

ENVIRONMENTAL INVESTIGATION SERVICES

20 November 2018 Ref: E31675KRadd rev1

Cadence Property Group

Attention:Mr Mitchell KentE-mail:MKent@cadenceproperty.com.au

ADDENDUM – ADDITIONAL DATA GAP INVESTIGATION PROPOSED WAREHOUSE DEVELOPMENT 128 ANDREWS ROAD, PENRITH

1 INTRODUCTION

This letter forms an addendum to the EIS report titled *"Report To Cadence Property Group Pty Ltd On Stage 1/Stage 2 Environmental Site Assessment and Preliminary Salinity Assessment For Proposed Warehouse Development at 128 Andrews Road, Penrith, NSW. Ref E31675Krpt Rev1, 30 October 2018¹"*

This letter summarises the additional site works undertaken to close out the data gaps identified in EIS 2018. The scope of works included:

- Installation of four groundwater monitoring wells;
- Sampling and analysis of the groundwater;
- Additional sampling of the stockpiles identified on-site; and
- Confirmation of the presence of asbestos in a fragment of fibre-cement pipe observed on the site surface.

2 PROPOSED DEVELOPMENT DETAILS / BACKGROUND

The proposed development includes a 50,000m² warehouse to be constructed within the 85,000m² site. The warehouse will be accessed by pavements adjacent to the warehouse, and by a driveway constructed off Andrews Road to the east and north-east of the site. It is understood that the development will be constructed at about the existing surface level, with some cut and fill earthworks of approximately 1.5m.

EIS 2018 identified elevated concentrations of contaminants above the ecological site assessment criteria (SAC). The contaminants included heavy metals and TRH F3 fraction in soil in the south-western section and western end of the site. The groundwater could not be assessed as the wells installed to a

¹ Referred to as EIS 2018

depth of approximately 4.0m below ground level (BGL) remained dry after installation. Elevated concentrations of copper and zinc were encountered above the ecological SAC in the surface water. The preliminary assessment of the soil stockpiles did not identify elevated concentrations of contaminants above the SAC, however the stockpiles required further assessment to meet the minimum sampling density for stockpiles recommended in NEPM 2013. On this basis, EIS were of the opinion that potential risks to ecology, associated with contamination (i.e. the CoPC) within the site were present and were considered to be minor.

The report identified the following data gaps

- The groundwater could not be assessed;
- The presence of asbestos in a fragment of fibre cement pipe identified on site was not confirmed; and
- There were limited samples collected from the stockpiles for a preliminary contamination screening.

Remediation was not considered to be required. Potential risks associated with sources of contamination could be addressed via the proposed earthworks and implementation of recommendations outlined in Section 11 of report EIS 2018.

3 SITE INSPECTION AND FIELDWORK

Additional fieldwork took place on the 5, 6 and 12 November 2018. The site remained unchanged from the EIS 2018 investigation.

3.1 Soil Sampling Plan and Methodology

The additional soil sampling plan and methodology adopted for the assessment is outlined in the table below:

Aspect	Input			
Sampling	The volumes of the stockpiles at the western section of the site were estimated to be a			
Density	follows:-SP1 approximately 80m³;-SP2 approximately 800m³;-SP3 approximately 1,625m³;-SP4 approximately 375m³; and-SP5 approximately 540m³.			
	The initial screening of the stockpiles involved analysing two samples from each of the stockpiles. The site observations and the chemical data indicated that all five stockpile contained similar materials. On this basis, the stockpiles were treated as one large stockpile for the calculation of an appropriate sampling density. A total of 18 stockpile samples were analysed (ten samples for EIS 2018 and eight samples for this investigation). This number of			

samples meets the minimum density required to demonstrate that the average contaminant concentration in a 3,500m ³ stockpile is at or below the site assessment criteria (SAC) with 95% confidence. The additional sampling was distributed as follows shown on Figure 3 attached in the appendices:
appendices:
 One additional sample from Stockpiles 1, 2, 4 and 5; and Four additional samples from Stockpile 4.
Samples from the stockpiles were collected using a hand auger.
Soil samples were obtained on 6 November 2018. The stockpile samples were collected from at least 0.1m-0.2m depth into the stockpile. Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis.
A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by EIS. The sampling locations were visually inspected during the works for the presence of fibre cement fragments.
Sampling personnel used disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated as outlined in the Standard Sampling Procedure (SSP) described in EIS 2018. Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with the SSP. On completion of the fieldwork, the samples were stored temporarily in fridges in the EIS warehouse before being delivered in the insulated sample

3.2 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Ref: E31675KRadd rev1

Aspect	Input				
Sampling Plan	Groundwater monitoring wells were installed in MW201, MW202, MW203 and MW204. The wells were positioned to gain a snap-shot of the groundwater conditions as shown on the attached Figure 2.				
	Considering the topography and the location of the nearest down-gradient water body, MW203 and MW204 were considered to be in the up-gradient area of the site and would be expected to provide an indication of groundwater flowing onto (beneath) the site from the north and north-east. During field work it was noted that one of the above ground tanks (ASTs) on the site to the north had the faint remains of a Caltex logo on the side. MW204 was located immediately to the south of these ASTs. MW202 was located in the central /west section of the site to provide an indication of groundwater in the central west section of the site. MW201 was located close to the south boundary and an AST that was observed on the site to the south.				
Monitoring Well Installation Procedure	The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. The monitoring wells were installed to depths of approximately 8.0 m to 9.0mBGL.				
	 The wells were generally constructed as follows: 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section 				
	of the well to intersect groundwater;				
	 50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed); 				
	 A 2mm sand filter pack was used around the screen section for groundwater infiltration; 				
	 A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water. 				
Monitoring Well Development	The monitoring wells were purged on the 5 and 6 November. No field parameters were measured as the water that was purged was very silty as a result of the drilling process.				
Development	No odours or sheen were associated with the purged water.				
Groundwater	The monitoring wells were allowed to recharge for approximately five to seven days after				
Sampling	installation. Samples were obtained using either a peristaltic pump or disposable bailer. The pump could not be used in all the boreholes as the depth to the groundwater was close to the operational limit of the pump.				
	The field monitoring record data are attached in the appendices.				

3.3 Fibre Cement Fragment (FCF)

A large fragment of fibre cement pipe (152mm by 140mm) was recovered from the surface of the site and bagged for analysis. A surface inspection of an approximately 5m radius around the fragment's location (location F2 on Figure 2) was undertaken and no further fragments were observed. No fragments were observed in the fill during the EIS 2018 investigation.

3.4 <u>Analytical Schedule</u>

The analytical schedule is outlined in the following table:

Analyte/CoPC	Stockpile Samples	Fibre Cement Material Samples	Groundwater Samples
Heavy Metals (8)	8	-	4
TRH/BTEX	8	-	4
PAHs	8	-	4
VOCs	-	-	4
Asbestos	8	1	-
Ammonia	-		4
pH/EC	-	-	4

3.4.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 3-1: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spike)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	205182 and 205400

Ref: E31675KRadd rev1

4 <u>SITE ASSESSMENT CRITERIA (SAC)</u>

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following subsections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices EIS 2018.

4.1 <u>Soil</u>

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

4.1.1 Human Health

- Health Investigation Levels (HILs) for a 'commercial/industrial' exposure scenario (HIL-D);
- Health Screening Levels (HSLs) for a 'commercial/industrial' exposure scenario (HSL-D). HSLs were calculated based on the soil type and the depth of the sample from the existing ground surface as the proposed building floor level is expected to be constructed approximately at the existing grade;
- Where exceedances of the HSLs were reported for hydrocarbons (TRH/BTEX and naphthalene), the soil health screening levels for direct contact presented in the CRC Care Technical Report No. 10 – Heath screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)²were considered; and
- Asbestos was assessed on the basis of presence/absence. Asbestos HSLs were not adopted as detailed asbestos quantification was not undertaken:

4.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for a 'commercial/industrial' exposure scenario. These have only been applied to the top 4.1m of soil. The criteria for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the information presented in the CRC Care Technical Report No. 39 Risk-based management and guidance for benzo(a)pyrene (2017)³;
- ESLs were calculated based on the soil type. EILs for selected metals were calculated using average site specific soil parameters for pH (6.3), cation exchange capacity (8 cmolc/kg) and clay content (18.3 % clay). These data were used to select the added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in the document titled Trace Element Concentrations in Soils from Rural and

² Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

³ CRC Care, (2011). Technical Report No. 39 - Risk-based management and guidance for benzo(a)pyrene

Ref: E31675KRadd rev1

Urban Areas of Australia (1995)⁴. This method is considered to be adequate for the Tier 1 screening.

4.2 <u>Groundwater</u>

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)⁵. Environmental values for this assessment include aquatic ecosystems, human uses, and human-health risks in non-use scenarios.

4.2.1 Human Health

HSLs for a 'commercial/industrial' exposure scenario (HSL-D). HSLs were calculated based on the soil type and the observed depth to groundwater.

4.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% trigger values for protection of freshwater species presented in Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)⁶. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

5 DATA (QA/QC) EVALUATION

The data evaluation is presented in the appendices. In summary, EIS are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

5.1 Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

⁴Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

⁵ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*

⁶ ANZECC, (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. (referred to as ANZECC 2000)

Ref: E31675KRadd rev1

5.2 Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this assessment is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	PB-1 (primary sample BH1 0-0.1m)	Approximately 10% of primary samples	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Intra-laboratory duplicate (water)	DUP MP-1 (primary sample MW204)	Approximately 25% of primary samples	Heavy metals, TRH/BTEX, PAHs, VOCs
Trip spike (water) TS1 (12/11/2018)		One for the assessment to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank (water)	TB (12/11/2018)	One for the assessment to demonstrate adequacy of storage and transport methods	BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table G to Table I inclusive) attached to this addendum latter and are discussed below.

The QA/QC data was assessed in accordance with the criteria specified in EIS 2018.

5.3 Data Evaluation

5.3.1 Sample Collection, Storage and Analysis

Samples were collected by trained field staff in accordance with the EIS SSP. The SSP was developed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

Review of the project data also indicated that:

COC documentation was adequately maintained;

- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

5.4 <u>Laboratory PQLs</u>

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC with the exception of the anthracene PQL for groundwater analysis which was 10 times greater than the ecological SAC. In light of the PAH concentrations reported for soil and groundwater, EIS are of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the assessment.

5.5 Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

• Elevated RPDs were reported for chromium and copper in PB-1/SP1-3. Values outside the acceptable limits have been attributed to minor sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Field Blanks

During the investigation, one water trip blank was placed in the esky during sampling and transported back to the laboratory with the groundwater samples. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Trip Spikes

The results ranged from 104% to 109% and indicated that field preservation methods were appropriate.

5.6 <u>Laboratory QA/QC</u>

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this assessment.

A review of the laboratory QA/QC data identified the following minor non-conformances:

• Excessive sample volumes were provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL)

of sample in its own container as per AS4964-2004.Note: Samples 205182-6,11 were subsampled from bags provided by the client.

- Acid Extractable Metals in Soil Spike recovery for Cr and Cu in sample #5 at 164% and 173% respectively which is outside lab acceptance criteria (70-130%), however, the LCS recovery is acceptable at 103% for both elements, sample heterogeneity suspected.
- Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 205182-1 for Cr. Therefore a triplicate result has been issued as laboratory sample number 205182-20.

5.7 Data Quality Summary

EIS are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These non-conformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

6 <u>RESULTS</u>

6.1 <u>Subsurface Conditions</u>

A summary of the subsurface conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description		
Fill	Fill was encountered at the surface in all four boreholes and ranged in depth from approximately 0.3 to 0.4mBGL. The fill typically comprised low plasticity silt with traces of root fibres.		
Natural Call	No staining or odours were noted in the fill material.		
Natural Soil	Natural material was encountered below the fill in all boreholes, except in BH189 which was terminated in the fill. The natural material typically comprised orange brown, low plasticity silt underlain by silty sandy gravel. The depth to the gravel layer was approximately 3.9mBGL		
	No staining or odours were noted in the natural material.		
Bedrock	Bedrock was not encountered in any of the boreholes.		

Table 6-1: Summary of Subsurface Conditions

Profile	Description					
Groundwater	Groundwater seepage was observed at depths ranging from 5.92m to 6.5mBGL. The standing groundwater level (SWL) measured approximately 6 days after the monitoring					
	well installation ranged from 6.19mBGL to 6.62mBGL.					

6.2 <u>Stockpiles</u>

The stockpiled fill soil was a mixture of silty sandy clay, silty clay and clayey silt. Traces of igneous gravel brick, ash and concrete were also observed. An inspection of the stockpiles was restricted by dense vegetation.

6.3 Field Screening

A summary of the field screening results are presented in the table below.

Aspect	Details		
PID Screening of Soil	PID soil sample headspace readings are presented in attached report tables and t		
Samples for VOCs	COC documents attached in the appendices. The results from all of the stockpile samples obtained from both investigations were less than 1ppm equivalent isobutylene. These results indicate a lack of PID detectable VOCs in the stockpile samples.		
	The PID readings in the groundwater wells were less than 5ppm equivalent isobutylene. and indicate a lack of PID detectable VOCs in the groundwater wells.		
Groundwater Depth & Flow	The standing ground water levels ranged from 6.19mBGL to 6.62mBGL.		
	Groundwater studies on the adjacent property to the south indicate that the regional groundwater flow is to the south.		

Table 6-2: Summary of Field Screening

6.4 Soil Laboratory Results

6.4.1 Human Health and Environmental (Ecological) Assessment

The soil laboratory results for all of the stockpile samples from both investigations are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented below:

Analyte	Results Compared to SAC
Heavy Metals	All heavy metals results were below the SAC.

Analyte	Results Compared to SAC				
	The 95% UCLs on the mean of the heavy metal concentrations were all less than the SAC. The 95% UCLs were not calculated for arsenic, cadmium or mercury as the majority of results were less than the laboratory PQLs.				
TRH	All TRH results were below the SAC. Heavy fraction TRH was detected in one sample, the remaining results were all less than the laboratory PQLs.				
	The 95% UCLs were not calculated for TRH as the majority of results were less than the laboratory PQLs.				
BTEX	All BTEX results were below the SAC. All BTEX concentrations were below the laboratory PQLs.				
	The 95% UCLs were not calculated for BTEX as all of the results were less than the laboratory PQLs.				
PAHs	All PAH results were below the SAC. Traces of PAHs were detected in three samples, the remaining results were all less than the laboratory PQLs.				
	The 95% UCLs were not calculated for PAHs as the majority of results were less than the laboratory PQLs.				
OCPs and OPPs	All OCP and OPP results were below the SAC. All pesticide concentrations were below the laboratory PQLs.				
	The 95% UCLs were not calculated for OCC/OPP as all of the results were less than the laboratory PQLs.				
PCBs	All PCB results were below the SAC. All PCB concentrations were below the laboratory PQLs.				
	The 95% UCLs were not calculated for PCBs as all of the results were less than the laboratory PQLs.				
Asbestos	All asbestos results were below the SAC (i.e. asbestos was absent in the samples analysed for the investigation).				

6.4.2 Waste Classification Assessment

The laboratory results stockpile results from both investigations were assessed against the criteria presented in Part 1 of the Waste Classification Guidelines, as summarised previously in this report. The results are presented in the report tables attached in the appendices. A summary of the results is presented below.

Analyte	No. of Samples	No. of	No. of	Comments
	Analysed	Results > CT	Results > SCC	
		Criteria	Criteria	
Heavy Metals	19	3	0	Nickel concentrations exceeded the CT1 criterion in three fill samples collected from SP1-3, SP2-5 and SP3-8, The maximum nickel concentration was 49mg/kg. The statistical analysis indicated that the 95% UCL limit on the mean value of the nickel concentrations in the stockpiles was 27.5mg/kg and was below the CT-1 value.
TRH	19	0	0	-
BTEX	19	0	0	-
Total PAHs	19	0	0	-
Benzo(a)pyrene	19	0	0	-
OCPs & OPPs	19	0	0	-
PCBs	19	0	0	-
Asbestos in soil	19	0	0	Asbestos was not detected in the soil samples analysed.

6.5 Fibre Cement Fragment

The fibre cement fragment (sample F2) recovered from the site surface contained chrysotile asbestos.

6.6 Groundwater Laboratory Results

The surface water laboratory results are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented below:

Analyte	Results Compared to SAC
Heavy Metals	All heavy metals results were below the SAC.
TRH	All TRH results were below the SAC. All TRH concentrations were below the laboratory PQLs.

Analyte	Results Compared to SAC
BTEX	All BTEX results were below the SAC. All BTEX concentrations were below the laboratory PQLs
Other VOCs	All other VOC results were below the SAC. All VOC concentrations were below the laboratory PQLs
PAHs	All PAH results were below the SAC. All PAH concentrations were below the laboratory PQLs
Ammonia	All ammonia results were below the SAC.
Other	The results for pH and EC are summarised below:
Parameters	• pH was 6.4 to 7.0 indicating slightly acidic to neutral conditions;
	• EC was 340μ S/cm to 530μ S/cm indicating conditions similar to a freshwater river.

7 <u>SUMMARY OF RESULTS</u>

7.1 <u>Stockpile Assessment</u>

From a contamination risk aspect, the stockpiles are suitable to remain on-site. All of the results were less than the health based and ecological SAC. In the event that the stockpiles have to be disposed of off-site they are classified as **General Solid Waste (non-putrescible)** calculated based on UCLs and should be disposed of to a facility licensed by the EPA to receive this waste stream.

7.2 Fibre Cement Fragment

The presence of asbestos in the fragment of FCF has been confirmed. The fragment was removed form site and will be disposed of by the laboratory. No further surface fragments were identified within a 5m radius of it's location.

7.3 <u>Groundwater</u>

No contaminants were identified in the groundwater samples.

8 <u>CONCLUSION</u>

EIS are of the opinion that the data gaps identified in EIS 2018 have all been addressed and the site is suitable for the proposed development subject to following recommendations made in EIS 2018:

 The fill in the western section of the site (and the surface soil to a minimum depth of 0.2m in areas where natural soil is present at the surface – see attached borehole logs), including the proposed basin footprint and the area to the south of the basin in the south-western corner of the site, is to be excavated and placed beneath the proposed hardstand provided that it is

geotechnically suitable. If this cannot be achieved, the waste classification is to be confirmed and this material is to be disposed off-site to an appropriate facility; and

 A surface clearance for asbestos should be undertaken of the disturbed/stockpiled areas in the west section of the site after the vegetation has been cleared. The contingency plan specified below should be implemented in the event that any additional asbestos containing material (ACM) is encountered across the site.

EIS are of the opinion that there is no requirement to notify the EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)⁷.

8.1 <u>Contingency plan</u>

There is a relatively low potential for contamination-related unexpected finds to occur at the site during the proposed development works. Unexpected finds would typically be able to be identified by visual or olfactory indicators and could include:

- Waste materials in fill, including building and demolition waste;
- Fibre cement fragments (e.g. ACM);
- Stained fill/soil;
- Odorous soils (e.g. hydrocarbon odours); and/or
- Ash, slag and/or coal wash.

The following should be implemented in the event of an unexpected find:

- All work in the immediate vicinity should cease and temporary barricades should be erected to isolate the area;
- A suitably qualified contaminated land consultant⁸ should be engaged to inspect the find and provide advice on the appropriate course of action; and
- Any actions should be implemented and validated to demonstrate that there are no unacceptable risks to the receptors.

⁷ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997* (referred to as Duty to Report Contamination)

⁸ EIS recommend that the consultancy engaged for the work be a member of the Australian Contaminated Land Consultants Associated (ACLCA), and/or the individual undertaking the works be certified under one of the NSW EPA endorsed certified practitioner schemes

Ref: E31675KRadd rev1

9 <u>LIMITATIONS</u>

The findings presented in this letter are based on site conditions that existed at the time of the assessment. The conclusions are based on the investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances.

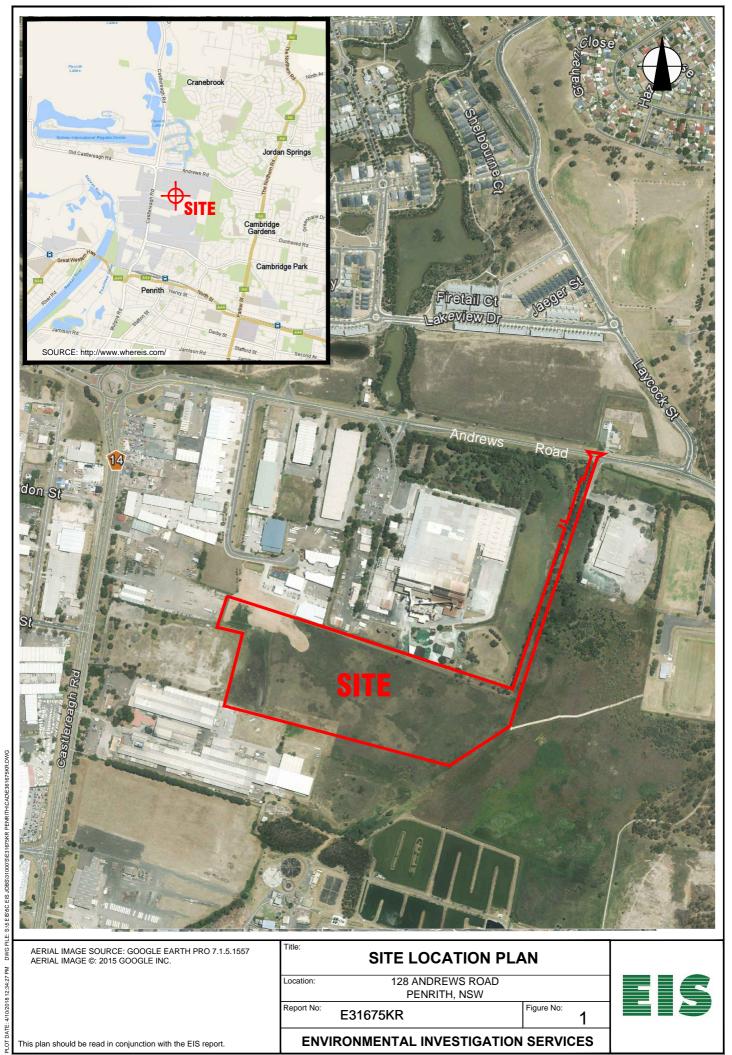
This letter has been prepared for the particular project described and no responsibility is accepted for the use of any part of this letter in any other context or for any other purpose. Copyright in this letter is the property of EIS.

EIS has used a degree of care, skill and diligence normally exercised by consulting engineers/scientists in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees, the client alone shall have a licence to use this letter.

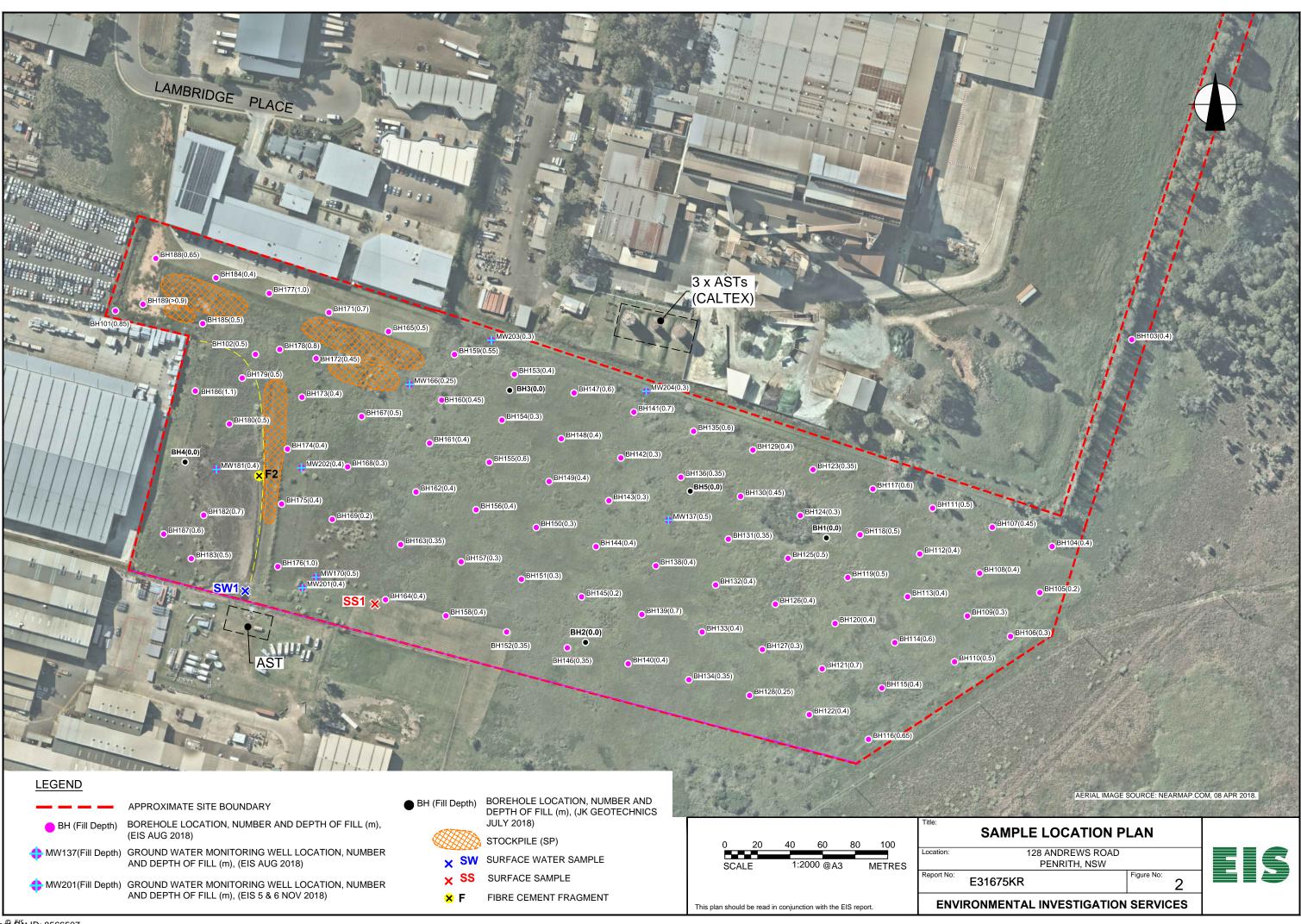
If you have any questions concerning the contents of this letter please do not hesitate to contact us.

Kind Regards

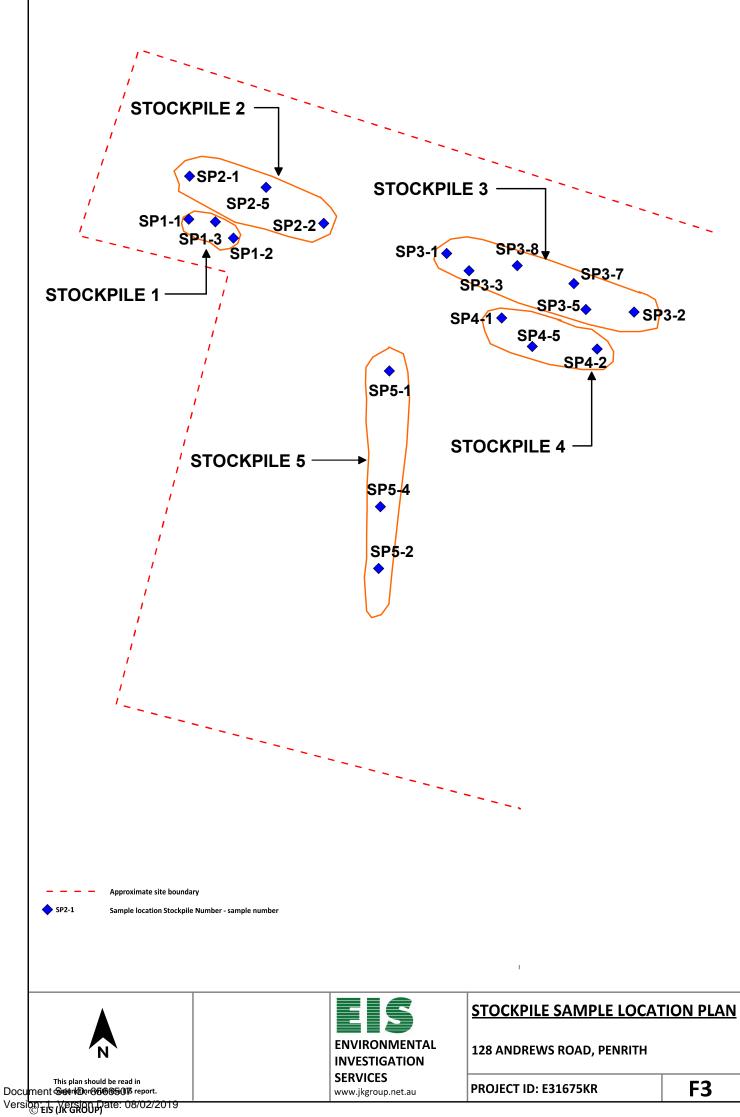
Adrian Kingswell Principal


Vittal Boggaram Principal Associate

Attachments:


Figures Tables Laboratory Reports Borehole Logs Field Documents

Ref: E31675KRadd rev1


Figures

Document Set ID: 8566507 Version: 1, Version Date: 08/02/2019

Document Set ID: 8566507

Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC:	Ambient Background Concentration	PCBs:	Polychlorinated Biphenyls
ACM:	Asbestos Containing Material	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ADWG:	AustralianDrinking Water Guidelines	рН _{ксL} :	
AF:	Asbestos Fines	pH _{ox} :	pH of filtered 1:20 1M KCl after peroxide digestion
ANZECC:	Australian and New Zealand Environment	PQL:	Practical Quantitation Limit
	Conservation Council	RS:	Rinsate Sample
B(a)P:	Benzo(a)pyrene	RSL:	Regional Screening Levels
CEC:	Cation Exchange Capacity	SAC:	Site Assessment Criteria
CRC:	Cooperative Research Centre	SCC:	Specific Contaminant Concentration
CT:	Contaminant Threshold	S _{Cr} :	Chromium reducible sulfur
EILs:	Ecological Investigation Levels	S _{POS} :	Peroxide oxidisable Sulfur
ESLs:	Ecological Screening Levels	SSA:	Site Specific Assessment
FA:	Fibrous Asbestos	SSHSLs	: Site Specific Health Screening Levels
GIL:	Groundwater Investigation Levels	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
HILs:	Health Investigation Levels	TB:	Trip Blank
HSLs:	Health Screening Levels	TCA:	1,1,1 Trichloroethane (methyl chloroform)
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	TCE:	Trichloroethylene (Trichloroethene)
NA:	Not Analysed	TCLP:	Toxicity Characteristics Leaching Procedure
NC:	Not Calculated	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NEPM:	National Environmental Protection Measure	TS:	Trip Spike
NHMRC:	National Health and Medical Research Council	TRH:	Total Recoverable Hydrocarbons
NL:	Not Limiting	TSA:	Total Sulfide Acidity (TPA-TAA)
NSL:	No Set Limit	UCL:	Upper Level Confidence Limit on Mean Value
OCP:	Organochlorine Pesticides	USEPA	United States Environmental Protection Age
OPP:	Organophosphorus Pesticides		Volatile Organic Chlorinated Compounds
PAHs:	Polycyclic Aromatic Hydrocarbons	WHO:	World Health Organisation
ppm:	Parts per million		č
r. r			

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

 ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

						HEAVY N	VETALS					PAHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
ll data in mg,	′kg unless state	d otherwise	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic PAHs	HCB	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
QL - Envirolal	o Services		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
te Assessme	nt Criteria (SAC)	3000	900	3600	240000	1500	730	6000	400000	4000	40	80	2000	2500	45	530	3600	50	2000	7	Detected/Not Detect
Sample Reference	Sample Depth	Sample Description																				
P1-1	Stockpile	Fill	<4	<0.4	12	77	21	<0.1	8	77	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
1-2	Stockpile	Fill	<4	<0.4	14	31	12	<0.1	8	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
2-1	Stockpile	Fill	<4	<0.4	12	27	25	<0.1	7	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
2-2	Stockpile	Fill	<4	<0.4	12	18	25	<0.1	9	42	1.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3-1	Stockpile	Fill	<4	<0.4	16	61	13	<0.1	21	47	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3-2	Stockpile	Fill	<4	<0.4	35	57	19	<0.1	39	95	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
4-1	Stockpile	Fill	<4	<0.4	23	31	13	<0.1	24	38	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
4-2	Stockpile	Fill	4	<0.4	19	27	17	<0.1	24	39	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
5-1	Stockpile	Fill	<4	0.7	10	100	18	<0.1	5	200	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
5-2	Stockpile	Fill	<4	2	42	290	41	<0.1	8	550	0.07	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
1-3	Stockpile	Fill	<4	<0.4	49	66	16	<0.1	42	83	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
2-5	Stockpile	Fill	<4	<0.4	23	35	11	<0.1	41	52	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3-3	Stockpile	Fill	<4	<0.4	17	27	13	<0.1	21	51	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3-5	Stockpile	Fill	<4	<0.4	15	15	11	<0.1	16	40	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3-7	Stockpile	Fill	<4	<0.4	20	34	14	<0.1	29	73	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
3-8	Stockpile	Fill	<4	<0.4	54	55	16	<0.1	49	90	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
94-5	Stockpile	Fill	<4	<0.4	15	22	15	<0.1	14	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
5-4	Stockpile	Fill	<4	<0.4	20	32	13	<0.1	25	59	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
UP PB-1	Stockpile	Fill	<4	<0.4	23	39	13	<0.1	30	60	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Total Numb	er of Samples		19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	18
Maximum V	alue		4	2	54	290	41	<pql< td=""><td>49</td><td>550</td><td>1.5</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	49	550	1.5	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<>	<pql< td=""><td>NC</td></pql<>	NC
Stati	stical Analysis	on Fill Samples																				
Number of F	•		NC	NC	19	19	19	NC	19	19	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Mean Value	-		NC	NC	23	55	19	NC	22	91	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
standard De			NC	NC	12.9	61.1	7.1	NC	13.5	117.4	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
6 UCL			NC	NC	95	95	95	NC	95	95	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
UCL Value			NC	NC	28.5	74.4	20	NC	27.5	208	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

TABLE A

Document Set ID: 8566507 Version: 1, Version Date: 08/02/2019

						ORATORY RESULTS ata in mg/kg unless		iLs				
					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measuremer
QL - Envirol	ab Services				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 H	HSL Land Use	Category					HSL-D: (COMMERCIAL/INI	DUSTRIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
P1-1	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P1-2	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
P2-1	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
P2-2	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P3-1	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P3-2	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P4-1	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P4-2	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P5-1	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P5-2	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
P1-3	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P2-5	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P3-3	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P3-5	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
РЗ-7	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P3-8	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P4-5	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
P5-4	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
OUP PB-1	Stockpile	Fill	0m to < 1m	Clay	<25	<50	<0.2	<0.5	<1	<1	<1	0
					40	10	40	10	10	40		
Fotal Numbo Maximum V	er of Samples	5			19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 0.1</td></pql<></td></pql<></td></pql<></td></pql<>	19 <pql< td=""><td>19 <pql< td=""><td>19 <pql< td=""><td>19 0.1</td></pql<></td></pql<></td></pql<>	19 <pql< td=""><td>19 <pql< td=""><td>19 0.1</td></pql<></td></pql<>	19 <pql< td=""><td>19 0.1</td></pql<>	19 0.1

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirola	ab Services				25	50	0.2	0.5	1	1	1
NEPM 2013 H	HSL Land Use (Category					HSL-D:	COMMERCIAL/IND	USTRIAL		
Sample	Sample	Convolo Decoriation	Depth								
Reference	Depth	Sample Description	Category	Soil Category							
SP1-1	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP1-2	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP2-1	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP2-2	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP3-1	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP3-2	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP4-1	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP4-2	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP5-1	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP5-2	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP1-3	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP2-5	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP3-3	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP3-5	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP3-7	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP3-8	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP4-5	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
SP5-4	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
DUP PB-1	Stockpile	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL

The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

Document Set ID: 8566507 Version: 1, Version Date: 08/02/2019

Copyright Environmental Investigation Services

SP1-1

SP5-1

SP5-2

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs All data in mg/kg unless stated otherwise COMMERCIAL/INDUSTRIAL Land Use Category AGED HEAVY METALS-EILs EILs CEC (cmol_c/kg) pН Zinc Naphthalene DDT C₆-C₁₀ (F1) >C₁₀-C₁₆ (F2) >C₁₆-C₃₄ (F3) >C₃₄-C₄₀ (F4) Arsenic Chromium Copper Lead Nickel B PQL - Envirolab Services 4 1 1 1 0.1 0.1 25 50 100 100 163 122 bient Background Concentration (ABC) NSL 13 28 5 NSL NSL NSL NSL NSL NSL Sample Sample Sample Description Soil Textur Reference Depth Stockpile Fill Fine 6.3 8 18.3 <4 12 77 21 8 77 < 0.1 < 0.1 <25 <50 <100 <100 Fill 6.3 18.3 14 12 42 < 0.1 <0.1 <25 <50 <100 <100 SP1-2 Fine <4 31 Stockpile 8 8 SP2-1 Stockpile Fill Fine 6.3 8 18.3 <4 12 27 25 7 42 < 0.1 < 0.1 <25 <50 <100 <100 SP2-2 Stockpile Fill 6.3 18.3 12 42 <50 <100 Fine <4 18 25 9 < 0.1 <0.1 <25 <100 8 47 SP3-1 Stockpile Fill Fine 6.3 8 18.3 <4 16 61 13 21 < 0.1 < 0.1 <25 <50 <100 <100 SP3-2 Stockpile Fill Fine 6.3 18.3 <4 35 57 19 39 95 < 0.1 < 0.1 <25 <50 <100 <100 8 23 <50 SP4-1 Stockpile Fill Fine 6.3 8 18.3 <4 31 13 24 38 < 0.1 < 0.1 <25 <100 <100 SP4-2 Stockpile Fill Fine 6.3 18.3 19 27 17 24 39 < 0.1 <0.1 <25 <50 <100 <100 4 8 Stockpile Fill Fine 6.3 18.3 <4 10 100 18 5 200 <0.1 < 0.1 <25 <50 <100 <100 8 Stockpile Fill Fine 6.3 8 18.3 <4 42 290 41 8 550 < 0.1 < 0.1 <25 <50 560 <100 Fill 6.3 18.3 49 42 83 SP1-3 Stockpile <4 66 16 < 0.1 < 0.1 <25 <50 <100 <100 Fine 8 SP2-5 Stockpile Fill Fine 6.3 18.3 <4 23 35 11 41 52 < 0.1 < 0.1 <25 <50 <100 <100 8 SP3-3 Fill 6.3 18.3 17 21 51 < 0.1 < 0.1 <25 <50 <100 <100 Fine <4 27 13 Stockpile 8 SP3-5 Stockpile Fill Fine 6.3 8 18.3 <4 15 15 11 16 40 < 0.1 < 0.1 <25 <50 <100 <100 SP3-7 Fill 73 Stockpile Fine 6.3 18.3 <4 20 34 14 29 < 0.1 < 0.1 <25 <50 <100 <100 8 SP3-8 Stockpile Fill Fine 6.3 8 18.3 <4 54 55 16 49 90 < 0.1 < 0.1 <25 <50 <100 <100 Fill 6.3 18.3 22 15 14 42 <0.1 <25 <50 <100 <100 SP4-5 Stockpile Fine <4 15 <0.1 8 SP5-4 Stockpile Fill Fine 6.3 8 18.3 <4 20 32 13 25 59 < 0.1 < 0.1 <25 <50 <100 <100 DUP PB-1 Stockpile Fill 6.3 18.3 23 13 30 60 < 0.1 < 0.1 <25 <50 <100 <100 Fine 8 <4 39 Total Number of Samples 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 Maximum Value 6.3 8 18.3 4 54 290 41 49 550 <PQL <PQL <PQL <PQL 560 <PQL Concentration above the SAC VALUE

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

TABLE C

Land Use Cat	egory												COMMERCIA	L/INDUSTRIAL	-								,
						Clay Content			AGED HEAVY	METALS-EILs			EI	ILs					ESLs				
				рН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirola	ab Services			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
Ambient Back	kground Cor	ncentration (ABC)		-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
SP1-1	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP1-2	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP2-1	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP2-2	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP3-1	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP3-2	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP4-1	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP4-2	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP5-1	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP5-2	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP1-3	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP2-5	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP3-3	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP3-5	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP3-7	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP3-8	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP4-5	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
SP5-4	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172
DUP PB-1	Stockpile	Fill	Fine	6.3	8	18.3	160	673	308	1963	295	742	370	640	215	170	2500	6600	95	135	185	95	172

ESLs		1		
Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
0.2	0.5	1	3	0.05
NSL	NSL	NSL	NSL	NSL
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	0.2
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	0.06
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	0.07
<0.2	<0.5	<1	<3	0.06
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
<0.2	<0.5	<1	<3	<0.05
		1	1	
19	19	19	19	19
<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<>	<pql< td=""><td>0.2</td></pql<>	0.2

							METALS				PA	He	1		PESTICIDES		Total			TRH				PTEV COL	MPOUNDS		
											Total	B(a)P	Total		Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRE
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHs		Endosulfans		Harmful	Scheduled		0 5	10 14	15 20	23 30	C ₁₀ -C ₃₆			benzene	Xylenes	
L - Envirola	o Services		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	250	0.2	0.5	1	3	100
neral Solid	Waste CT1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	<50	<50	650		NSL		10,000	10	288	600	1,000	-
	Waste SCC1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	650		NSL		10,000	18	518	1,080	1,800	-
	d Waste CT2		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	<50	<50	2600		NSL		40,000	40	1,152	2,400	4,000	-
	d Waste SCC2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	<50	<50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample eference	Sample Depth	Sample Description																									
-1	Stockpile	Fill	<4	<0.4	12	77	21	<0.1	8	77	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-2	Stockpile	Fill	<4	<0.4	14	31	12	<0.1	8	42	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-1	Stockpile	Fill	<4	<0.4	12	27	25	<0.1	7	42	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-2	Stockpile	Fill	<4	<0.4	12	18	25	<0.1	9	42	1.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-1	Stockpile	Fill	<4	<0.4	16	61	13	<0.1	21	47	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-2	Stockpile	Fill	<4	<0.4	35	57	19	<0.1	39	95	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-1	Stockpile	Fill	<4	<0.4	23	31	13	<0.1	24	38	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
2	Stockpile	Fill	4	<0.4	19	27	17	<0.1	24	39	0.3	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
1	Stockpile	Fill	<4	0.7	10	100	18	<0.1	5	200	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-2	Stockpile	Fill	<4	2	42	290	41	<0.1	8	550	0.07	0.07	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	260	350	610	<0.2	<0.5	<1	<3	Not Detected
-3 -5	Stockpile	Fill	<4 <4	<0.4	49 23	66 35	16 11	<0.1	42 41	83 52	0.4 <0.05	0.06 <0.05	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<pql <pql< td=""><td><0.2 <0.2</td><td><0.5 <0.5</td><td><1 <1</td><td><3 <3</td><td>Not Detected</td></pql<></pql 	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detected
-3 -3	Stockpile Stockpile	Fill	<4	<0.4	17	27	13	<0.1	21	51	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected Not Detected
-5	Stockpile	Fill	<4	<0.4	15	15	11	<0.1	16	40	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
-7	Stockpile	Fill	<4	<0.4	20	34	14	<0.1	29	73	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
3-8	Stockpile	Fill	<4	<0.4	54	55	16	<0.1	49	90	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
4-5	Stockpile	Fill	<4	<0.4	15	22	15	<0.1	14	42	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
5-4	Stockpile	Fill	<4	<0.4	20	32	13	<0.1	25	59	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
P PB-1	Stockpile	Fill	<4	<0.4	23	39	13	<0.1	30	60	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<pql< td=""><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td>Not Detected</td></pql<>	<0.2	<0.5	<1	<3	Not Detected
	er of samples		19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
/laximum \	/alue		4	2	54	290	41	<pql< td=""><td>49</td><td>550</td><td>1.5</td><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	49	550	1.5	0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>260</td><td>350</td><td>610</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	260	350	610	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<>	<pql< td=""><td>NC</td></pql<>	NC
Stati	stical Analysis	on Fill Samples																									
	Fill Samples	•	NC	NC	19	19	19	NC	19	19	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
/lean Value	•		NC	NC	23	55	17	NC	22	91	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
tandard D	eviation		NC	NC	12.9	61.1	7.1	NC	13.5	117.4	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
UCL			NC	NC	95	95	95	NC	95	95	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
JCL Value			NC	NC	28.5	74.4	20	NC	27.5	208	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
oncentration	above the CT above SCC1 above the SC	1		VALUE																							

					data in μg/L unless						
				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	515
PQL - Envirolab	Services			10	50	1	1	1	3	1	PID
VEPM 2013 - L	and Use Category	/				HSL-D: CC	DMMERCIAL/IN	DUSTRIAL			
Sample Reference	Water Depth	Depth Category	Soil Category								
/W201	7.1	4m to <8m	Clay	<10	<50	<1	<1	<1	<1	<1	3
VW202	6.8	4m to <8m	Clay	<10	<50	<1	<1	<1	<1	<1	0.6
MW203	7.45	4m to <8m	Clay	<10	<50	<1	<1	<1	<1	<1	0.2
WW204	7.7	4m to <8m	Clay	<10	<50	<1	<1	<1	<1	<1	0.4
Total Number	of Samples			4	4	4	4	4	4	4	4
	ue .			<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>3</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>3</td></pql<></td></pql<>	<pql< td=""><td>3</td></pql<>	3

The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

HSL GROUNDWATER ASSESSMENT CRITERIA

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirolab	Services			10	50	1	1	1	3	1
NEPM 2013 - La	nd Use Category	/				HSL-D: CC	DMMERCIAL/IN	DUSTRIAL		
Sample Reference	Water Depth	Depth Category	Soil Category							
MW201	7.1	4m to <8m	Clay	NL	NL	30000	NL	NL	NL	NL
MW202	6.8	4m to <8m	Clay	NL	NL	30000	NL	NL	NL	NL
MW203	7.45	4m to <8m	Clay	NL	NL	30000	NL	NL	NL	NL
MW204	7.7	4m to <8m	Clay	NL	NL	30000	NL	NL	NL	NL

Copyright Environmental Investigation Services

Document Set ID: 8566507 Version: 1, Version Date: 08/02/2019 Additional Investigation 128 Andrews Road, Penrith E31675KR add

SUMMARY OF GROUND		ATORY RESULTS CC in μg/L unless state		COLOGICAL GI	s SAC	
	Airresuits		eu otherwise.			
	PQL Envirolab Services	ANZECC 2000 Fresh Waters	MW201	SAM MW202	PLES MW203	MW204
norganic Compounds and Parameters	0.1	6.5 - 8.5	7	6.8	6.4	6.7
Electrical Conductivity (μS/cm)	1	NSL	490	340	530	360
Non-Metallic Inorganics Ammonia (as NH ₃ -N at pH 7)	0.1	2180	< 0.005	<0.005	150	<0.005
Metals and Metalloids						
Arsenic (As III)	1	24	<1	<1 <0.1	<1	<1
Cadmium Chromium (SAC for Cr III adopted)	0.1	0.2	<0.1	<0.1	<0.1 <1	<0.1 <1
Copper	1	1.4	<1	<1	<1	<1
Lead Total Mercury (inorganic)	1 0.05	3.4 0.06	<1 <0.05	<1 <0.05	<1 <0.05	<1 <0.05
Nickel	1	11	<1	<1	<1	<1
Zinc	1	8	6	7	5	2
Monocyclic Aromatic Hydrocarbons (BTEX Com Benzene	1	950	<1	<1	<1	<1
Toluene	1	180	<1	<1	<1	<1
Ethylbenzene m+p-xylene	1 2	80 75	<1 <2	<1 <2	<1 <2	<1 <2
p-xylene	1	350	<1	<1	<1	<1
Total xylenes Volatile Organic Compounds (VOCs), including	2 chlorinated VO	NSL	<3	<3	<3	<3
Dichlorodifluoromethane	10	NSL	<10	<10	<10	<10
Chloromethane	10	NSL	<10	<10	<10	<10
Vinyl Chloride Bromomethane	10 10	100 NSL	<10 <10	<10 <10	<10 <10	<10 <10
Chloroethane	10	NSL	<10	<10	<10	<10
Trichlorofluoromethane	10	NSL 700	<10	<10	<10	<10
1,1-Dichloroethene Trans-1,2-dichloroethene	1	700 NSL	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dichloroethane	1	90	<1	<1	<1	<1
Cis-1,2-dichloroethene	1	NSL	<1	<1	<1	<1
Bromochloromethane Chloroform	1	NSL 370	<1 <1	<1 <1	<1 <1	<1 <1
2,2-dichloropropane	1	NSL	<1	<1	<1	<1
1,2-dichloroethane	1	1900	<1	<1	<1	<1
1,1,1-trichloroethane 1,1-dichloropropene	1	270 NSL	<1 <1	<1 <1	<1 <1	<1 <1
Cyclohexane	1	NSL	<1	<1	<1	<1
Carbon tetrachloride	1	240	<1	<1	<1	<1
Benzene Dibromomethane	1	see BTEX NSL	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dichloropropane	1	900	<1	<1	<1	<1
Trichloroethene Bromodichloromethane	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1
trans-1,3-dichloropropene	1	NSL	<1	<1	<1	<1
cis-1,3-dichloropropene	1	NSL	<1	<1	<1	<1
1,1,2-trichloroethane Toluene	1	6500 see BTEX	<1 <1	<1 <1	<1 <1	<1 <1
1,3-dichloropropane	1	1100	<1	<1	<1	<1
Dibromochloromethane	1	NSL	<1	<1	<1	<1
1,2-dibromoethane Tetrachloroethene	1	NSL 70	<1 <1	<1 <1	<1 <1	<1 <1
1,1,1,2-tetrachloroethane	1	NSL	<1	<1	<1	<1
Chlorobenzene	1	55	<1	<1	<1	<1
Ethylbenzene Bromoform	1	see BTEX NSL	<1 <1	<1 <1	<1 <1	<1 <1
m+p-xylene	2	see BTEX	<2	<2	<2	<2
Styrene	1	NSL	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	1	400 see BTEX	<1 <1	<1 <1	<1 <1	<1 <1
1,2,3-trichloropropane	1	NSL	<1	<1	<1	<1
Isopropylbenzene	1	30 NSI	<1	<1	<1	<1
Bromobenzene n-propyl benzene	1	NSL NSL	<1 <1	<1 <1	<1 <1	<1 <1
2-chlorotoluene	1	NSL	<1	<1	<1	<1
4-chlorotoluene 1,3,5-trimethyl benzene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1
Tert-butyl benzene	1	NSL	<1 <1	<1	<1	<1 <1
1,2,4-trimethyl benzene	1	NSL	<1	<1	<1	<1
1,3-dichlorobenzene Sec-butyl benzene	1	260 NSL	<1 <1	<1 <1	<1 <1	<1 <1
1,4-dichlorobenzene	1	60	<1	<1	<1	<1
4-isopropyl toluene	1	NSL	<1	<1	<1	<1
1,2-dichlorobenzene n-butyl benzene	1	160 NSL	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dibromo-3-chloropropane	1	NSL	<1	<1	<1	<1
1,2,4-trichlorobenzene Hexachlorobutadiene	1	85 NSL	<1 <1	<1 <1	<1 <1	<1 <1
Hexachlorobutadiene 1,2,3-trichlorobenzene	1	NSL 3	<1 <1	<1 <1	<1 <1	<1 <1
Polycyclic Aromatic Hydrocarbons (PAHs)						
Naphthalene Acenaphthylene	0.2	16 NSL	<0.2	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1
Acenaphthene	0.1	NSL	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1	NSL	<0.1	<0.1	<0.1	<0.1
Phenanthrene Anthracene	0.1	0.6	<0.1	<0.1	<0.1	<0.1 <0.1
Fluoranthene	0.1	1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1	NSL	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	0.1	NSL	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1
Benzo(b,j+k)fluoranthene	0.1	NSL	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	0.1	0.1	<0.1	<0.1	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	0.1	NSL	< 0.1	<0.1	<0.1	< 0.1

Copyright Environmental Investigation Services

Г

	All results in mg/kg ur	nless stated o	therwise			
SAMPLE	ANALYSIS	Envirolab	INITIAL	REPEAT	MEAN	RPD %
ample Ref = SP1-3	Arsenic	PQL 4		<4	NC	⁷⁰ NC
up Ref = PB-1	Cadmium	4 0.4	<0.4	<0.4	NC	NC
up kei – PD-1	Chromium	0.4	49	23	36.0	72
nvirolab Report: 205182	Copper	1	66	39	52.5	51
	Lead	1	16	13	14.5	21
		0.1	<0.1	<0.1	NC	NC
	Mercury Nickel	1	42	30	36.0	33
	Zinc	1	83	60		32
		0.1	<0.1	<0.1	71.5 NC	NC
	Naphthalene Acenaphthylene	0.1	<0.1	<0.1	NC	NC
	Acenaphthene	0.1	<0.1	<0.1	NC	NC
	Fluorene	0.1	<0.1	<0.1	NC	NC
	Phenanthrene	0.1	0.1	<0.1	0.1	67
	Anthracene	0.1	<0.1	<0.1	NC	NC
	Fluoranthene	0.1	0.1	<0.1	0.1	67
	Pyrene	0.1	0.1	<0.1	0.1	67
	Benzo(a)anthracene	0.1	<0.1	<0.1	NC	NC
	Chrysene	0.1	<0.1	<0.1	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	<0.2	<0.2	NC	NC
	Benzo(a)pyrene	0.05	0.06	<0.05	0.0	82
	Indeno(123-cd)pyrene	0.1	<0.1	<0.1	NC	NC
	Dibenzo(ah)anthracene	0.1	<0.1	<0.1	NC	NC
	Benzo(ghi)perylene	0.1	<0.1	<0.1	NC	NC
	Total OCPs	0.1	<0.1	<0.1	NC	NC
	Total OPPs	0.1	<0.1	<0.1	NC	NC
	Total PCBs	0.1	<0.1	<0.1	NC	NC
	TRH C_6 - C_{10} (F1)	25	<25	<25	NC	NC
	$TRH > C_{10} - C_{16} (F2)$	50	<50	<50	NC	NC
	TRH > C_{16} - C_{34} (F3)	100	<100	<100	NC	NC
	TRH >C ₃₄ -C ₄₀ (F4)	100	<100	<100	NC	NC
	Benzene	0.2	<0.2	<0.2	NC	NC
	Toluene	0.5	<0.5	<0.5	NC	NC
	Ethylbenzene	1	<1	<1	NC	NC
	m+p-xylene	2	<2	<2	NC	NC
	o-xylene	1	<1	<1	NC	NC

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

TABLE H GROUNDWATER INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in µg/L unless stated otherwise								
SAMPLE	ANALYSIS	Envirolab PQL	INITIAL	REPEAT	MEAN	RPD %		
Sample Ref = MW204	Arsenic	1	<1	<1	NC	NC		
Dup Ref = DUP MP1	Cadmium	0.1	<0.1	<0.1	NC	NC		
	Chromium	1	<1	<1	NC	NC		
Envirolab Report: 205400	Copper	1	<1	<1	NC	NC		
	Lead	1	<1	<1	NC	NC		
	Mercury	0.05	<0.05	<0.05	NC	NC		
	Nickel	1	<1	1	1	67		
	Zinc	1	2	4	3	67		
	Naphthalene	0.2	<0.2	<0.2	NC	NC		
	Acenaphthylene	0.1	<0.1	<0.1	NC	NC		
	Acenaphthene	0.1	<0.1	<0.1	NC	NC		
	Fluorene	0.1	<0.1	<0.1	NC	NC		
	Phenanthrene	0.1	<0.1	<0.1	NC	NC		
	Anthracene	0.1	<0.1	<0.1	NC	NC		
	Fluoranthene	0.1	<0.1	<0.1	NC	NC		
	Pyrene	0.1	<0.1	<0.1	NC	NC		
	Benzo(a)anthracene	0.1	<0.1	<0.1	NC	NC		
	Chrysene	0.1	<0.1	<0.1	NC	NC		
	Benzo(b,j+k)fluoranthene	0.2	<0.2	<0.2	NC	NC		
	Benzo(a)pyrene	0.1	<0.1	<0.1	NC	NC		
	Indeno(123-cd)pyrene	0.1	<0.1	<0.1	NC	NC		
	Dibenzo(ah)anthracene	0.1	<0.1	<0.1	NC	NC		
	Benzo(ghi)perylene	0.1	<0.1	<0.1	NC	NC		
	Total VOCs	0.1	<0.1	<0.1	NC	NC		
	TRH C6-C10 (F1)	10	<10	<10	NC	NC		
	TRH >C10-C16 (F2)	50	<50	<50	NC	NC		
	TRH >C16-C34 (F3)	100	<100	<100	NC	NC		
	TRH >C34-C40 (F4)	100	<100	<100	NC	NC		
	Benzene	1	<1	<1	NC	NC		
	Toluene	1	<1	<1	NC	NC		
	Ethylbenzene	1	<1	<1	NC	NC		
	m+p-xylene	2	<2	<2	NC	NC		
	o-xylene	1	<1	<1	NC	NC		

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Additional Investigation 128 Andrews Road, Penrith E31675KR add

TB ^w TS1 ^w									
	PQL								
ANALYSIS		12/11/2008	12/11/2018						
	μg/L	<i>(</i>)	24 P						
		μg/L	% Recovery						
RH C6-C10 (F1)	10	<10	NA						
Benzene	1	<1	107%						
oluene	1	<1	104%						
thylbenzene	1	<1	107%						
n+p-xylene	2	<2	109%						
-xylene	1	<1	109%						
x planation: ⁷ Sample type (water)									

Laboratory Reports

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 205182

Client Details	
Client	Environmental Investigation Services
Attention	Priya Dass
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E31675KR, Penrith
Number of Samples	19 soil
Date samples received	08/11/2018
Date completed instructions received	08/11/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 13/11/2018

 Date of Issue
 13/11/2018

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner, Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Lucy Zhu, Asbesetos Analyst Steven Luong, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

Client Reference: E31675KR, Penrith

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	97	97	97	101

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		205182-11	205182-15	205182-17	205182-18
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	98	97	98

Client Reference: E31675KR, Penrith

svTRH (C10-C40) in Soil						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	10/11/2018	10/11/2018	10/11/2018	10/11/2018	10/11/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	75	76	75	77	75

svTRH (C10-C40) in Soil					
Our Reference		205182-11	205182-15	205182-17	205182-18
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	10/11/2018	10/11/2018	10/11/2018	10/11/2018
TRH C10 - C14	mg/kg	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	78	76	76	75

Client Reference: E31675KR, Penrith

PAHs in Soil						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.4	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	90	91	91	93	92

PAHs in Soil					
Our Reference		205182-11	205182-15	205182-17	205182-18
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	90	91	87

Organochlorine Pesticides in soil						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	130	134	128	130

Organochlorine Pesticides in soil					
Our Reference		205182-11	205182-15	205182-17	205182-18
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	105	103	102

Organophosphorus Pesticides						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	130	134	128	130

Organophosphorus Pesticides					
Our Reference		205182-11	205182-15	205182-17	205182-18
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	105	103	102

PCBs in Soil					_	
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	124	130	134	128	130

PCBs in Soil					
Our Reference		205182-11	205182-15	205182-17	205182-18
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil
Date extracted	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	108	105	103	102

Acid Extractable metals in soil						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	49	23	17	15	20
Copper	mg/kg	66	35	27	15	34
Lead	mg/kg	16	11	13	11	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	42	41	21	16	29
Zinc	mg/kg	83	52	51	40	73

Acid Extractable metals in soil						
Our Reference		205182-11	205182-15	205182-17	205182-18	205182-20
Your Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1	SP1-3 - [TRIPLICATE]
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	54	15	20	23	32
Copper	mg/kg	55	22	32	39	43
Lead	mg/kg	16	15	13	13	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	49	14	25	30	33
Zinc	mg/kg	90	42	59	60	69

Moisture						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Date analysed	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Moisture	%	4.9	3.6	2.1	0.6	2.0
Moisture						
Moisture Our Reference		205182-11	205182-15	205182-17	205182-18	
	UNITS	205182-11 SP3-8	205182-15 SP4-5	205182-17 SP5-4	205182-18 DUP PB-1	-
Our Reference Your Reference	UNITS					-
Our Reference	UNITS	SP3-8	SP4-5	SP5-4	DUP PB-1	
Our Reference Your Reference Date Sampled	UNITS	SP3-8 06/11/2018	SP4-5 06/11/2018	SP5-4 06/11/2018	DUP PB-1 06/11/2018	
Our Reference Your Reference Date Sampled Type of sample		SP3-8 06/11/2018 soil	SP4-5 06/11/2018 soil	SP5-4 06/11/2018 soil	DUP PB-1 06/11/2018 soil	

Asbestos ID - soils						
Our Reference		205182-1	205182-5	205182-6	205182-8	205182-10
Your Reference	UNITS	SP1-3	SP2-5	SP3-3	SP3-5	SP3-7
Date Sampled		06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	09/11/2018	09/11/2018	09/11/2018	09/11/2018	09/11/2018
Sample mass tested	g	Approx. 25g	Approx. 25g	Approx. 20g	Approx. 30g	Approx. 20g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils				
Our Reference		205182-11	205182-15	205182-17
Your Reference	UNITS	SP3-8	SP4-5	SP5-4
Date Sampled		06/11/2018	06/11/2018	06/11/2018
Type of sample		soil	soil	soil
Date analysed	-	09/11/2018	09/11/2018	09/11/2018
Sample mass tested	g	Approx. 20g	Approx. 25g	Approx. 20g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Trace Analysis	-	detected No asbestos	detected No asbestos	detected No asbestos
		detected	detected	detected

Asbestos ID - materials		
Our Reference		205182-19
Your Reference	UNITS	F2
Date Sampled		06/11/2018
Type of sample		soil
Date analysed	-	09/11/2018
Mass / Dimension of Sample	-	152x140x20mm
Sample Description	-	Grey compressed fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of</pql></pql></pql>
• • • • •	the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	205182-5	
Date extracted	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018	
Date analysed	-			12/11/2018	1	12/11/2018	12/11/2018		12/11/2018	12/11/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	115	96	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	115	96	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	109	91	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	112	93	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	116	98	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	118	100	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	118	100	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	100	1	98	97	1	109	98	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	205182-5
Date extracted	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018
Date analysed	-			10/11/2018	1	10/11/2018	10/11/2018		10/11/2018	10/11/2018
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	90	105
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	85	103
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	93	105
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	90	105
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	85	103
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	93	105
Surrogate o-Terphenyl	%		Org-003	77	1	75	75	0	73	76

QUALI	TY CONTRC	L: PAHs	in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	205182-5	
Date extracted	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018	
Date analysed	-			12/11/2018	1	12/11/2018	12/11/2018		12/11/2018	12/11/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	104	104	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	107	105	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	112	111	
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	103	105	
Pyrene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	91	95	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	110	111	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.06	<0.05	18	107	109	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	89	1	90	91	1	87	87	

QUALITY CONT	ROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	205182-5	
Date extracted	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018	
Date analysed	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018	
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	107	109	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	119	126	
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	106	110	
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	115	122	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	120	112	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	122	113	
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	119	112	
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	116	122	
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	114	135	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	97	90	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-005	84	1	124	112	10	120	110	

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides	Duplicate					Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	205182-5		
Date extracted	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018		
Date analysed	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	120	89		
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	106	97		
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	110	104		
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	101	98		
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	78	79		
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	104	97		
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	126	86		
Surrogate TCMX	%		Org-008	84	1	124	112	10	109	118		

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	205182-5
Date extracted	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018
Date analysed	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	115	96
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	84	1	124	112	10	109	112

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	205182-5
Date prepared	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018
Date analysed	-			09/11/2018	1	09/11/2018	09/11/2018		09/11/2018	09/11/2018
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	106	88
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	99	88
Chromium	mg/kg	1	Metals-020	<1	1	49	29	51	103	164
Copper	mg/kg	1	Metals-020	<1	1	66	40	49	103	173
Lead	mg/kg	1	Metals-020	<1	1	16	14	13	101	101
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	113	115
Nickel	mg/kg	1	Metals-020	<1	1	42	36	15	97	123
Zinc	mg/kg	1	Metals-020	<1	1	83	71	16	99	122

Result Definiti	esult Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos: Excessive sample volumes were provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 205182-6,11 were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil - Spike recovery for Cr and Cu in sample #5 at 164% and 173% respectively which is outside lab acceptance criteria (70-130%), however, the LCS recovery is acceptable at 103% for both elements, sample heterogeneity suspected.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 205182-1 for Cr. Therefore a triplicate result has been issued as laboratory sample number 205182-20.

				SAMP	LE AND	CHAIN OF	CUS	TOD	Y FO	RM		_						
<u>to:</u> Envirolab	SERVI	CES PTY LTD		EIS Job												S		
12 ASHLEY S				Number							INVESTIGATION							
CHATSWOOL		2067									SERVICES REAR OF 115 WICKS ROAD							ł
P: (02) 99106 F: (02) 99106				Require	suits · nt•	-STANUARD-	5.0	aay	5					RK, N				
Attention: Aileen				Incquires													5001	
				Page:		9]			Atter	tion:	· · · ·		Priya	Dass	···· ·	
Location:	Penrit	h .	Sample Preserved in Esky on Ice															
Sampler:									·		τ. 	ests R	lequir	ed			, 1	
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	втех	Asbestos			
6/11/18	1	SP1-3		G, A	0.0	11:7			1	~								
	2	SP1-4		1	1													
	3	SP2-B				V .												
	Ψ	SP2-4																
	5	SP2-5							1	~								
	6	SP3-3								V	1		ENVIR	e R A J O	Cha		12 As d NSI	hley S
	7	SP3-4												No:	4	Ph: (0	2) 991	v 206 0 620
	8	SP3-5								5	1					βi {		
	9	SP3-6							1				Date Time	Recei Recei	ved: (12	118	5
	10	SP3-7					-			V			Recei	ved P	y:	En	K	
	11	SP3 -8											Coolir	lg: Ye	/Icep	ack -	ľ	
	12	SP3-9										-	Secur	ity: In	acive	roken	None	
	13	SP4-3								_		1						
	14	SP4-4																
										~								
	lb	SP5-3																
	17	SP5-4				1				~	1							
	18	DUP PB-1		$ \downarrow$	- ,{				V									
	19	EF2				Notérial	<u> </u>								ア			
							Ŷ											
	_																	
1																		
					· ·													
Remarks (co	mment	s/detection li	mits required	d): 			G - 2 A - Z	50mg			-		(4	 2	,			
Relinquished	i By: P	riya Dass		Date: 8	3/11/18		Time	K.			Rece	ived I	^{By:} //	νX	、·	Date	: 30 1	
					1 1		16)	∞		II	len	WY	EL	S	08	30.1	в

•

.

Document Set ID: 8566507 Version: 1, Version Date: 08/02/2019

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Priya Dass

Sample Login Details	
Your reference	E31675KR, Penrith
Envirolab Reference	205182
Date Sample Received	08/11/2018
Date Instructions Received	08/11/2018
Date Results Expected to be Reported	13/11/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	19 soil
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	5.4
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	Asbestos ID - materials	On Hold
SP1-3	✓	✓	✓	✓	\checkmark	\checkmark	✓	✓		
SP1-4										\checkmark
SP2-3										\checkmark
SP2-4										\checkmark
SP2-5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
SP3-3	✓	✓	✓	\checkmark	\checkmark	✓	✓	\checkmark		
SP3-4										\checkmark
SP3-5	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓		
SP3-6										✓
SP3-7	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓		
SP3-8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
SP3-9										✓
SP4-3										\checkmark
SP4-4										✓
SP4-5	✓	✓	✓	✓	✓	✓	✓	✓		
SP5-3										✓
SP5-4	✓	✓	✓	✓	✓	✓	✓	✓		
DUP PB-1	✓	✓	✓	✓	✓	✓	✓			
F2									✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 205400

Client Details	
Client	Environmental Investigation Services
Attention	Priya Dass
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E31675KR, Penrith
Number of Samples	7 WATER
Date samples received	12/11/2018
Date completed instructions received	12/11/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	16/11/2018						
Date of Issue	16/11/2018						
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.						
Accredited for compliance with	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Jeremy Faircloth, Organics Supervisor Leon Ow, Chemist Nick Sarlamis, Inorganics Supervisor Steven Luong, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

Envirolab Reference: 205400 Revision No: R00

Document Set ID: 8566507 Version: 1, Version Date: 08/02/2019

VOCs in water					
Our Reference		205400-1	205400-2	205400-3	205400-4
Your Reference	UNITS	MW201	MW202	MW203	MW204
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER
Date extracted	-	15/11/2018	15/11/2018	15/11/2018	15/11/2018
Date analysed	-	16/11/2018	16/11/2018	16/11/2018	16/11/2018
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1
Bromoform	μg/L	<1	<1	<1	<1

VOCs in water					
Our Reference		205400-1	205400-2	205400-3	205400-4
Your Reference	UNITS	MW201	MW202	MW203	MW204
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER
m+p-xylene	µg/L	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1
o-xylene	µg/L	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	103	104	104	101
Surrogate toluene-d8	%	95	97	97	97
Surrogate 4-BFB	%	98	98	97	98

vTRH(C6-C10)/BTEXN in Water						
Our Reference		205400-1	205400-2	205400-3	205400-4	205400-5
Your Reference	UNITS	MW201	MW202	MW203	MW204	TS
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	15/11/2018	15/11/2018	15/11/2018	15/11/2018	14/11/2018
Date analysed	-	16/11/2018	16/11/2018	16/11/2018	16/11/2018	15/11/2018
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	<1	107%
Toluene	µg/L	<1	<1	<1	<1	104%
Ethylbenzene	µg/L	<1	<1	<1	<1	107%
m+p-xylene	µg/L	<2	<2	<2	<2	109%
o-xylene	µg/L	<1	<1	<1	<1	109%
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	103	104	104	101	102
Surrogate toluene-d8	%	95	97	97	97	100
Surrogate 4-BFB	%	98	98	97	98	101

vTRH(C6-C10)/BTEXN in Water			
Our Reference		205400-6	205400-7
Your Reference	UNITS	DUP MP1	ТВ
Date Sampled		12/11/2018	12/11/2018
Type of sample		WATER	WATER
Date extracted	-	14/11/2018	14/11/2018
Date analysed	-	15/11/2018	15/11/2018
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	µg/L	<1	<1
Naphthalene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	100	103
Surrogate toluene-d8	%	96	96
Surrogate 4-BFB	%	99	101

svTRH (C10-C40) in Water						
Our Reference		205400-1	205400-2	205400-3	205400-4	205400-6
Your Reference	UNITS	MW201	MW202	MW203	MW204	DUP MP1
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
Date analysed	-	15/11/2018	15/11/2018	15/11/2018	15/11/2018	15/11/2018
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	97	91	90	107

PAHs in Water - Low Level						
Our Reference		205400-1	205400-2	205400-3	205400-4	205400-6
Your Reference	UNITS	MW201	MW202	MW203	MW204	DUP MP1
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
Date analysed	-	15/11/2018	15/11/2018	15/11/2018	15/11/2018	15/11/2018
Naphthalene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	NIL (+)VE				
Surrogate p-Terphenyl-d14	%	82	89	87	89	92

HM in water - dissolved						
Our Reference		205400-1	205400-2	205400-3	205400-4	205400-6
Your Reference	UNITS	MW201	MW202	MW203	MW204	DUP MP1
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER	WATER
Date prepared	-	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
Date analysed	-	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
Arsenic-Dissolved	µg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	<1	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	<1	<1	1
Zinc-Dissolved	µg/L	6	7	5	2	4

Miscellaneous Inorganics					
Our Reference		205400-1	205400-2	205400-3	205400-4
Your Reference	UNITS	MW201	MW202	MW203	MW204
Date Sampled		12/11/2018	12/11/2018	12/11/2018	12/11/2018
Type of sample		WATER	WATER	WATER	WATER
Date prepared	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018
Date analysed	-	12/11/2018	12/11/2018	12/11/2018	12/11/2018
рН	pH Units	7.0	6.8	6.4	6.7
Electrical Conductivity	µS/cm	490	340	530	360
Ammonia as N in water	mg/L	<0.005	<0.005	0.15	<0.005

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			15/11/2018	[NT]		[NT]	[NT]	15/11/2018	
Date analysed	-			16/11/2018	[NT]		[NT]	[NT]	16/11/2018	
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	100	
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	97	
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	112	
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	103	
1,1-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	109	
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	107	
trans-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	105	
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	110	
1,1,1,2-tetrachloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-013	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
o-xylene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	L: VOCs ii	n water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Isopropylbenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-013	101	[NT]		[NT]	[NT]	99	
Surrogate toluene-d8	%		Org-013	97	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-013	98	[NT]		[NT]	[NT]	105	

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water							Duplicate Spike Rec		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			15/11/2018	[NT]		[NT]	[NT]	15/11/2018	
Date analysed	-			16/11/2018	[NT]		[NT]	[NT]	16/11/2018	
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	113	
TRH C ₆ - C ₁₀	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	113	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	108	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	113	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	116	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	115	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	115	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	101	[NT]		[NT]	[NT]	99	
Surrogate toluene-d8	%		Org-016	97	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-016	98	[NT]		[NT]	[NT]	105	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate Spike Recove			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			14/11/2018	[NT]		[NT]	[NT]	14/11/2018	
Date analysed	-			14/11/2018	[NT]		[NT]	[NT]	14/11/2018	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	116	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	99	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	116	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	99	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	92	[NT]		[NT]	[NT]	106	

Envirolab Reference: 205400 Revision No: R00

QUALITY CO	NTROL: PAH	ls in Wate	r - Low Level			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]		
Date extracted	-			14/11/2018	[NT]		[NT]	[NT]	14/11/2018			
Date analysed	-			15/11/2018	[NT]		[NT]	[NT]	15/11/2018			
Naphthalene	µg/L	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	80			
Acenaphthylene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Acenaphthene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluorene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	91			
Phenanthrene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	93			
Anthracene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluoranthene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	97			
Pyrene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	88			
Benzo(a)anthracene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Chrysene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	96			
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	93			
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene	µg/L	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-012	88	[NT]		[NT]	[NT]	92			

QUALITY CC	NTROL: HN	1 in water	- dissolved			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date prepared	-			14/11/2018	[NT]		[NT]	[NT]	14/11/2018		
Date analysed	-			14/11/2018	[NT]		[NT]	[NT]	14/11/2018		
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101		
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	101		
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105		
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99		
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101		
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	90		
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104		
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101		

Envirolab Reference: 205400 Revision No: R00

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			12/11/2018	[NT]		[NT]	[NT]	12/11/2018		
Date analysed	-			12/11/2018	[NT]		[NT]	[NT]	12/11/2018		
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	102		
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	104		
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]		[NT]	[NT]	100		

Envirolab Reference: 205400 Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 205400 Revision No: R00

			JANIF	LE AND	UNAIN OF	000	100	Tru	NIN						_		
TO: ENVIROLAB 12 ASHLEY CHATSWOO	STREET		EIS Job Number:	[E31675KR]			ENVI	RONN	TIÔN					S
P: (02) 9910(F: (02) 9910(6200	KUU.	Date Results Required:	7 	3 Days]			REAP		I15 WI	RK N	ISW 2 ⁴	113	5001	
Attention: A	ileen		Page:	[1	INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 Attention: Priva Dass Sample Preserved in Esky on Ice Tests Required Sample Preserved in Esky on Ice Sample Preserved in Esky											
Location:	Penrith	1	· · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>		-	Sam	·				on ice			
Sampler:	<u>+</u>	<u>. </u>	<u> </u>	Ë ji	<u>,</u>											<u> </u>	
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	vocs	pH/EC	8 Metals	PAHs	TRH/BTEX	BTEX	Hardness	Ammonia		
12/11/2018	,	MW201	G1, 2V, H, PVC				X	\mathbb{X}	X						Д		
	2	<u>MW202</u>			<u> </u>		X	IХ	X		,			ļ	ľХ	 	
	3	MW203			<u> </u>		X	<u>X</u>	ĮХ						<u>Д</u>		
	4	MW204			ļ		X	X	X				 		X		
	x	TIS							L				X		-		
1	Ь	DupMPI		· · · ·	<i>-</i> -		X						-) 	• •		
	7.	Exoha 7B-	-		<u> </u>												
					,					\$			E	nvirol	b Ser	vices	+
										<u>و</u>	2000	\mathbb{M}	Chat F	wnod	NSW	2067	7
									*			· ·	Z ved:	5) 12	lul	100 15	
				:							Time	Rece	ived:	16. M	er S		
·	·,	Γ						i 			(n)	1. T U	h all ce	pack Broke	n/No	ne	
															-		
		Addition limit	ts required): CC (2000) Detection	n Limits Ple	ase	G1 - V - B	ple Co 500ml TEX V - HDP	L Amb /ial	ber Gla H -	HNO3	Wash			nber G	ilass I	Bottle	1
Relinquishe	d By: Pri	ya Dass	Date: (2000- 12/11/	18		Time		<u> </u>	3.00			iy: Yau	٦ Z		Date 12/	lilia 6 200	f S

,

SAMPLE AND CHAIN OF CUSTODY FORM

.

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Priya Dass

Sample Login Details	
Your reference	E31675KR, Penrith
Envirolab Reference	205400
Date Sample Received	12/11/2018
Date Instructions Received	12/11/2018
Date Results Expected to be Reported	16/11/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	7 WATER
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	8.1
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
EXTRA TB RECEIVED	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	Hq	Electrical Conductivity	Ammonia as N in water
MW201	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
MW201 MW202	✓ ✓	✓ ✓	✓ ✓	✓ ✓	✓ ✓	√ √	√ √	√ √
	<u> </u>		-		-			✓ ✓ ✓
MW202	✓	1	-	✓	✓			✓ ✓ ✓ ✓
MW202 MW203	✓ ✓	✓ ✓	✓ ✓	✓ ✓	✓ ✓	√ √		✓ ✓
MW202 MW203 MW204	✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓	✓ ✓	√ √		✓ ✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Borehole Logs

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Borehole No. **MW201**

1/2

Γ	Clier	nt:	CADE	NCE	PROP	ERTY	GROUP PTY LTD				
	Proje		PROP								
	Loca	tion:	128 A	NDRE	REWS ROAD, PENRITH, NSW						
		No. E31			Method: SPIRAL AUGER/TUBEX R.L. Surface: N/A JK500 Deture:						ace: N/A
	Date	: 05/11/	2018			Logo	jed/Checked by: P.B./A.K.		D	atum:	
		S.				LUGE				~	
	Groundwater Record	ES ASS SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
				0			FILL: Silt, low plasticity, brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-
				- - - - - - - - - - - - - - - - - - -		ML	SILT: low plasticity, orange brown, trace of fine to medium grained sand.	W <pl< td=""><td></td><td></td><td></td></pl<>			
COPYRIGHT	12/11/18			4 - - 5 - - - - - - - - - - - - - -		GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	D			

ENVIRONMENTAL LOG

Borehole No. **MW201**

2/2

Environmental logs are not to be used for geotechnical purposes

Client:	CADE	INCE	PROP	ERTY	GROUP PTY LTD							
Project:	PRO	POSE) waf	REHO	USE							
Location:	128 A	NDRE	WS R	OAD,	PENRITH, NSW							
Job No. E Date: 05/		IKEOO							R.L. Surface: N/A Datum:			
				Logo	ged/Checked by: P.B./A.K.							
Groundwater Record ES ASB ASB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
		- - - 8 - - - - -	ဗီမီ ဗုန္မာ ဗေနာက် ဗန္နာ ဗိန္နာ မိန့် ဗန္နာ ဗန္နာ ဗိန္နာ ဗိန္နာ ဗိန္နာ ဗိန္နန္း ဗိန္နာနာ နန္န ဗိန္န ဗိန္နာ ဗိန္နာ ဗိန္နာ	GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	M			- - - - - -			
		9 			END OF BOREHOLE AT 9.0m				GROUNDWATER MOINTORING WE INSTALLED TO 8. CLASS 18 MACHI SLOTTED 50mm I PVC STANDPIPE 2.5m TO 8.5m. CASING 0.0m TO 2.5m TO SURFAC 2mm SAND FILTE PACK 5.5m TO 8. BENTONITE SEAL 5.0m TO 5.5m. BACKFILLED TO SURFACE. COMPLETED 0.47 ABOVE GROUND			
		- - - - - - - - - - - - - - - - - - -							- - - -			
									- - - -			

ENVIRONMENTAL LOG

EIS Borehole No. **MW202**

1/2

Environmental logs are not to be used for geotechnical purposes

Clier Proje Loca		PROF	CADENCE PROPERTY GROUP PTY LTD PROPOSED WAREHOUSE 128 ANDREWS ROAD, PENRITH, NSW											
	No. E31 : 05/11/		IKEOO							R.L. Surface: N/A Datum:				
					Logo	ged/Checked by: P.B./A.K.								
Groundwater Record	ES ASS ASB SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
			0			FILL: Silt, low plasticity, brown, trace of root fibres.	w <pl< td=""><td></td><td>-</td><td></td></pl<>		-					
			1- - - - - - - - - - - - - - - - - - -		ML	SILT: low plasticity, orange brown, trace of fine to medium grained sand.	w <pl< td=""><td></td><td></td><td></td></pl<>							
2/11/18			4		GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	D			- · · · · · · · · · · · · · · · · · · ·				

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Borehole No. **MW202**

2/2

	Clier Proj Loca		PRO	POSE	D WAF	REHO	' GROUP PTY LTD USE PENRITH, NSW				
ſ		No. E:	31675KR 1/2018	18 JK500						.L. Surf atum:	ace: N/A
-	Groundwater Record	SAMPLES	Tests	(m)	hic Log	Unified Classification	ged/Checked by: P.B./A.K.	ure lition/ hering	gth/ Density	Hand Penetrometer Readings (kPa.)	Remarks
	Ground	SAL ASB SAL	Field Tests	(E) ++++++++++++++++++++++++++++++++++++		GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	A Moisture S Condition/	Strength/ Rel. Density	Hand Penetro Reading	GROUNDWATER MOINTORING WELL INSTALLED TO 8.5m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 2.5m TO 8.5m. CASING 0.0m TO 2.5m TO SURFACE. 2mm SAND FILTER PACK 5.5m TO 8.5m. BENTONITE SEAL 5.0m TO 5.5m. BACKFILLED TO THE SURFACE. COMPLETED 0.61m ABOVE GROUND
COPYRIGHT				13 -	-						

ENVIRONMENTAL LOG

IS Borehole No. **MW203**

1/2

Environmental logs are not to be used for geotechnical purposes

Γ	Clier	nt:	CADE	NCE	PROP	ERTY	GROUP PTY LTD				
	Proje	ect:	PROP	OSEI	D WAF	REHO	JSE				
	Loca	tion:	128 Al	NDRE	EWS ROAD, PENRITH, NSW						
ſ		No. E31 : 06/11/				Method: SPIRAL AUGER/TUBEX R.L. Surface: N/A JK500 Datum:					ace: N/A
						Logg	ed/Checked by: P.B./A.K.				
	Groundwater Record	ES ASB SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
				0			FILL: Silt, low plasticity, brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-
						ML	SILT: low plasticity, orange brown, trace of fine to medium grained sand.	w <pl< td=""><td></td><td></td><td>- - - - - - - - - - - - -</td></pl<>			- - - - - - - - - - - - -
COPYRIGHT	12/11/18			4 - - 5 - - - - - - - - - - - - - -		GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	D			- · · · · · · · · · · · · · · · · · · ·

ENVIRONMENTAL LOG

Borehole No. **MW203**

2/2

Environmental logs are not to be used for geotechnical purposes

Clier	nt:	CADE	NCE	PROP	ERTY	GROUP PTY LTD				
Proj	ect:	PROF	POSE	D WAF	REHO	USE				
Loca	ation:	128 A	NDRE	EWS R	OAD,	PENRITH, NSW				
	No. E31 : 06/11/2	IKEOO							L. Surf	ace: N/A
					Logo	ged/Checked by: P.B./A.K.				
Groundwater Record	ASS ASB SAL DB DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			-	A and the charge of the second	GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	M			-
			8 9 - 9 - 10 - 11 - 11 - 12 - 12 - 13 -			END OF BOREHOLE AT 8.0m				GROUNDWATER MOINTORING WEL INSTALLED TO 8.0 CLASS 18 MACHIN SLOTTED 50mm DI PVC STANDPIPE 2.0m TO 8.0m. CASING 0.0m TO 2.0m TO SURFACE 2mm SAND FILTER PACK 4.5m TO 8.0r BENTONITE SEAL 4.0m TO 4.5m. BACKFILLED TO TI SURFACE. COMPLETED 1.08n ABOVE GROUND

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Borehole No. **MW204**

1/2

Client: Project: Location:	PROPOSE	D WAF	REHO	GROUP PTY LTD USE PENRITH, NSW				
Job No. E31 Date: 06/11/				od: SPIRAL AUGER/TUBEX JK500 ged/Checked by: P.B./A.K.			.L. Surf atum:	ace: N/A
Groundwater Record <u>ASS</u> ASB SAMPLES DB	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			GM	FILL: Silt, low plasticity, brown, trace of root fibres. SILT: low plasticity, orange brown, trace of fine to medium grained sand.	w <pl w<pl< th=""><th></th><th></th><th></th></pl<></pl 			

ENVIRONMENTAL LOG

Borehole No. **MW204**

2/2

Environmental logs are not to be used for geotechnical purposes

Clie						GROUP PTY LTD						
Proj Loca	ation:	PROP 128 Al				PENRITH, NSW						
	No. E31 : 06/11/	IKEOO							R.L. Surface: N/A Datum:			
					Logo	ged/Checked by: P.B./A.K.						
Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
			-	AP CHARGE CA	GM	Sandy silty GRAVEL: fine to coarse grained, dark grey brown, with sandy silt, low plasticity, orange brown.	M			-		
			9 - - - - - - - - - - - - - - - - - -			END OF BOREHOLE AT 8.0m				GROUNDWATER MOINTORING WEI INSTALLED TO 8.0 CLASS 18 MACHIN SLOTTED 50mm D PVC STANDPIPE 2.0m TO 8.0m. CASING 0.0m TO 2.0m TO SURFACE 2mm SAND FILTEF PACK 4.5m TO 8.0 BENTONITE SEAL 4.0m TO 4.5m. BACKFILLED TO T SURFACE. COMPLETED 1.080 ABOVE GROUND		
			- 11 - - -	-						- - - -		
			12 - - - -	-						- - - -		
			13 - - - - 14_	-						-		

ENVIRONMENTAL LOGS EXPLANATORY NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 'Geotechnical Site Investigations'. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤ 25	≤ 12
Soft (S)	> 25 and ≤ 50	> 12 and \leq 25
Firm (F)	> 50 and ≤ 100	> 25 and \leq 50
Stiff (St)	>100 and ≤ 200	> 50 and \leq 100
Very Stiff (VSt)	>200 and ≤400	> 100 and \leq 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainabl	e – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating interlaminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

```
N > 30
15, 30/40mm
```

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

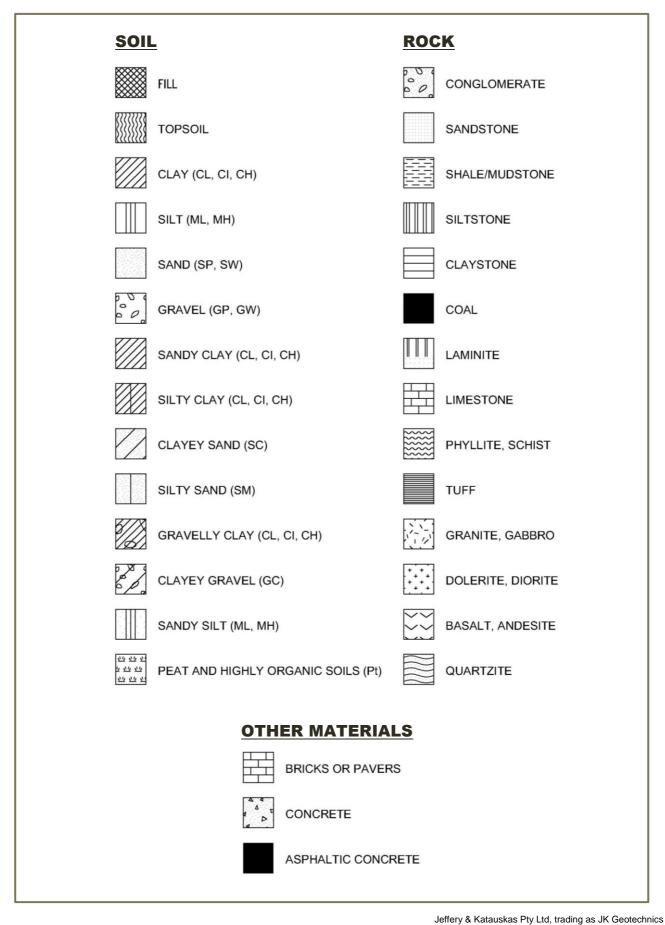
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

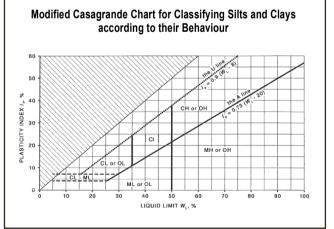
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Major	r Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory C	Classification
Ze	GRAVEL (more	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 4 1 < C _c < 3
soil excluding oversize 075mm)	than half of coarse fraction is larger than	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% fines	Fails to comply with above
	2.36mm	GM	Gravel-silt mixtures and gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
n 65% ol er than 0		GC	Gravel-clay mixtures and gravel-sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
more tha is great	SAND (more	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 6 1 < C _c < 3
ned soil (mo fraction is	than half of coarse fraction	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Coarse grained soil (more than 65% of fraction is greater than 0.	is smaller than	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coc	2.36mm)	SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group			Field Classification o Silt and Clay	f	Laboratory Classification
Majo	r Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
luding)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
35% (OL	Organic silt	Low to medium	Slow	Low	Below A line
(more than ction is less	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
s (mor action	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
grained soils oversize fra		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
ine gra	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_u = \frac{D_{60}}{D_{10}}$$
 and $C_c = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and \leq 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

LOG SYMBOLS

Log Column	Symbol	Definition
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown. Extent of borehole/test pit collapse shortly after drilling/excavation. Groundwater seepage into borehole or test pit noted during drilling or excavation.
Samples	ES U50 DB DS ASB ASS SAL	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.
Field Tests	$N = 17 \\ 4, 7, 10 \\ N_c = 5 \\ 7 \\ 3R \\ R$	 Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment. Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.
	VNS = 25 PID = 100	Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).
Moisture Condition (Fine Grained Soils)	w> PL w≈ PL w< PL w≈ LL w> LL	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.
(Coarse Grained Soils)	D M W	 DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface.
Strength (Consistency) Cohesive Soils	VS S St VSt Hd Fr ()	VERY SOFT– unconfined compressive strength < 25kPa.SOFT– unconfined compressive strength > 25kPa and < 50kPa.
Density Index/ Relative Density (Cohesionless Soils)	VL L MD D VD ()	$\begin{tabular}{ c c c c c } \hline Density Index (I_D) & SPT 'N' Value Range (Blows/300mm) \\ \hline Range (%) & (Blows/300mm) \\ \hline VERY LOOSE & \leq 15 & 0-4 \\ LOOSE & > 15 and \leq 35 & 4-10 \\ \hline MEDIUM DENSE & > 35 and \leq 65 & 10-30 \\ \hline DENSE & > 65 and \leq 85 & 30-50 \\ \hline VERY DENSE & > 85 & > 50 \\ \hline Bracketed symbol indicates estimated density based on ease of drilling or other assessment. \\ \hline \end{tabular}$
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.

Log Symbols continued

Log Column	Symbol	Definition	
Remarks	'V' bit	Hardened steel '	V' shaped bit.
	'TC' bit	Twin pronged tu	ngsten carbide bit.
	T_{60}		uger string in mm under static load of rig applied by drill head ut rotation of augers.
	Soil Origin	The geological o	rigin of the soil can generally be described as:
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock.
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock.
		ALLUVIAL	- soil deposited by creeks and rivers.
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents.
		MARINE	- soil deposited in a marine environment.
		AEOLIAN	- soil carried and deposited by wind.
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits.
		LITTORAL	 beach deposited soil.

Classification of Material Weathering

Term		Abbre	viation	Definition
Residual Soil		R	S	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered		Х	W	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered (Note 1)	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered		MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		Ś	W	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'.* There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is(50) (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Field Documents

FIELD CALIBRATION FORM

PID		¢.	
Make: MiniRAE	Model: 2000	Unit: RGM7350	Date of last factory calibration:
Date of calibration:		Name of Calibrator:	Cambration. 19KINA
Calibration gas: Iso-butyle	ene	Calibration Gas Concer	tration: 100.0 ppm
Measured reading:		Error in measured readi	·····
Measured reading Accept			
DISSOLVED OXYGE			
Make:		Model: Aqua DY	
Date of calibration:		Name of Calibrator:	rp
Span value: 70% to 130%	%	17 17	
Measured value: 10			
Measured reading Accept	able (Yes/No):		N
pH METER			
Make: Orion		Model: Four star	
Date of calibration: 12/11	lia	Name of Calibrator:	MMP
Buffer 1: Theoretical pH =	7.01± 0.01	Expiry date:	Lot No:
Buffer 2: Theoretical pH =	4.01± 0.01	Expiry date: OSI P	Lot No: 312725
Measured reading of Buffe	er 1: 7.0°1		
Measured reading of Buffe	er 2: 4.14		
Slope:		Measured reading A	Acceptable (Yes/No):
	ſER		
Make: Orion		Model: Four star	
Date: 12/11/14	Name of Calibrator:	MMP	Temperature: 18.7 °C
Calibration solution: 1412	uslen @25°C	Expiry date: 06 19	Lot No: 313391
Theoretical conductivity at	temperature (see solu	ution container): 126/	μS/cm
Measured conductivity: V2	β μS/cm	Measured reading A	Acceptable (Yes/No):
REDOX METER			
Make: Orion		Model: Four star	
Date of calibration: velu	rd	Name of Calibrator:	NP
	to mV	Expiry date: 61/23	Lot No: 1422
Theoretical redox value:	2	240mV	
Measured redox reading:	237 mV	Measured reading A	Acceptable (Yes/No):

Client:	Cadence Property Gr	nun Ptv I tel		-	Job No.:		E31675KR
Project:	Proposed Warehouse				Well No.:		
Location:	128 ANDREWS ROA				Depth (m)		MW 201
/ 4	SH DETAILS	D, I LINNI, NOI			Depar (m)		8.5
	1		1				
	Gatic Co	ver 🛄	Standpipe	J 0.9	m	Other (describ	e)
WELL DEV	ELOPMENT DETAILS		A54				
Method:		Bailer	S	WL – Before (m): 7.0	25-0.	47 = 6.55
Date:			V 1 V	ime – Before:	5/11/	2018 ~3	3 pm
Undertaker		PB'		WL – After (m	6.75	5 - 0.	47 = 6.28
Total Vol. F		5 (0	tyy) T	ime – After:	6/11/2	018 1	Spri
PID Readin		0					
Comments							
	IENT MEASUREMEN				EC		
VOIL	(L)	Temp (°C)	(mg/		(µS/m)	pН	Eh (mV)
			and contracts and address				

			•••				
				•••••			

	-						
			_				

						******	******
		***************************************				*********	
Comments:	Odours (YES / NO)	NAPL/PSH (YES	J J NO). Shee	n (YES / NO)	Steady State	Achieved (YES	/ NO)
	hydroc						····,
Fested By:	PB	Remar					
	2/11	amic - All me		re corrected to	ground level		
Date Tested	5/11/	2018 - All sta	ited Volumes a		water level		
	1. CON 5			ion for standing ons - difference		than 0.2 units ar	nd
				livity less than			
Checked By	8/11/0	dillere	nice in conduc	ivity iess than	0.00		

.

	ONMENTAL INV		SERVIC	ES					EIS]
Client:	Cadence Property Gr	oup Pty Ltd				Job No	3		E31675KR	1
Project:	Proposed Warehouse	•••••••••••••••••••••••••••••••••••••••	*********	***************		Well No).:		MW202	1
Location:	128 ANDREWS ROA	D, PENRITH, NSW		n menninga kolona na		Depth ((m):		8.5	1
WELL FINI	SH DETAILS									1
	Gatic Co		Standpi	pe 🗹	0.5	m	Other (d	escribe)]
	ELOPMENT DETAILS	_						1.		
Method:		Bailer		SWL - Bet				7.	010-061=6	.4
Date:		5/11/2	018	Time – Be				5/	1/18 3pm	
Undertaker	*************************	PB		SWL - Aft				b. 1	05-0.61=6	701
Total Vol. I			dry)	Time – Aft	er:			6/1	18 5 m	da
PID Readin Comments		0'	1.1							P
Contraction of the local division of the loc	MENT MEASUREMEN	TS								
Volu	ume Removed	Temp (°C)		DO		EC			Eb ()()	1
	(L)	Temp (-C)	(mg/L)	(µ	S/m)		pH	Eh (mV)	
			<u> </u>							
										1
										1
										1
			1							1
				*******				**********		1
				*************						1
	******************************		1		[*********				
						*********		*******		1
	********************************							•••••		
								********		1
************			1	•••••••						
*******	******									
							a di Sababahid Dia			

			·							
	******	*********************			*********	*******				
Comments	Odours (YES / NO)	, NAPL/PSH (YES	/ NO), SI	heen (YES /	NO), Ste	ady Sta	te Achieve	d (YES /	NO)	
	o hydro					-		- (,	
Tested By:	PR	Remark	KS:							
Date Tested		- All me - All sta - SWL i	asurement ted Volum s an abbre	ts are correctors are in Litre viation for sta ditions - differ	s Inding wa	iter level		units and		
Checked By		differe	nce in con	ductivity less	than 10%	5				
Date:	8/11/	- Minim	um 3 moni	toring well vo	lumes are	e purged				

Project: Proposed Warehouse Well No.: M W 203 Jocation: 128 ANDREWS ROAD, PENRITH, NSW Depth (m): 8 · O VELL FINISH DETAILS Gatic Cover Standpipe 1.0 · M Other (describe) VELL DEVELOPMENT DETAILS Standpipe 1.0 · M Other (describe) VELL DEVELOPMENT DETAILS SWL - Before (m): 7.02.6 Ø Method: Bailuni SWL - Before (m): 7.02.6 Ø Date: 6./11/201% Time - Before: 6./11/201% Indertaken By: 9.8 SWL - After (m): 7.9 Total Vol. Removed: 5.0 0.5 Time - After: 6/11/201% (.eS) Somments: 0 0 0 0 0	Project: Proposed Warehouse Well No.: M W 203 .ocation: 128 ANDREWS ROAD, PENRITH, NSW Depth (m): S: 0 WELL FINISH DETAILS Gatic Cover Standpipe 1.0 m Other (describe) WELL DEVELOPMENT DETAILS Standpipe 1.0 m Other (describe) Image: Cover WELL DEVELOPMENT DETAILS SWL - Before (m): 7.026 Image: Cover		INGINEERS			112-2-1		EIS		
Ocation: 128 ANDREWS ROAD, PENRITH, NSW Depth (m): Stock VELL FINISH DETAILS Gatic Cover Standpipe 1.0 m Other (describe) VELL DEVELOPMENT DETAILS Method: Standpipe 1.0 m Other (describe) VELL DEVELOPMENT DETAILS Method: SWL - Before (m): 7.026 Indertaken By: Other (describe) Time - Before: Other (describe) Other (describe) Other (describe) Time - Before: Other (describe) Other (describe) Other (describe) Time - Before: Other (describe) Other (Jocation: 128 ANDREWS ROAD, PENRITH, NSW WELL FINISH DETAILS Gatic Cover Gatic Cover Gatic Cover Standpipe VELL DEVELOPMENT DETAILS Method: Bailan SWL - Before (m): 7.026 Joate: Gatic Cover Gatic Cover Bailan SWL - Before (m): 7.026 Joate: Gatic Bailan SWL - Before (m): 7.026 Joate: Gatic Cover Gatic Cover Bailan SWL - Before (m): 7.026 Joate: Gatic Cover Gatic Cover Bailan SWL - Before (m): 7.026 Joate:	lient: Cadence Property G	roup Pty Ltd		********	Job No.:				
Ocation: 128 ANDREWS ROAD, PENRITH, NSW Depth (m): Stock VELL FINISH DETAILS Gatic Cover Standpipe 1.0 m Other (describe) VELL DEVELOPMENT DETAILS Method: Standpipe 1.0 m Other (describe) VELL DEVELOPMENT DETAILS Method: SWL - Before (m): 7.026 Indertaken By: Other (describe) Time - Before: Other (describe) Other (describe) Other (describe) Time - Before: Other (describe) Other (describe) Other (describe) Time - Before: Other (describe) Other (Jocation: 128 ANDREWS ROAD, PENRITH, NSW WELL FINISH DETAILS Gatic Cover Gatic Cover Gatic Cover Standpipe VELL DEVELOPMENT DETAILS Method: Bailan SWL - Before (m): 7.026 Joate: Gatic Cover Gatic Cover Bailan SWL - Before (m): 7.026 Joate: Gatic Bailan SWL - Before (m): 7.026 Joate: Gatic Cover Gatic Cover Bailan SWL - Before (m): 7.026 Joate: Gatic Cover Gatic Cover Bailan SWL - Before (m): 7.026 Joate:	roject: Proposed Warehous	e			Well No.: MW203				
Gatic Cover Standpipe Other (describe) VELL DEVELOPMENT DETAILS Method: Bailway SWL - Before (m): 7.026 Date: G////201% Time - Before: G////2018 Indertaken By: PB SWL - After (m): 7.026 Total Vol. Removed: PB SWL - After (m): 7.72 ID Reading (ppm): O Filme - After: G//// 201% (#5) Somments: DO EC pH Eb (mV)	Gatic Cover Standpipe 1.0 m Other (describe) WELL DEVELOPMENT DETAILS Method: Bailway SWL - Before (m): 7.026 SWL Date: G////201% Time - Before: G////2018 SWL - After (m): 7.026 SWL Indertaken By: PB SWL - After (m): 7.026 SWL SWL - After (m): 7.026 SWL Total Vol. Removed: SWL - After (m): 7.026 SWL SWL - After: 9.57 9.57 Other (describe) Difference SWL - After: 9.57 9.57 9.57 Other Meading (ppm): O EC pH Eb (m)() Comments: DO EC pH Eb (m)()	ocation: 128 ANDREWS RO	AD, PENRITH, NSW			Depth (m):		8.0		
VELL DEVELOPMENT DETAILS Bailuni SWL - Before (m): 7.026 Indertaken By: 6/11/2016 Time - Before: 6/11/2018 Indertaken By: PB SWL - After (m): D.5 y Indertaken By: 9.05 Time - After: 6/11/2018 ID Reading (ppm): 0 Time - After: 6/11/2018 (#5) Somments: 0 0 EC DH EVELOPMENT MEASUREMENTS DO EC DH Eb (mV)	VELL DEVELOPMENT DETAILS Nate: Bailunt SWL - Before (m): Pate: 6////2016 Indertaken By: PB otal Vol. Removed: Disconstruction DD Reading (ppm): O Somments: EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC pH	ELL FINISH DETAILS								
ELL DEVELOPMENT DETAILS ethod: Bailun SWL - Before (m): 7.026 6////2018 ate: 6////2016 Time - Before: 6////2018 6////2018 indertaken By: PB SWL - After (m): D.5.4 otal Vol. Removed: 5 D.5.4 Time - After: 0.5.4 D Reading (ppm): 0 Time - After: 6////2018 (#5) omments: EVELOPMENT MEASUREMENTS D0 EC pH Eb (mV)	Description Bailon SWL - Before (m): 7.026 SWL - Before: 6/11/2018 Fine - After: Fine - After: </td <td>Gatic C</td> <td>over</td> <td>Standnin</td> <td></td> <td>0</td> <td>)ther (describe)</td> <td>7</td>	Gatic C	over	Standnin		0)ther (describe)	7		
Method: Bailway SWL - Before (m): 7.026 Date: 6/11/2016 Time - Before: 6/11/2018 Indertaken By: PB SWL - After (m): Difference: Indertaken By: PB SWL - After (m): Difference: Indertaken By: G Difference: G/11/2018 Indertaken By: PB SWL - After (m): Difference: Indertaken By: G Difference: G/11/2018 Indertaken By: Image: Difference: G/11/2018 G/11/2018 <td>Method: Bailwa SWL - Before (m): 7.026 Date: 6/11/2016 Time - Before: 6/11/2018 Undertaken By: PB SWL - After (m): Dify Otal Vol. Removed: 5 Dify Time - After: G/11/2018 PID Reading (ppm): 0 Fine - After: G/11/2018 G/11/2018 Comments: 0 0 EC pH Eb (m)()</td> <td></td> <td>s</td> <td>Standpip</td> <td></td> <td></td> <td>other (describe) L</td> <td></td>	Method: Bailwa SWL - Before (m): 7.026 Date: 6/11/2016 Time - Before: 6/11/2018 Undertaken By: PB SWL - After (m): Dify Otal Vol. Removed: 5 Dify Time - After: G/11/2018 PID Reading (ppm): 0 Fine - After: G/11/2018 G/11/2018 Comments: 0 0 EC pH Eb (m)()		s	Standpip			other (describe) L			
ate: 6/11/2016 Time - Before: 6/11/2018 ndertaken By: PB SWL - After (m): Dify otal Vol. Removed: 5 Dify Time - After: 6/11/2018 ID Reading (ppm): 0 Time - After: 6/11/2018 6/11/2018 omments: 0 0 EC oH Eb (mV)	ate: 6/11/2015 Time - Before: 6/11/2015 ndertaken By: PB SWL - After (m): D 5 y otal Vol. Removed: 5 D 5 y Time - After: 6/11/2015 ID Reading (ppm): 0 Time - After: 6/11/2015 6/11/2015 omments: 0 0 EC pH Eb (m)() Volume Removed Temp (°C) D0 EC pH Eb (m)()				SWL - Before	e (m):	2	026 60		
Indertaken By: D D D otal Vol. Removed: 5 (D + y) Time - After (m): D + y ID Reading (ppm): 6//// 201% (#5) omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (°C)	Indertaken By: PB SWL – After (m): D f y Indertaken By: SWL – After (m): D f y Indertaken By: G(11/12018 (150)) Indertaken By: Time – After: ID Reading (ppm): G(11/12018 (150)) ID Reading (ppm): Image: SWL – After: ID Reading (ppm): <	ate:		.1						
otal Vol. Removed: 5 (D+5y) Time - After: 6/11/2018 (+5) ID Reading (ppm): 0 6/11/2018 (+5) omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (*C) D0	otal Vol. Removed: 5 D sy Time – After: 6/11/1.201% (+5)? ID Reading (ppm): 0 6/11/1.201% (+5)? omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (*C) D0	ndertaken Bv:								
D Reading (ppm): omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC oH Eb (mV)	D Reading (ppm): omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC pH Eb (m)()						T 0-			
omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC oH Eb (mV)	omments: EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC pH Eb (m)()			ry)				12018 (05)		
EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC pH Eb (mV)	EVELOPMENT MEASUREMENTS Volume Removed Temp (°C) DO EC pH Eb (m)()									
Volume Removed Temp (°C) DO EC pH Eb (m)()	Volume Removed Temp (°C) DO EC DH Eb (m)()		ITS							
(L) ισιιμ (σ) (mg/L) (μS/m) pri Eh (mV)	(L) remp (C) (mg/L) (µS/m) PH Eh (mV)		1		00	EC	-14	EL (_1)		
	Image: section of the section of th	(L)	Temp (-C)	(m	ig/L)	(µS/m)	рн	En (mv)		

								+		
omments:Odours (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO) No hydrocarba odows a Sheen		ested By: ate Tested:	- All state	urements d Volume	are corrected s are in Litres iation for standi	to ground level				

 $\mathbf{R} = \{\mathbf{R}\}$

ú

		ENGINEERS				EIS
Client:	Cadence Property G	Froup Pty Ltd		Job No.:		E31675KR
Project:	Proposed Warehous	3e		Well No.:		MW 204
Location:	128 ANDREWS RO	AD, PENRITH, NSW		Depth (m):	8.01
WELL FINI	SH DETAILS					
	Gatic C		Standpipe	1.0 m	Other (describe)	7
WELL DEV	ELOPMENT DETAIL					
Method:		Baila	/ SWL – Be	fore (m):	7.	020-108:
Date:		6/11/20		fore:	6/11	118 500
Undertake	n By:	PB	SWL - Af	ær (m):	7.2	345 (5.15)
Total Vol. I	Removed:	201	Time – Af	************************	61	1110
PID Readir	ng (ppm):	0				(.1.
Comments	5:					
	MENT MEASUREMEN	NTS				
Volu	ume Removed (L)	Temp (°C)	DO (mg/L)	EC (µS/m)	рН	Eh (mV)
		1	(iiig/L)	(µo/m)		

************		1				

		1				+
			*****			+
Comments	Odours (YES / NC), NAPL/PSH (YES	I / NO), Sheen (YES /	NO), Steady State	Achieved (YFS /	NO)
					•	,
	Quick for	echarge	well.			
	No hil	echarge Wocab	ada.s.	~ I	cluser	
Tested By:		Remarks			sneen	
	++5	**************	surements are correct	ed to ground level		
Date Tested	d: , /.	- All state	ed Volumes are in Litre	s		
	6/11/		an abbreviation for sta			
Checked By	PD		state conditions - diffe ce in conductivity less		than 0.2 units and	
	and the second of the second	und of		0.011.1070		

× 18

5

Client:	lient: Cadence Property Gro					Froup Pty I to				Job No.: E31675		
Project: Proposed Ware							*******		Well No.:		NU201	
				EWS ROAD, PENRITH, NSW					Depth (m):		10.35	
WELL FINISH	Η	12071101							Deptil (m).		10.00	
	Gatic Cov	er		10	🖌 Sta	ndpipe				Other (desc	ribe)	
WELL PURG		.S:				in the		501	STRACT H	EIGHT OF	the second se	
Method:						SWL – Be	fore:	7.1-01	47 = 6.63			
Date:			12 11-6				Time – Before:		13:20	10		
Undertaken I	By:		MMP					Total Vol Removed:				
Pump Progra	am No:		***************************************					PID (ppm):		3.0		
PURGING / S	SAMPLING	G MEASUR	EMENTS									
Time (n		SWL (m)	Vol (L)		Notes		Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)	
Pur	P	Unda	6	pull	from	7-	10m	See D.	4			
	•											
											10101000000000000	

							18.	۱.				

				ani sinanini se san								

				nber, Yx		s, (x I	1617-00	itica x H2	Achieved (YE		d plastic	
ested By: P	riya Dass	Phys	- 1.0	Remark		0	- 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1	×				
Date Tested:			**********	- All me	easureme		corrected t					
	12/1						n for stand			.		
Checked By: PD Date: 12/11/18				- Steady state conditions - difference in the pH less than 0.2 units and difference in conductivity less than 10%								

¥

	Warehous REWS RO/	AD, PENRITH, NSW			Well No.: Depth (m):		1-25	
r	REWS RO				Depth (m):	é	1.25	
		i i i i i i i i i i i i i i i i i i i						
; ;		🖌 Standı	🖌 Standpipe			Other (describe)		
					RACT HEIGHT			
Method: Ren		Itic Pump	SWL – Be	fore:	6.8-0	-61=6.19		
	12/11/18	<u>, </u>	Time – Be	fore:	12.05			
	Mpp		Total Vol	Removed:	42	en persida a financia existi provina en pers		
			PID (ppm):		0.6			
MEASUR	EMENTS							
SWL (m)	Vol (L)	Notes		(mg/L)	EC (µS/cm)	рН	Eh (mV)	
7.19	<u> </u>		19.9				-71.9	
7.39			19.0				-118.0	
7.66	3			0.6	263.6	6.90	-72.1	
7.67	4		18.9	0.0	267.4	6.91	-170.1	
REFAILLED			V					
						 		
						1		
				*******		+		
	******	*******					-	
						 		
							-	
						 		
						ļ		
						_		
					1	I		
C 1/10	NAPL/P	SH (YES (NO), Sheen	(YES /(NO), S	teady State	Achieved (YE	\$ / NO)	-	
	SWL (m) 7.19 7.39 7.60 7.67	MMP MEASUREMENTS SWL (m) Vol (L) 7.19 7.66 3 7.67 4 7.67 4 7.77 4 7.777 4 7.777 4 7.777 4 7.7777 4 7.7777777777	MAC MEASUREMENTS SWL (m) Vol (L) Notes 7. 19 7. 19 7. 6 7. 6 7. 6 7. 4 7. 6 7. 6 7. 6 7. 6 7. 6 7. 6 7. 6 7. 6 7. 7 7. 7	MMP MEASUREMENTS SWL (m) Vol (L) Notes Temp (°C) 7. 19 1 19.9 7. 29 2 9.0 7. 6 3 19.6 7. 6 3 19.6 7. 6 7 4 18.9 7. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MM () Total Vol PID (ppm) MEASUREMENTS SWL (m) Vol (L) Notes Temp (°C) DO (mg/L) 7.1A 1 19.4 1 S 7.3A 2 G G 7.3A 2 G G 7.6G 3 G G 7.6G 3 7.6G <	ハヘク Total Vol Removed: PID (ppm): MEASUREMENTS SWL (m) Vol (L) Notes Temp (°C) DO (mg/L) EC (µS/cm) 7.19 1 19.4 1.5 25(5.5 7.6	MMO Total Vol Removed: AL PID (ppm): O.6 MEASUREMENTS Tamp (°C) Model pH 7.19 1 19.9 1.5 24.6 0.7 7.07 7.29 2 (A.O.O.O.6 27.3 0.6 7.67 7.60 3 (A.O.O.O.6 27.3 0.6 6.9 7.67 4 (A.O.O.O.6 26.7 4.6 9.1 7.67 4 (A.O.O.O.6 26.7 4.6 9.1 7.67 4 (A.9 0.6 26.7 4.9 1.9 9 0.6 26.7 4.6 9.1 1.9 1.9 1.9 9 1.9	

1.11

Client:	Cadence Property Group Pty Ltd Job No.: E										
Project:		Warehouse									
Location:			D, PENRITH, NSW			Well No.:		1203			
WELL FINISH	120 ANDI		, T EINRITH, NOVV			Depth (m):		3.2			
	Gatic Cover			🗙 Standpipe			Other (describe)				
WELL PURGE DET						SUBTRACT HEIGHT					
Method:	Nethod:		ic fund	SWL - Be	SWL – Before:		1.08=6.				
Date:)ate:			Time – Be	fore:	11:05					
Undertaken By:		MAR		Total Vol Removed:							
Pump Program No:					PID (ppm):		0.2				
PURGING / SAMPL	ING MEASUR	EMENTS									
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)			
11:15	7.50			21.2	1.2	540	6.55	82.7			
Pump 1	able	6	 م								
	~~	1									
					 		1				

							_				
					ļ		_				
							_				
							a loop of an				

					******		1				
							1	+			
							1	•••••••			
								+			
Pommonte: Odai						A					
Sampling Cont	ainers Used:	(x glass amb		x H2NO3 plas		·		l plastic			
Fested By: Priya Da			Remarks:								
Date Tested:	Phillip		 All measurements are corrected to ground level SWL is an abbreviation for standing water level 								
Checked By: P	D						2 units and				
	TUTIS		- Steady state conditions - difference in the pH less than 0.2 units and difference in conductivity less than 10%								

1

ENVIRONMENTAL INVESTIGATION SERVICES

CONSULTING ENVIRONMENTAL ENGINEERS

Client:	Cadence	Property G	roup Pty Ltd	o Pty Ltd			Job No.: E31675KR			
Project:	Proposed	Warehous	e	Well No.: Mur2ou						
Location:			D, PENRITH, NSW			Depth (m):	9.15m			
WELL FINISH	120 ANDREWO KOAD, I ENKITH, NOW					Beptil (iii).		7.13~		
Gatic C	over		X Standy	oipe		1	Other (desc	ribe)		
WELL PURGE DET						SUB	RACT HE			
Method:		Decie	altic pump		SWL - Bet					
Date: Jndertaken By:		12/11	diffic porp	Time – Be		7.71-1.08=6.62				
		MM	()	Total Vol Removed: PID (ppm):		8L 0.4				
Pump Program No:										
PURGING / SAMPLI					(ppm)		0.7			
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pH	Eh (mV)		
0930	7.7	ι –		19.9	3.2	430.6	7.01	1983		
0945	7.72	2		A. 96	2.3	354.11	7.14	1941.7		
0950	7.73	3	*******	R.6	2.0	3385	7.08	181.8		
0945						***************	6.90			
	7.73	<u>4</u>		F8.5	1.9	330.4		164.4		
0959	7.73	5		46.5	2.0	325.0	6.95	141.1		
1005	7.73	6	**********	198.5	2.1	319.1	679	(04.1		
011	7.74	7		19.6	2.2	315.7	6.74	69.1		
0014	7.73	В		19-6	2.4	325.3	6.75	15.7		
	ainers Used: \ ICFOFA	x glass an aboue	BH (YES / NO), Sheen ober, 4 x BTEX vials, 1 9,00,00 Sources Remarks: - All measurements a - SWL is an abbrevia	x H2NO3 plas	tic, \ x H2S	O4 plastic,) x		d plastic		
Checked By: P	D		- SWL is an abbreviation for standing water level - Steady state conditions - difference in the pH less than 0.2 units and							
ate: 12	111/18		difference in conductivity less than 10%							

EIS