 450 IANZ # 1290
Company Name: Address:	Geo-Logix P/ Bld Q2 Level Warriewood NSW 2102	L 3, 2309/4 Daydream St			Oi Re Pi Fa	rder N eport none: ax:	No.: #:	F 7 0 0	PO447 78330 )2 997 )2 997	73 TM 5 79 172 79 122	22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Project Name: Project ID:	ST MARY DS 2101028	51													Eurofins Analytical	Services Manager : I	Jrsula Long
		ногр	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene						
Melbourne Laboratory	/ - NATA Site	# 1254 & 14271															
Sydney Laboratory - I	NATA Site # 18	3217		Х	X	х	X	X	х	X	Х	Х	X				
Brisbane Laboratory	NATA Site #	20794															
Perth Laboratory - NA	TA Site # 237	36															
Mayfield Laboratory																	
	lar 25 2021	Soil	S21-Ma50190	x													
28 BH8/0 7-0 8 N	lar 25, 2021	Soil	S21-Ma50190	<u>х</u>									+				
29 BH12/0.35- 0.45	lar 24, 2021	Soil	S21-Ma50192	X													
80 BH14/0.2-0.35 N	lar 25, 2021	Soil	S21-Ma50193	Х													
BH14/1.5-1.6 N	lar 25, 2021	Soil	S21-Ma50194	Х													
32 BH18/0.2-0.3 N	lar 24, 2021	Soil	S21-Ma50195	Х													
33 BH18/0.45- N 0.55	lar 24, 2021	Soil	S21-Ma50196	Х													
Test Counts	I			8	1	1	1	1	1	1	21	21	2				



### Internal Quality Control Review and Glossary

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

ABN : 50 005 085 521 Telephone: +61 2 9900 8400



**Quality Control Results** 

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			· · · · ·		1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			1 1			
BTEX						
Benzene	ma/ka	< 0.1		0.1	Pass	
Toluene	ma/ka	< 0.1		0.1	Pass	
Fthylbenzene	ma/ka	< 0.1		0.1	Pass	
m&n-Xylenes	ma/ka	< 0.2		0.2	Pass	
o-Xvlene	ma/ka	< 0.1		0.1	Pass	
Xylenes - Total*	ma/ka	< 0.1		0.1	Pass	
Method Blank	mg/ng	< 0.0		0.0	1 455	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				1		
Nanhthalene	ma/ka	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	ma/ka	< 100		100	Pass	
TRH >C34-C40	ma/ka	< 100		100	Pass	
Method Blank	iiig/kg	< 100		100	1 433	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		•				
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/ka	< 0.05		0.05	Pass	
d-BHC	mg/ka	< 0.05		0.05	Pass	
Dieldrin	mg/ka	< 0.05		0.05	Pass	
Endosulfan I	mg/ka	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	88	70-130	Pass	
TRH C10-C14	%	122	70-130	Pass	
LCS - % Recovery				•	
BTEX					
Benzene	%	91	70-130	Pass	
Toluene	%	96	70-130	Pass	
Ethylbenzene	%	96	70-130	Pass	
m&p-Xylenes	%	95	70-130	Pass	
o-Xylene	%	97	70-130	Pass	
Xylenes - Total*	%	96	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	115	70-130	Pass	
TRH C6-C10	%	84	70-130	Pass	
TRH >C10-C16	%	113	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	-				
Acenaphthene	%	92	70-130	Pass	
Acenaphthylene	%	105	70-130	Pass	
Anthracene	%	92	70-130	Pass	
Benz(a)anthracene	%	105	70-130	Pass	
Benzo(a)pyrene	%	106	70-130	Pass	
Benzo(b&j)fluoranthene	%	103	70-130	Pass	
Benzo(g.h.i)perylene	%	117	70-130	Pass	
Benzo(k)fluoranthene	%	103	70-130	Pass	
Chrysene	%	103	70-130	Pass	
Dibenz(a.h)anthracene	%	99	70-130	Pass	
Fluoranthene	%	79	70-130	Pass	
Fluorene	%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	103	70-130	Pass	
Naphthalene	%	95	70-130	Pass	
Phenanthrene	%	76	70-130	Pass	



Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Pyrene			%	86	70-130	Pass	
LCS - % Recovery							
Organochlorine Pesticides							
Chlordanes - Total			%	74	70-130	Pass	
4.4'-DDD			%	99	70-130	Pass	
4.4'-DDE			%	70	70-130	Pass	
4.4'-DDT			%	75	70-130	Pass	
a-BHC			%	81	70-130	Pass	
Aldrin			%	77	70-130	Pass	
b-BHC			%	82	70-130	Pass	
d-BHC			%	75	70-130	Pass	
Dieldrin			%	100	70-130	Pass	
Endosulfan I			%	93	70-130	Pass	
Endosulfan II			%	86	70-130	Pass	
Endosulfan sulphate			%	102	70-130	Pass	
Endrin			%	75	70-130	Pass	
Endrin aldehyde			%	79	70-130	Pass	
Endrin ketone			%	118	70-130	Pass	
g-BHC (Lindane)			%	83	70-130	Pass	
Heptachlor			%	70	70-130	Pass	
Heptachlor epoxide			%	115	70-130	Pass	
Hexachlorobenzene			%	107	70-130	Pass	
Methoxychlor			%	81	70-130	Pass	
LCS - % Recovery				•			
Heavy Metals							
Arsenic			%	105	80-120	Pass	
Cadmium			%	104	80-120	Pass	
Chromium			%	107	80-120	Pass	
Copper			%	106	80-120	Pass	
Lead			%	111	80-120	Pass	
Mercury			%	109	80-120	Pass	
Nickel			%	104	80-120	Pass	
Zinc			%	101	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbons	6			Result 1			
Acenaphthene	N21-Ma48415	NCP	%	83	70-130	Pass	
Acenaphthylene	N21-Ma48415	NCP	%	85	70-130	Pass	
Anthracene	N21-Ma48415	NCP	%	92	70-130	Pass	
Benz(a)anthracene	N21-Ma48415	NCP	%	78	70-130	Pass	
Benzo(a)pyrene	N21-Ma48415	NCP	%	86	70-130	Pass	
Benzo(b&j)fluoranthene	N21-Ma48415	NCP	%	93	70-130	Pass	
Benzo(g.h.i)perylene	N21-Ma48415	NCP	%	70	70-130	Pass	
Benzo(k)fluoranthene	N21-Ma48415	NCP	%	84	70-130	Pass	
Chrysene	N21-Ma48415	NCP	%	79	70-130	Pass	
Dibenz(a.h)anthracene	N21-Ma48415	NCP	%	81	70-130	Pass	
Fluoranthene	N21-Ma48415	NCP	%	83	70-130	Pass	
Fluorene	N21-Ma48415	NCP	%	83	 70-130	Pass	
Indeno(1.2.3-cd)pyrene	N21-Ma48415	NCP	%	82	70-130	Pass	
Naphthalene	N21-Ma48415	NCP	%	81	70-130	Pass	
Phenanthrene	N21-Ma48415	NCP	%	80	70-130	Pass	
Pyrene	N21-Ma48415	NCP	%	82	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chlordanes - Total	S21-Ma50539	NCP	%	95			70-130	Pass	
4.4'-DDD	S21-Ma50539	NCP	%	89			70-130	Pass	
4.4'-DDE	S21-Ma50539	NCP	%	86			70-130	Pass	
4.4'-DDT	S21-Ma50539	NCP	%	104			70-130	Pass	
a-BHC	S21-Ma50539	NCP	%	94			70-130	Pass	
Aldrin	S21-Ma50539	NCP	%	90			70-130	Pass	
b-BHC	S21-Ma50539	NCP	%	81			70-130	Pass	
d-BHC	S21-Ma50539	NCP	%	84			70-130	Pass	
Dieldrin	S21-Ma50539	NCP	%	90			70-130	Pass	
Endosulfan I	S21-Ma50539	NCP	%	88			70-130	Pass	
Endosulfan II	S21-Ma50539	NCP	%	93			70-130	Pass	
Endosulfan sulphate	S21-Ma50539	NCP	%	87			70-130	Pass	
Endrin	S21-Ma50539	NCP	%	104			70-130	Pass	
Endrin aldehyde	S21-Ma50539	NCP	%	93			70-130	Pass	
Endrin ketone	S21-Ma50539	NCP	%	105			70-130	Pass	
g-BHC (Lindane)	S21-Ma50539	NCP	%	101			70-130	Pass	
Heptachlor	S21-Ma50539	NCP	%	93			70-130	Pass	
Heptachlor epoxide	S21-Ma50539	NCP	%	93			70-130	Pass	
Hexachlorobenzene	S21-Ma50539	NCP	%	92			70-130	Pass	
Methoxychlor	S21-Ma50539	NCP	%	114			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S21-Ma50165	CP	%	77			70-130	Pass	
Spike - % Recovery				-				-	
BTEX	1			Result 1					
Benzene	S21-Ma50165	CP	%	75			70-130	Pass	
Toluene	S21-Ma50165	CP	%	82			70-130	Pass	
Ethylbenzene	S21-Ma50165	CP	%	83			70-130	Pass	
m&p-Xylenes	S21-Ma50165	CP	%	83			70-130	Pass	
o-Xylene	S21-Ma50165	CP	%	85			70-130	Pass	
Xylenes - Total*	S21-Ma50165	CP	%	83			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				_	
Naphthalene	S21-Ma50165	CP	%	87			70-130	Pass	
1RH C6-C10	S21-Ma50165	СР	%	11			70-130	Pass	
Spike - % Recovery				D 14				[	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions	0/	Result 1			70.400		
1RH C10-C14	S21-Ma50166	СР	%	127			70-130	Pass	
Spike - % Recovery		•		Devilia					
Total Recoverable Hydrocarbons -	2013 NEPWI Fract		0/	Result 1			70.120	Deee	
	521-10120100	CP	%	117			70-130	Pass	
Spike - % Recovery				Recult 1					
Arconic	\$21 Ma50170	CP	0/	104			75 125	Page	
Codmium	S21-Ma50170		/0 0/.	104			75-125	Pass	
Chromium	S21-Ma50170		70 0/	1120			75-125	Pass	
Copper	S21-Ma50170		70 0/2	03			75-125	Pass	
Lead	S21-Ma50170	CP	/u %	95			75-125	Page	
Mercury	S21-Ma50170		/0 0/2	125			75-125	Pace	
Nickel	S21-Ma50170	CP	/u %	123			75-125	Page	
Zinc	S21-Ma50170	CP	%	80			75-125	Page	
		04	/0				Accentance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S21-Ma50164	CP	mg/kg	< 20	< 20	<1	30%	Pass	



BTEX    Result 1    Result 2    RPD      Benzene    S21-Ma50164    CP    mg/kg    < 0.1    < 0.1    < 1    30%    Pass      Toluene    S21-Ma50164    CP    mg/kg    < 0.1    < 0.1    < 1    30%    Pass      Ethylbenzene    S21-Ma50164    CP    mg/kg    < 0.1    < 0.1    < 1    30%    Pass      m&p-Xylenes    S21-Ma50164    CP    mg/kg    < 0.2    < 0.2    < 1    30%    Pass      o-Xylene    S21-Ma50164    CP    mg/kg    < 0.1    < 0.1    < 1    30%    Pass      Xylenes - Total*    S21-Ma50164    CP    mg/kg    < 0.1    < 0.1    < 1    30%    Pass      Xylenes - Total*    S21-Ma50164    CP    mg/kg    < 0.3    < 0.3    < 1    30%    Pass      Duplicate    Total Recoverable Hydrocarbons - 2013 NEPM Eractions    Pacuit 1    Pacuit 2    PRD	
Benzene    S21-Ma50164    CP    mg/kg    < 0.1    < 1    30%    Pass      Toluene    S21-Ma50164    CP    mg/kg    < 0.1	
Toluene    S21-Ma50164    CP    mg/kg    < 0.1    < 1    30%    Pass      Ethylbenzene    S21-Ma50164    CP    mg/kg    < 0.1	
Ethylbenzene    S21-Ma50164    CP    mg/kg    < 0.1    < 1    30%    Pass      m&p-Xylenes    S21-Ma50164    CP    mg/kg    < 0.2	
m&p-Xylenes    S21-Ma50164    CP    mg/kg    < 0.2    < 0.2    < 1    30%    Pass      o-Xylene    S21-Ma50164    CP    mg/kg    < 0.1	
o-Xylene    S21-Ma50164    CP    mg/kg    < 0.1    < 1    30%    Pass      Xylenes - Total*    S21-Ma50164    CP    mg/kg    < 0.3	
Xylenes - Total*    S21-Ma50164    CP    mg/kg    < 0.3    < 1    30%    Pass      Duplicate    Total Pacoverable Hydrocarbons - 2013 NEPM Fractions	
Duplicate      Total Recoverable Hydrocarbons - 2013 NEPM Eractions    Popult 1    Popult 2    PPD	
Total Recoverable Hydrocarbons - 2013 NERM Eractions Popult 1 Popult 2 PPD	
Naphthalene    S21-Ma50164    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
TRH C6-C10    S21-Ma50164    CP    mg/kg    < 20    < 20    < 1    30%    Pass	
Duplicate	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions  Result 1  Result 2  RPD	
TRH C10-C14    S21-Ma50165    CP    mg/kg    < 20    < 1    30%    Pass	
TRH C15-C28    S21-Ma50165    CP    mg/kg    < 50    <1    30%    Pass	
TRH C29-C36    S21-Ma50165    CP    mg/kg    < 50    <1    30%    Pass	
Duplicate	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions  Result 1  Result 2  RPD	
TRH >C10-C16    S21-Ma50165    CP    mg/kg    < 50    <1    30%    Pass	
TRH >C16-C34    S21-Ma50165    CP    mg/kg    < 100    <1    30%    Pass	
TRH >C34-C40    S21-Ma50165    CP    mg/kg    < 100    <1    30%    Pass	
Duplicate	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions  Result 1  Result 2  RPD	
TRH C10-C14    S21-Ma50166    CP    mg/kg    < 20    < 1    30%    Pass	
TRH C15-C28    S21-Ma50166    CP    mg/kg    < 50    <1    30%    Pass	
TRH C29-C36    S21-Ma50166    CP    mg/kg    < 50    <1    30%    Pass	
Duplicate	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions  Result 1  Result 2  RPD	
TRH >C10-C16    S21-Ma50166    CP    mg/kg    < 50    < 1    30%    Pass	
TRH >C16-C34    S21-Ma50166    CP    mg/kg    < 100    <1    30%    Pass	
TRH >C34-C40    S21-Ma50166    CP    mg/kg    < 100    <1    30%    Pass	
Duplicate	
Polycyclic Aromatic Hydrocarbons Result 1 Result 2 RPD	
Acenaphthene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Acenaphthylene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Anthracene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Benz(a)anthracene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Benzo(a)pyrene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Benzo(b&j)fluoranthene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Benzo(g.h.i)perylene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Benzo(k)fluoranthene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Chrysene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Dibenz(a.h)anthracene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Fluoranthene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Fluorene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Indeno(1.2.3-cd)pyrene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Naphthalene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Phenanthrene    S21-Ma50166    CP    mg/kg    < 0.5    < 1    30%    Pass	
Pyrene    S21-Ma50166    CP    mg/kg    < 0.5    < 0.5    < 1    30%    Pass	
Duplicate	
Organochlorine Pesticides Result 1 Result 2 RPD	
Chlordanes - Total    S21-Ma50166    CP    mg/kg    < 0.1    <1    30%    Pass	
4.4'-DDD    S21-Ma50166    CP    mg/kg    < 0.05    < 1    30%    Pass	
4.4'-DDE    S21-Ma50166    CP    mg/kg    < 0.05    < 1    30%    Pass	
4.4'-DDT    S21-Ma50166    CP    mg/kg    < 0.05    < 1    30%    Pass	



Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
a-BHC	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ
Endrin ketone	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ
g-BHC (Lindane)	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ
Heptachlor	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ
Heptachlor epoxide	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ
Hexachlorobenzene	S21-Ma50166	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Ma50166	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate					<b>D 1 D</b>				
	004 M-50400	0.0	0/	Result 1	Result 2	RPD	0.001/	Dese	
% Moisture	S21-Ma50166	CP	%	12	13	9.0	30%	Pass	
				Deput 1	Deput 2				
	S21 MaE0160		mallea	Result 1	Result 2	42 42	200/	Fail	015
Arsenic	S21-Ma50169		mg/kg	6.0	9.3	43	30%	Fall	Q15
Chromium	S21-Ma50169		mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Coppor	S21-Ma50169		mg/kg	10	23	24	30%	Fass	015
Lood	S21-Ma50169		mg/kg	24	20	19	30%	Page	<u> </u>
Mercury	S21-Ma50169		mg/kg	< 0.1	<u> </u>	-1	30%	Pass	
Nickel	S21-Ma50169		mg/kg	10	17	12	30%	Pass	
Zinc	S21-Ma50109	CP	mg/kg	72	69	4.0	30%	Pass	
Dunlicate	02111030103	01	iiig/kg	12	05		5070	1 433	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S21-Ma50174	CP	ma/ka	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Ma50174	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Ma50174	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Ma50174	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Ma50174	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Ma50174	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Ma50174	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S21-Ma50174	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Ma50174	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				1					
				Result 1	Result 2	RPD			
% Moisture	S21-Ma50176	CP	%	14	17	15	30%	Pass	
Duplicate				1	1				
Heavy Metals	1		1	Result 1	Result 2	RPD			
Arsenic	S21-Ma50179	CP	mg/kg	6.7	6.5	2.0	30%	Pass	
Cadmium	S21-Ma50179	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Ma50179	CP	mg/kg	13	13	1.0	30%	Pass	<u> </u>
Copper	S21-Ma50179	CP	mg/kg	51	48	6.0	30%	Pass	
Lead	S21-Ma50179	CP	mg/kg	32	38	20	30%	Pass	L



Duplicate									
Heavy Metals	_			Result 1	Result 2	RPD			
Mercury	S21-Ma50179	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Ma50179	CP	mg/kg	10	11	7.0	30%	Pass	
Zinc	S21-Ma50179	СР	mg/kg	54	55	3.0	30%	Pass	



### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

### **Qualifier Codes/Comments**

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised by:

Ursula Long Andrew Sullivan John Nguyen Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



### Certificate of Analysis

### **Environment Testing**

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	
Report	
Project name	
Project ID	

Received Date

**783305-W** ST MARY DSI 2101028 Mar 26, 2021

Ted Lilly

Client Sample ID			RIN1
Sample Matrix			Water
Eurofins Sample No.			S21-Ma50183
Date Sampled			Mar 25, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions		
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	116
p-Terphenyl-d14 (surr.)	1	%	132
Organochlorine Pesticides			
Chlordanes - Total	0.002	mg/L	< 0.002
4.4'-DDD	0.0001	mg/L	< 0.0001
4.4'-DDE	0.0001	mg/L	< 0.0001
4.4'-DDT	0.0001	mg/L	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001



Client Sample ID			RIN1
Sample Matrix			Water
Eurofins Sample No.			S21-Ma50183
Date Sampled			Mar 25, 2021
Test/Reference	LOR	Unit	
Organochlorine Pesticides	-		
Endosulfan II	0.0001	mg/L	< 0.0001
Endosulfan sulphate	0.0001	mg/L	< 0.0001
Endrin	0.0001	mg/L	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001
Methoxychlor	0.0002	mg/L	< 0.0002
Toxaphene	0.001	mg/L	< 0.001
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002
Dibutylchlorendate (surr.)	1	%	120
Tetrachloro-m-xylene (surr.)	1	%	128
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions		
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Mar 26, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Mar 26, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Mar 26, 2021	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Mar 26, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8 filtered	Sydney	Mar 29, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters. Soils & Sediments by ICP-MS			

	eurofi	Australia												New Zealand					
ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com.au email: EnviroSales@eurofins.com.eu email: EnviroSales@eurofins.com.eu email:					Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	5 75 1 1 P N	<b>Sydney</b> Init F3, E 6 Mars I ane Cov Phone : - IATA # 2	Building Road ve West -61 2 99	F NSW 2 900 840 te # 182	8 1 0666 P 0 N 17	V21 Sma /21 Sma /urarrie Phone : + IATA # 2	allwood QLD 4 61 7 39 1261 Sit	Place 172 902 460 te # 207	00 F 794 f	Perth 2/91 Lead Kewdale Phone : 4 NATA # 1 Site # 23	ch Highway WA 6105 ⊧61 8 9251 9600 1261 736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7679 Phone : 0800 856 450 IANZ # 1290
Co Ad	mpany Name: dress:	Geo-Logix Bld Q2 Lev Warriewood NSW 2102	P/L el 3, 2309/4 Da d	ydream St			O Re Pl Fa	rder f eport none: ax:	No.: #:		PO447 78330 02 997 02 997	73 TM 5 79 172 79 122	1 22 22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Pro Pro	oject Name: oject ID:	ST MARY I 2101028	DSI														Eurofins Analytical	Services Manager : I	Jrsula Long
		s	ample Detail			HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene				
Melb	ourne Laborato	ry - NATA Site	e # 1254 & 142	271		×		V			×	×	×	V		-			
Syar	ley Laboratory -		18217			X		~	×	×	×	<u> </u>	×		<u> </u>	-			
Port	balle Laboratory - N	ATA Sito # 23	# 20794						+							4			
Mav	ield Laboratory		750													1			
Exte	rnal Laboratory															-			
No	Sample ID	Sample Date	e Sampling Time	Matrix	LAB ID														
1	BH1/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50163								х	Х					
2	BH2/0.2-0.3	Mar 24, 2021		Soil	S21-Ma50164				<b> </b>				Х	Х		_			
3	BH3/0.2-0.35	Mar 25, 2021		Soil	S21-Ma50165								X	Х		1			
4	BH4/0.5-0.6	Mar 25, 2021		Soil	S21-Ma50166								X	Х		4			
5	BH5/0.5-0.6	Mar 25, 2021		Soil	S21-Ma50167								X	Х		4			
6	BH6/0.4-0.5	Mar 25, 2021		Soil	S21-Ma50168								X	Х		4			
7	BH7/0.3-0.4	Mar 25, 2021		Soil	S21-Ma50169								X	Х		4			
8	BH8/0.3-0.4	Mar 25, 2021	-	Soil	S21-Ma50170								X	Х		4			
9	BH9/0.6-0.7	Mar 25, 2021		Soil	S21-Ma50171								Х	Х					

🔅 eurofins 🛛				Australia													New Zealand	
ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com		Melbourne 6 Monterey Road Dandenong South VIC Phone : +61 3 8564 50 NATA # 1261 om Site # 1254 & 14271	U 3175 1 00 L F	Sydney Jnit F3, I 6 Mars ane Cov Phone : - NATA # 1	Building Road /e West +61 2 99	F NSW 2 900 840 te # 182	E 1 2066 F 0 N 217	V21 Sma /21 Sma /urarrie Phone : + IATA # ²	allwood QLD 4 61 7 39 1261 Sit	Place 172 902 460 e # 207	0   94	Perth 2/91 Lea Kewdale Phone : - NATA # Site # 23	nch Highway 9 WA 6105 +61 8 9251 9600 1261 8736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290		
Company Name: Address:	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream Warriewood NSW 2102 Project Name: ST MARY DSI Project ID: 2101028					O Ri Pi Fa	rder I eport hone: ax:	No.: #:	-	PO447 78330 02 997 02 997	73 TM 5 79 172 79 122	22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Project Name: Project ID:													Eurofins Analytical	Services Manager :	Ursula Long			
		HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene							
Melbourne Laborato	ory - NAT	A Site	# 1254 & 14271					ļ										
Sydney Laboratory	- NATA S	Site # 18	3217		X	X	X	X	X	X	X	X	Х	X	_			
Brisbane Laborator	y - NATA	Site # :	20794												-			
Perth Laboratory - N	NATA Site	e # 237:	36		-										-			
Mayfield Laboratory	/				-										-			
	Mar 25	2021	Soil	S21-Ma50172				-				×	×		-			
11 BH11/0 5-0 6	Mar 25	2021	Soil	S21-Ma50172		1						X	x		-			
12 BH12/0.25- 0.35	Mar 24, 1	2021	Soil	S21-Ma50174								x	x		-			
13 BH13/0.45- 0.55	Mar 25, 1	2021	Soil	S21-Ma50175								х	х					
14 BH14/1.4-1.5	Mar 25, 1	2021	Soil	S21-Ma50176		1						Х	Х		4			
15 BH15/0.55- 0.65	Mar 25, 1	2021	Soil	S21-Ma50177								x	x					
16 BH16/0.55- 0.65	Mar 25, 1	2021	Soil	S21-Ma50178								х	x		_			
17 BH17/0.5-0.65	Mar 25,	2021	Soil	S21-Ma50179								Х	Х					

🔅 eurofins 🛛						Australia													New Zealand	
	BN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com				esting	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1264 5 14271	S U 175 1 ) L P	Sydney      Unit F3, Building F      5    16 Mars Road      Lane Cove West NSW 2066      Phone : +61 2 9900 8400      NATA # 1261 Site # 18217					allwood QLD 4 61 7 39 1261 Sit	Place 172 902 460 ce # 207	0 F 94 F	Perth 2/91 Lea Kewdale Phone : - NATA # 22	ch Highway WA 6105 +61 8 9251 9600 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ADN: 50	0 005 085 521 Web: 1	www.euronns.c	om.au	email: EnviroSales@	euronns.com	Sile # 1254 & 14271	IN	IATA #	201 31	le # 162	17					5110 # 23	57.30			
Coi Ade	mpany Name: dress:			Order No.:    PO4473 TM    Receiption      Report #:    783305    Due:      Phone:    02 9979 1722    Prior      Fax:    02 9979 1222    Cont								Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM						
Pro Pro	oject Name: oject ID:	ST MAF 210102													Eurofins Analytica	Services Manager :	Ursula Long			
			HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene								
Melb	ourne Laborato	Dry - NATA	Site #	<u># 1254 &amp; 14271</u>			V		V	×	v	×	V	v	V		-			
Syan	ley Laboratory	- NATA SIL	e # 18	3217			X	X	X	X	X	X	X	X	X	X	-			
Borth	Laboratory - N	Y - NATA S	# 227	20794											<u> </u>		-			
Mayf	ield Laboratory	ATA Sile 7	+ 231	50													-			
Exter	rnal Laboratory	, ,															-			
18	BH18/0.6-0.75	Mar 24, 20	)21	S	oil	S21-Ma50180								x	x		1			
19	BH19/0.16- 0.25	Mar 24, 20	)21	S	oil	S21-Ma50181								X	x		-			
20	BH20/0.15- 0.25	Mar 25, 20	)21	S	bil	S21-Ma50182								х	х					
21	RIN1	Mar 25, 20	)21	W	ater	S21-Ma50183		X	Х	Х	Х	Х					4			
22	DS1	Mar 24, 20	)21	S	oil	S21-Ma50184								Х	Х		4			
23	TRIP BLANK	Mar 24, 20	)21	S	oil	S21-Ma50186							X				4			
24	TRIP SPIKE	Mar 24, 20	)21	S	oil	S21-Ma50187										X	4			
25	TRIP SPIKE LAB	Mar 24, 20	021	S	bil	S21-Ma50188										x				
26	BH2/0.0-0.1	Mar 24, 20	)21	S	oil	S21-Ma50189	Х													

BN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com		Australia													New Zealand		
		Melbourne 6 Monterey Road Dandenong South VIC 31: Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	5 U 75 16 L P N	ydney nit F3, B 6 Mars F ane Cov hone : + IATA # 1	Juilding Road re West -61 2 9 261 Sit	F t NSW 2 900 840 te # 182	8 1/ 066 P 0 N 17	risbane '21 Sma lurarrie ( hone : + ATA # 1	0 QLD 4' 61 7 39 261 Sit	Place 172 902 460 e # 207	2 K 0 P 94 N S	Perth /91 Leac Cewdale \ Phone : + IATA # 1 Site # 237	ch Highway WA 6105 61 8 9251 9600 261 736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102	가L 의 3, 2309/4 Daydream St I			Or R∉ Pł F₹	∵der N ∋port none: ax:	No.: #:	F 7 ( (	°O447 78330! )2 997 )2 997	73 TM 5 79 172 79 122	22				Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Project Name: Project ID:	ST MARY E 2101028	)SI													Eurofins Analytical	Services Manager :	Jrsula Long
	S	ample Detail		HOLD	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8 filtered	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	BTEX and Naphthalene	Moisture Set	Eurofins Suite B9	BTEX and Naphthalene				
Melbourne Laborator	y - NATA Site	e # 1254 & 14271															
Sydney Laboratory -	NATA Site #	18217		Х	X	Х	x	x	Х	х	х	Х	Х				
Brisbane Laboratory	- NATA Site	‡ 20794			'		<u> </u>	<u> </u>	ļ'								
Perth Laboratory - NA	ATA Site # 23	736			¹		<u> </u>	<u> </u>	ļ'								
Mayfield Laboratory					<u> </u> '	<b> </b>	┥	—									
External Laboratory					<u> </u> '	—	┿	—	<u> </u>								
27 BH8/0.5-0.6	Mar 25, 2021	Soil	S21-Ma50190	<u> </u>	<u> </u> '	──	──	──	<u> </u>								
28 BH8/0.7-0.8	Mar 25, 2021	Soil	S21-Ma50191	<u>X</u>	<u> </u> '	<u> </u>	+	<u> </u>	<u> </u>								
29  BH12/0.35-  1  0.45	war 24, 2021	501	521-Ma50192	Х													
30 BH14/0.2-0.35 I	Mar <u>25</u> , 2021	Soil	S21-Ma50193	Х													
31 BH14/1.5-1.6 I	Mar 25, 2021	Soil	S21-Ma50194	Х													
32 BH18/0.2-0.3 I	Mar 24, 2021	Soil	S21-Ma50195	Х													
33 BH18/0.45- I 0.55	Mar 24, 2021	Soil	S21-Ma50196	х													
						+		*									



### Internal Quality Control Review and Glossary

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066



### **Quality Control Results**

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons	_				
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		1	<b>I</b>		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C10-C14	%	98	70-130	Pass	
LCS - % Recovery		1			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	77	70-130	Pass	
Acenaphthylene	%	80	70-130	Pass	
Anthracene	%	75	70-130	Pass	
Benz(a)anthracene	%	76	70-130	Pass	
Benzo(b&j)fluoranthene	%	90	70-130	Pass	
Benzo(g.h.i)perylene	%	77	70-130	Pass	
Benzo(k)fluoranthene	%	75	70-130	Pass	
Chrysene	%	74	70-130	Pass	
Dibenz(a.h)anthracene	%	99	70-130	Pass	
Fluoranthene	%	77	70-130	Pass	
Fluorene	%	73	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	98	70-130	Pass	
Naphthalene	%	84	70-130	Pass	
Phenanthrene	%	85	70-130	Pass	
Pyrene	%	74	70-130	Pass	
LCS - % Recovery		1			
Organochlorine Pesticides					
Chlordanes - Total	%	101	70-130	Pass	
4.4'-DDD	%	89	70-130	Pass	
4.4'-DDE	%	94	70-130	Pass	
4.4'-DDT	%	119	70-130	Pass	
a-BHC	%	84	70-130	Pass	
Aldrin	%	86	70-130	Pass	
b-BHC	%	83	70-130	Pass	
d-BHC	%	87	70-130	Pass	
	%	94	70-130	Pass	
	%	81	70-130	Pass	
	%	85	70-130	Pass	
Endosulfan sulphate	%	99	70-130	Pass	
	%	115	70-130	Pass	
Endrin ketone	%	88	70-130	Pass	
g-BHC (Lindane)	%	81	/0-130	Pass	
	%	89	70-130	Pass	
Hexachlorobenzene	%	85	/0-130	Pass	
	%	90	/0-130	Pass	
TOUL 610 CHO CHO	01		70.400		
	%	98	/0-130	Pass	
LUS - % RECOVERY					
Heavy metals					



Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Arsenic (filtered)			%	98			80-120	Pass	
Cadmium (filtered)			%	101			80-120	Pass	
Chromium (filtered)		%	100			80-120	Pass		
Copper (filtered)			%	98			80-120	Pass	
Lead (filtered)			%	105			80-120	Pass	
Mercury (filtered)			%	103			80-120	Pass	
Nickel (filtered)			%	101			80-120	Pass	
Zinc (filtered)			%	102			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	S21-Ma50707	NCP	%	126			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S21-Ma50707	NCP	%	125			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	S21-Ap03110	NCP	%	105			75-125	Pass	
Cadmium (filtered)	S21-Ap03110	NCP	%	89			75-125	Pass	
Chromium (filtered)	S21-Ap03110	NCP	%	82			75-125	Pass	
Lead (filtered)	S21-Ap03110	NCP	%	78			75-125	Pass	
Mercury (filtered)	S21-Ap03110	NCP	%	85			75-125	Pass	
Nickel (filtered)	S21-Ap03110	NCP	%	75			75-125	Pass	
Zinc (filtered)	S21-Ap03110	NCP	%	76			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-			-		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S21-Ma50717	NCP	mg/L	2.4	3.4	32	30%	Fail	Q02
TRH C15-C28	S21-Ma50717	NCP	mg/L	< 0.1	0.1	95	30%	Fail	Q15
TRH C29-C36	S21-Ma50717	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S21-Ma50717	NCP	mg/L	1.1	1.5	30	30%	Pass	
TRH >C16-C34	S21-Ma50717	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S21-Ma50717	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S21-Ma50183	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S21-Ma50183	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Ma50183	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S21-Ma50183	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S21-Ma50183	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S21-Ma50183	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S21-Ma50183	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S21-Ma50183	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	



### Comments

Sample Integrity	
Custody Seals Intact (if used) N/	I/A
Attempt to Chill was evident Ye	'es
Sample correctly preserved Ye	'es
Appropriate sample containers have been used Ye	es
Sample containers for volatile analysis received with minimal headspace Ye	es
Samples received within HoldingTime Ye	'es
Some samples have been subcontracted No.	lo

### **Qualifier Codes/Comments**

Code	Description
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised by:

Ursula Long Andrew Sullivan John Nguyen

Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

**Glenn Jackson General Manager** 

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

### **Geo-Logix Pty Ltd**

Building Q2, Level 3 2309/4 Daydream St Warriewood, NSW 2102

ABN: 86 116 892 936

P: (02) 9979 1722 F: (02) 9979 1222

ANALYSIS REQUIRED																														
Lab ID	Sample ID	Date	soil	water	atriz	paint, filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN	PAHs	PCBs	OCPs	OPPs	Phenois Metals - M8	Metals - Lead	Metals - Specify **	TCLP	Asbestos (ID only)	Asbestos (WA DOH)	Foreign Materials	In the second			Hold	SUITE B9	Eurofins MGT Suite Codes
	TS1		x					SEND TO MELBOURNE LAB					1-14		1														~	B1 TRH/BTEXN
									1							-									-				^	B1A TRH/MAH B2 TRH/BTEXN/Pb
1.5	North Contraction					1		State of the state			-						-						-	-	-	-	-		-	B2A TRH/MAH/Pb
		-			-		-		-					-	-		-	-	-			-	-	-	+	-	-			B3 PAH/Phenois
		-			-	-	-		-	-	-				-	-	-	-	-			-	-	-	-	-	-			B4 TRH/BTEXN/PAH
		1.000			-	-		and the second second	-		-											_	-							B5 TRH/BTEXN/M7
					-																									B6 TRH/BTEXN/M8
1																	-													B7 TRH/BTEXN/PAH/M8
		Constant of																								1				B7A TRH/BTEXN/PAH/Phenols/M8 B8 TRH/VOC/PAH/M8
		1														-	-	-	+			-	+		+	+				B9 TRH/BTEXN/PAH/OCP/M8
		-			-				-		-				-	-	-	-	-			+	-	-	+	+			-	B10 TRH/BTEXN/PAH/OCP/OPP/M8
					-		-	1000	-	-	-		-		-	-	-	-	-		-	-	-	-	-	-			1	B11 Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3/NO3
					-	-	-		-				1			-											1		-	B11B B11/EC/TDS
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							-		1			1								-				1						B12 TRH/BTEXN/Oxygenates/Ethanol
1.000																					1									B12A TRH/BTEXN/Oxygenates
11000																									+				-	B13 OCP/PCB
1.19	1.00						1								+	-	-	-				+	+	-	+	+			-	B15 OCP/OPP/PCB
		1 1 1 1 2			-		-		-	-	-			-	-	-	-	-	-		-	-	+	-	+	-		-	-	B16 TDS/SO,/CH,/Alk/BOD/COD/HPC/CUB
				-	-	-	-		-					-	-		-	-				-	-		-	-			-	B17 SO4/NO4/Fe++/HPC/CUB
and the s	and the second second																													B18 CI-/SO ₄ /pH
	and the second																					2.00							5 m 1	B19 N/P/K B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺, Cr ³⁺, Fe ²⁺, Fe ³⁺, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, TI, Bi, Sb

### Chain of Custody

Relinquished by: _Tiffany Mabbott_

Date/Time: _____26/3/21____ Signature: ____TM__

Document Set ID: 9552413 Version: 1, Version Date: 19/04/2021



ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

#### Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254 & 14271

Sydney Unit F3. Building F Brisbane 
 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
NATA # 1261 Site # 18217

1/21 Smallwood Place NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

### **Sample Receipt Advice**

Company name:	Geo-Logix P/L
Contact name:	Ted Lilly
Project name:	ST MARYS DSI
Project ID:	2101028
Turnaround time:	5 Day
Date/Time received	Mar 26, 2021 1:35 PM
Eurofins reference	783523

### **Sample Information**

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 10.7 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

### Notes

### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone : or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ted Lilly - tlilly@geo-logix.com.au.

### Global Leader - Results you can trust

🥵 eurofin				Australia							New Zealand	
ABN: 50.005.085.521 web: wo	Envi			Melbourne    6      6 Monterey Road    Dandenong South VIC 3      Phone : +61 3 8564 5000    NATA # 1261      Site # 1254 & 14271    Site # 1271	S U 175 1 0 L P	Sydney Jnit F3, E 6 Mars F ane Cov Phone : +	Building F Road e West NSW 2066 61 2 9900 8400 261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ADIN. 50 005 065 521 Web. W	ww.euronns.com.au		seeuonins.com	Sile # 1234 & 1427 1	IN		201 Sile # 10217		Sile # 23736			
Company Name: Address:	Geo-Logix P, Bld Q2 Level Warriewood NSW 2102	/L I 3, 2309/4 Da	aydream St			Oi Re Pi Fa	rder No.: eport #: none: nx:	PO4473 783523 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	РМ
Project Name: Project ID:	ST MARYS I 2101028	DSI								Eurofins Analytical	Services Manager : l	Jrsula Long
	Sa	mple Detail			Moisture Set	Eurofins Suite B9						
Melbourne Laborator	ry - NATA Site	# 1254 & 142	271		Х	X						
Sydney Laboratory -	NATA Site # 1	8217										
Brisbane Laboratory	- NATA Site #	20794										
Mayfield Laboratory - NA	A I A Site # 237	30										
External Laboratory												
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1 TS1 M	Mar 24, 2021		Soil	S21-Ma50185	Х	Х						
Test Counts					1	1						



### Certificate of Analysis

### **Environment Testing**

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	
Report	

Project name

**Received Date** 

Project ID

783523-S ST MARYS DSI 2101028 Mar 26, 2021

Ted Lilly

Client Sample ID			TS1
Sample Matrix			Soil
Eurofins Sample No.			S21-Ma50185
Date Sampled			Mar 24, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	29
TRH C15-C28	50	mg/kg	290
TRH C29-C36	50	mg/kg	84
TRH C10-C36 (Total)	50	mg/kg	403
втех			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	69
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	58
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	58
TRH >C16-C34	100	mg/kg	320
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	378
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5



Client Sample ID			TS1
Sample Matrix			Soil
Eurofins Sample No.			S21-Ma50185
Date Sampled			Mar 24, 2021
Tast/Deference		1.1	Wai 24, 2021
Pelvevelie Aremetic Hudroserhene	LUR	Unit	
	0.5		0.5
	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	0.7
	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Prienantmene	0.5	mg/kg	0.7
	0.5	mg/kg	0.7
Dital PAH	0.5	mg/kg	2.1
Z-Fluorobiphenyi (surr.)	1	% 0/	08
P-Terphenyl-d14 (surr.)		%	12
Organochiorine Pesticides	0.4		0.4
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4-DDD	0.05	mg/kg	< 0.05
4.4-DDE	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
D-BHC	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
Endrin Endrin eldebude	0.05	mg/kg	< 0.05
Endrin aldenyde	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
Methowshier	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
I Oxaphene Aldrin and Dialdrin (Tatal)*	0.1	mg/kg	< 0.1
	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)	0.1	mg/kg	< 0.1
Dibutyleblerendete (surr.)	0.1	0/	< 0.1
Totrachlera m xulona (surr.)	1	/0 0/	60
		/0	09
	2	maller	4.5
Codmium	2	mg/kg	4.5
Chromium	0.4 F	mg/kg	< 0.4 16
Conner	5	mg/kg	20
	5 F	mg/kg	30
Marcuny	0.1	mg/kg	43
Nickol	5	mg/kg	17
	5	mg/kg	110
	5	пуку	
% Moisture	1	%	12
		, ,,,	



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Apr 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Apr 01, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Apr 01, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Metals M8	Melbourne	Apr 01, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Mar 26, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	ns			Australia							New Zealand	
•••	curon	Env	vironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261	175 1 0 L	Sydney Jnit F3, 6 Mars ane Co Phone :	Building F Road ve West NSW 2066 +61 2 9900 8400	Brisbane      1/21 Smallwood Place      Murarrie QLD 4172      Phone : +61 7 3902 4600      NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 5	0 005 085 521 web:	www.eurofins.com.a	au email: EnviroSal	es@eurofins.com	Site # 1254 & 14271	1	NATA #	1261 Site # 18217		Site # 23736			
Co Ad	mpany Name: dress:	Geo-Logix Bld Q2 Lev Warriewood NSW 2102	P/L el 3, 2309/4 Da d	aydream St			O R F	rder No.: eport #: hone: ax:	PO4473 783523 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Mar 26, 2021 1:35 Apr 6, 2021 5 Day Ted Lilly	PM
Pro Pro	oject Name: oject ID:	ST MARYS 2101028	5 DSI								Eurofins Analytical	Services Manager : L	Jrsula Long
		s	ample Detail			isture Set	rofins Suite B9						
Melb	ourne Laborato	ory - NATA Sit	e # 1254 & 142	271		X	X	-					
Sydr	hey Laboratory	- NATA Site #	18217				+	4					
Port	b Laboratory - N	y - INA I A SILE	# 20794			-	+	4					
Mav	field Laboratory		// 55					4					
Exte	rnal Laboratory	1						1					
No	Sample ID	Sample Date	e Sampling Time	Matrix	LAB ID			]					
1	TS1	Mar 24, 2021		Soil	S21-Ma50185	Х	X	1					
Test	Counts					1	1						



### Internal Quality Control Review and Glossary

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066



**Quality Control Results** 

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank	00					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		•				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank			r	Ĩ		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	



Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 0.1		0.1	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery		•				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	78		70-130	Pass	
TRH C10-C14	%	107		70-130	Pass	
LCS - % Recovery			· ·			
BTEX						
Benzene	%	88		70-130	Pass	
Toluene	%	75		70-130	Pass	
Ethylbenzene	%	86		70-130	Pass	
m&p-Xylenes	%	75		70-130	Pass	
Xylenes - Total*	%	79		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	92		70-130	Pass	
TRH C6-C10	%	86		70-130	Pass	
TRH >C10-C16	%	98		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	91		70-130	Pass	
Acenaphthylene	%	94		70-130	Pass	
Anthracene	%	76		70-130	Pass	
Benz(a)anthracene	%	91		70-130	Pass	
Benzo(a)pyrene	%	78		70-130	Pass	
Benzo(b&j)fluoranthene	%	79		70-130	Pass	
Benzo(g.h.i)perylene	%	74		70-130	Pass	
Benzo(k)fluoranthene	%	82		70-130	Pass	
Chrysene	%	79		70-130	Pass	
Dibenz(a.h)anthracene	%	75		70-130	Pass	
Fluoranthene	%	86		70-130	Pass	
Fluorene	%	92		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	96		70-130	Pass	
Naphthalene	%	93		70-130	Pass	
Phenanthrene	%	85		70-130	Pass	
Pyrene	%	88		70-130	Pass	


Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code		
LCS - % Recovery					I I	T	1	
Organochlorine Pesticides								
Chlordanes - Total			%	103		70-130	Pass	
4.4'-DDD			%	90		70-130	Pass	
4.4'-DDE			%	90		70-130	Pass	
4.4'-DDT			%	102		70-130	Pass	
a-BHC			%	85		70-130	Pass	
Aldrin			%	84		70-130	Pass	
b-BHC			%	102		70-130	Pass	
d-BHC			%	93		70-130	Pass	
Dieldrin			%	98		70-130	Pass	
Endosulfan I			%	108		70-130	Pass	
Endosulfan II			%	95		70-130	Pass	
Endosulfan sulphate			%	110		70-130	Pass	
Endrin			%	92		70-130	Pass	
Endrin aldehyde			%	85		70-130	Pass	
Endrin ketone			%	89		70-130	Pass	
g-BHC (Lindane)			%	88		70-130	Pass	
Heptachlor			%	82		70-130	Pass	
Heptachlor epoxide			%	98		70-130	Pass	
Hexachlorobenzene			%	85		70-130	Pass	
Methoxychlor			%	82		70-130	Pass	
LCS - % Recovery				-	I I	1		
Heavy Metals								ļ
Arsenic	%	110		80-120	Pass			
Cadmium	%	98		80-120	Pass			
Chromium	%	116		80-120	Pass			
Copper				112		80-120	Pass	ļ
Lead				113		80-120	Pass	ļ
Mercury				106		80-120	Pass	ļ
Nickel			%	108		80-120	Pass	
Zinc	1		%	109		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					r	T		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M21-Ma51109	NCP	%	85		70-130	Pass	
TRH C10-C14	P21-Ma52111	NCP	%	112		70-130	Pass	
Spike - % Recovery					r	Т		
BTEX	r			Result 1				
Benzene	M21-Ma51109	NCP	%	78		70-130	Pass	
Toluene	M21-Ma51109	NCP	%	96		70-130	Pass	
Ethylbenzene	M21-Ma51109	NCP	%	80		70-130	Pass	
m&p-Xylenes	M21-Ma51109	NCP	%	84		70-130	Pass	
o-Xylene	M21-Ma51109	NCP	%	79		70-130	Pass	
Xylenes - Total*	M21-Ma51109	NCP	%	82		70-130	Pass	
Spike - % Recovery				-	r	T		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	M21-Ma51109	NCP	%	89		70-130	Pass	
TRH C6-C10	M21-Ma51109	NCP	%	74		70-130	Pass	
TRH >C10-C16    P21-Ma52111    NCP			%	110		70-130	Pass	
Spike - % Recovery				1		1		
Polycyclic Aromatic Hydrocarbons	<b>5</b>	,		Result 1				
Acenaphthene	M21-Ma51105	NCP	%	82		70-130	Pass	
Acenaphthylene	M21-Ma51105	NCP	%	89		70-130	Pass	Ĺ



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	M21-Ma51105	NCP	%	94			70-130	Pass	
Benz(a)anthracene	M21-Ma51105	NCP	%	85			70-130	Pass	
Benzo(a)pyrene	M21-Ma51105	NCP	%	77			70-130	Pass	
Benzo(b&j)fluoranthene	M21-Ma51105	NCP	%	76			70-130	Pass	
Benzo(g.h.i)perylene	M21-Ma51105	NCP	%	88			70-130	Pass	
Benzo(k)fluoranthene	M21-Ma51105	NCP	%	83			70-130	Pass	
Chrysene	M21-Ma51105	NCP	%	90			70-130	Pass	
Dibenz(a.h)anthracene	M21-Ma51105	NCP	%	99			70-130	Pass	
Fluoranthene	M21-Ma51105	NCP	%	105			70-130	Pass	
Fluorene	M21-Ma51105	NCP	%	95			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M21-Ma51105	NCP	%	84			70-130	Pass	
Naphthalene	M21-Ma51105	NCP	%	84			70-130	Pass	
Phenanthrene	M21-Ma51105	NCP	%	104			70-130	Pass	
Pyrene	M21-Ma51105	NCP	%	105			70-130	Pass	
Spike - % Recovery							1		
Heavy Metals				Result 1					
Arsenic	M21-Ma54003	NCP	%	86			75-125	Pass	
Cadmium	M21-Ma54003	NCP	%	106			75-125	Pass	
Chromium	M21-Ma54003	NCP	%	102			75-125	Pass	
Copper	M21-Ma54003	NCP	%	87			75-125	Pass	
Lead	M21-Ma54003	NCP	%	88			75-125	Pass	
Mercury	M21-Ma54003	NCP	%	101			75-125	Pass	
Nickel	M21-Ma54003	NCP	%	88			75-125	Pass	
Zinc	M21-Ma54003	NCP	%	95			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	•						-		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M21-Ma51137	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	P21-Ma52110	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	P21-Ma52110	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	P21-Ma52110	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M21-Ma51137	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M21-Ma51137	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M21-Ma51137	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M21-Ma51137	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M21-Ma51137	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	M21-Ma51137	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M21-Ma51137	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M21-Ma51137	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	P21-Ma52110	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	P21-Ma52110	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	P21-Ma52110	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



Duplicate										
Polycyclic Aromatic Hydrocarbons	8			Result 1	Result 2	RPD				
Benzo(g.h.i)perylene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(k)fluoranthene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Chrysene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Dibenz(a.h)anthracene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Fluoranthene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Fluorene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Indeno(1.2.3-cd)pyrene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Naphthalene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Phenanthrene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Pyrene	M21-Ma52997	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Duplicate										
Heavy Metals				Result 1	Result 2	RPD				
Arsenic	M21-Ma54012	NCP	mg/kg	15	8.5	57	30%	Fail	Q15	
Cadmium	M21-Ma54012	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass		
Chromium	M21-Ma54012	NCP	mg/kg	< 5	6.0	27	30%	Pass		
Copper	M21-Ma54012	NCP	mg/kg	< 5	< 5	<1	30%	Pass		
Lead	M21-Ma54012	NCP	mg/kg	6.3	5.9	6.0	30%	Pass		
Mercury	M21-Ma54012	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Nickel	M21-Ma54012	NCP	mg/kg	< 5	< 5	<1	30%	Pass		
Zinc	M21-Ma54012	NCP	mg/kg	6.1	8.1	28	30%	Pass		
Duplicate				-						
				Result 1	Result 2	RPD				
% Moisture	P21-Ma40213	NCP	%	14	14	<1	30%	Pass		



### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

### **Qualifier Codes/Comments**

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised by:

Ursula Long Emily Rosenberg Joseph Edouard Vivian Wang

Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Volatile (VIC)

**Glenn Jackson General Manager** 

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

#### Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254 & 14271

Sydney Unit F3. Building F Brisbane NATA # 1261 Site # 18217

 
 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
1/21 Smallwood Place NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

## **Sample Receipt Advice**

Contact name:Ted LillyProject name:ADDITIONAL - ST MARY DSIProject ID:2101028Turnaround time:2 DayDate/Time receivedApr 8, 2021 11:54 AMEurofins reference785590	Company name:	Geo-Logix P/L
Project name:ADDITIONAL - ST MARY DSIProject ID:2101028Turnaround time:2 DayDate/Time receivedApr 8, 2021 11:54 AMEurofins reference785590	Contact name:	Ted Lilly
Project ID:    2101028      Turnaround time:    2 Day      Date/Time received    Apr 8, 2021 11:54 AM      Eurofins reference    785590	Project name:	ADDITIONAL - ST MARY DSI
Turnaround time:2 DayDate/Time receivedApr 8, 2021 11:54 AMEurofins reference785590	Project ID:	2101028
Date/Time receivedApr 8, 2021 11:54 AMEurofins reference785590	Turnaround time:	2 Day
Eurofins reference 785590	Date/Time received	Apr 8, 2021 11:54 AM
	Eurofins reference	785590

### **Sample Information**

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 10.7 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

### Notes

## Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone : or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Ted Lilly - tlilly@geo-logix.com.au.

## Global Leader - Results you can trust

	eurofi	ns			Australia								New Zealand	
	curon	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261	8 U 175 1 0 L P	ydney nit F3, I 6 Mars ane Cov hone : +	Building Road ve Wes +61 2 9	SW 2066 8400	Brisbane      1/21 Smallwood Place      Murarrie QLD 4172      Phone : +61 7 3902 4600      NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 5	0 005 085 521 web:	www.eurofins.com.au	ı email: EnviroSale	es@eurofins.com	Site # 1254 & 14271	N	ATA # '	1261 S	18217		Site # 23736			
Co Ad	mpany Name: dress:	Geo-Logix P Bld Q2 Leve Warriewood NSW 2102	/L I 3, 2309/4 Da	aydream St			O R Pi Fa	rder eport hone ax:	.:	785590 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Apr 8, 2021 11:54 A Apr 12, 2021 2 Day Ted Lilly	λM
Pro Pro	oject Name: oject ID:	ADDITIONA 2101028	L - ST MARY	DSI								Eurofins Analytical	Services Manager : L	Irsula Long
		Sa	mple Detail			pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity						
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271			X	X						
Bris	pane Laboratory	- NATA Site # 1	20794											
Pert	h Laboratory - N	NATA Site # 237	736											
May	ield Laboratory													
Exte	rnal Laboratory	1												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	BH1/0.3-0.4	Mar 25, 2021		Soil	S21-Ap09477	Х	Х	Х						
Test	Counts					1	1	1						



Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	Ted Lilly	
Report	785590-S	
Project name	ADDITIONAL - ST MARY [	DSI
Project ID	2101028	
Received Date	Apr 08, 2021	
Client Sample ID		
Sample Matrix		
Eurofins Sample No.		

Client Sample ID			BH1/0.3-0.4
Sample Matrix			Soil
Eurofins Sample No.			S21-Ap09477
Date Sampled			Mar 25, 2021
Test/Reference	LOR	Unit	
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	26
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.3
% Moisture	1	%	15
Cation Exchange Capacity			
Cation Exchange Capacity	0.05	meq/100g	22



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Apr 08, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Apr 12, 2021	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Apr 08, 2021	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
% Moisture	Sydney	Apr 08, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com				Australia			New Zealand							
			Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271		Sydney Unit F3, Building F 75 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		g F st NSW 2066 9900 8400 ite # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767: Phone : 0800 856 450 IANZ # 1290		
Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream StWarriewoodNSW 2102			Order No.: 09/4 Daydream St Report #: Phone: Fax:		No.: t #: :	785590 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Apr 8, 2021 11:54 / Apr 12, 2021 2 Day Ted Lilly	AM				
Project Name:ADDITIONAL - ST MARY DSIProject ID:2101028												Eurofins Analytical	Services Manager : I	Jrsula Long
			Sample Detail			pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity						
Melbourne Laboratory - NATA Site # 1254 & 14271							X	X	_					
Sydne	ey Laboratory -	- NATA Site	# 18217			X	<u> </u>	X	_					
Brisba	ane Laboratory	y - NATA Site	e # 20794						-					
Mayfi	eld Laboratory - N	AIA SILE # 2	23730						-					
Exter	nal Laboratory	,							1					
No	Sample ID	Sample Da	te Sampling Time	Matrix	LAB ID									
1	BH1/0.3-0.4	Mar 25, 202	1	Soil	S21-Ap09477	Х	X	Х						
Test C	Counts					1	1	1						



### Internal Quality Control Review and Glossary

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066



### **Quality Control Results**

Test				Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank										
Conductivity (1:5 aqueous extract at	uS/cm	< 10			10	Pass				
Method Blank										
Cation Exchange Capacity										
Cation Exchange Capacity				< 0.05			0.05	Pass		
LCS - % Recovery										
Conductivity (1:5 aqueous extract at 25°C as rec.)				99			70-130	Pass		
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Duplicate										
				Result 1	Result 2	RPD				
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Ap03982	NCP	uS/cm	180	170	8.0	30%	Pass		
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Ap09477	СР	pH Units	7.3	7.2	Pass	30%	Pass		
% Moisture S21-Ap09496		NCP	%	11	15	29	30%	Pass		



### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

### Authorised by:

Asim Khan Charl Du Preez Emily Rosenberg Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Metal (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

## **GEO-LOGIX PTY LTD**

ABN 86 116 892 936

Building Q2, Level 3 Suite 2309, 4 Daydream Street Warriewood NSW 2102

> Phone 02 9979 1722 Fax 02 9979 1222

Email info@geo-logix.com.au Web www.geo-logix.com.au