

Thornton Central Village

Development Application 1 Transport Impact Assessment

Client: Thornton Operations Pty Ltd

on 24/11/2021

Reference: 301400273

Issue #: A

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
А	24/11/2021	Final	Connor Hoang Mackenzie Brinums	Tim De Young	Tim De Young	T.DY

CONTENTS

1.	Introduction	1
	1.1. Background	2
	1.2. Purpose of this Report	4
	1.3. References	4
2.	Existing Conditions	5
	2.1. Site Context	6
	2.2. Road Network	7
	2.3. Traffic Volumes	10
	2.4. Intersection Operation	11
	2.5. Crash History	12
	2.6. Car Parking	13
	2.7. Public Transport Network	14
	2.8. Walking and Cycling Infrastructure	15
3.	Proposed Development	16
	3.1. Land Uses	17
	3.2. Bicycle Parking	18
	3.3. Car Parking	18
	3.4. Vehicle Access	19
	3.5. Loading Areas	19
4.	Parking Assessment	20
	4.1. Provision	21
	4.2. Design	22
5.	Loading and Waste Collection	24
	5.1. Loading Provision	25
	5.2. Loading Dock Layout	26
	5.3. Waste Collection	26
	5.4. Loading Dock and Waste Collection Management	26
6.	Sustainable Transport	28
	6.1. Bicycle Parking	29
	6.2. Pedestrian Access	30

7.	Traffic Impact Assessment	31
	7.1. Overview	32
	7.2. Traffic Generation	32
	7.3. Distribution and Assignment	35
	7.4. Traffic Impact	37
8.	Conclusion	42

Appendices

- A. Swept Path Assessment
- B. Traffic Volumes
- C. SIDRA Modelling Results
- D. Loading Dock Management Information

Figures

Figure 1.1:	Site plan	3
Figure 2.1:	Subject site and surrounding environs	6
Figure 2.2:	Aerial view of subject site	7
Figure 2.3:	Lord Sheffield Circuit (looking west) at the southern end of Aviators Way	8
Figure 2.4:	Lord Sheffield Circuit (looking west) at the northern end of Aviators Way	8
Figure 2.5:	Mulgoa Road/ Castlereagh Road corridor upgrade	9
Figure 2.6:	Proposed Thornton Drive/ Castlereagh Road intersection upgrade	10
Figure 2.7:	Crash history in vicinity of the site	13
Figure 2.8:	Car parking restrictions	13
Figure 2.9:	Surrounding bus network	14
Figure 2.10:	Surrounding cycling routes	15
Figure 3.1:	Stage 1 ground floor plan	18
Figure 3.2:	Vehicle access arrangements	19
Figure 6.1:	Pedestrian access through the site	30
Figure 7.1:	Assumed traffic distributions	36
Figure 7.2:	Assumed Scenario 3 Castlereagh Road/ Thornton Drive intersection layout	39
Figure 7.3:	Assumed Scenario 3 Thornton Drive/ Combewood Avenue intersection layout	39
Figure 7.4:	Assumed Scenario 3 Coreen Avenue/ Combewood Avenue intersection layout	40
Figure 7.5:	Assumed Scenario 3 Coreen Avenue/ Sydney Smith Drive intersection layout	40
Figure B.1:	AM existing traffic volumes	B-2
Figure B.2:	AM existing traffic volumes	B-2

	Figure B.3:	AM development traffic volumes	B-3
	Figure B.4:	PM development traffic volumes	B-3
Та	bles		
	Table 2.1:	SIDRA level of service criteria	11
	Table 2.2:	Existing operating conditions	12
	Table 3.1:	Development schedule	17
	Table 3.2:	Car parking provision	18
	Table 4.1:	Car parking requirements	21
	Table 5.1:	Anticipated loading demand	25
	Table 6.1:	Bicycle parking recommendation	29
	Table 7.1:	Traffic generation rates for shopping centres on a Wednesday/ Thursday	33
	Table 7.2:	Peak hour vehicle trip generation per parking space for similar commercial sites	34
	Table 7.3:	Traffic generation estimates	35
	Table 7.4:	Scenario 1: 2025 future year intersection operation without development	37
	Table 7.5:	Scenario 2: 2025 future year intersection operation with development	38
	Table 7.6:	Scenario 3: 2025 future year intersection operation with development and potential r	oad
		upgrades	41

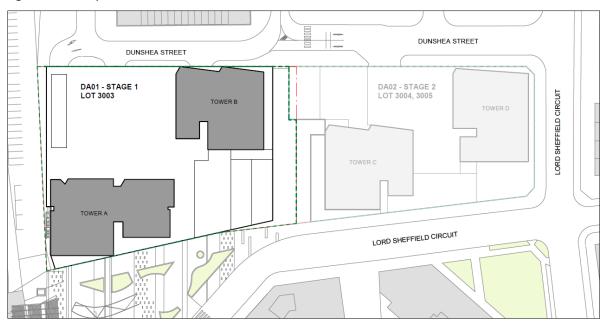
1. INTRODUCTION

1.1. Background

This Transport Impact Assessment has been prepared to support a development application (DA) which seeks consent for the following development at 184 Lord Sheffield Circuit Penrith (Lot 3003 in DP1184498):

- Demolition of all existing site features and improvements.
- Construction and operation of a new mixed-use development, comprising:
 - One storey basement, containing a total of 85 x retail car parking spaces, a click-and-collect facility, waste rooms, a retail lobby entry, plant rooms, and other ancillary back-of-house areas.
 - o Five-storey podium comprising:
 - retail tenancies, a mainline supermarket, residential and commercial lobby entries, a loading dock, vehicle access, and back-of-house areas at Ground Level
 - a childcare centre and medical facility at Level 01
 - shared car parking at Levels 01 04 (providing a total of 333 x residential car parking spaces, 35 x retail car parking spaces, and 2 x car wash bays).
 - A residential building (referred to as Tower A), with a maximum rise of 27 storeys (Level 05 Level
 31) containing a total of 241 x residential apartments.
 - A residential building (referred to as Tower B), with a maximum rise of 9 storeys (Level 05 Level
 13) containing a total of 75 x residential apartments.
- Creation of new east-west publicly accessible through-site link for pedestrians.
- New landscaping works and other public domain works.
- Ancillary works, including site services and connections and stormwater infrastructure.

The proposed development represents the first stage of the overall development to be known as Penrith Central Village, with the site plan shown in Figure 1.1.


The overall land parcel will have frontages to Lord Sheffield Circuit to the east and north, Dunshea Street to the west and the rail reserve to the south. The staging of the development of this land parcel is summarised as follows:

- Lot 3003: retail, childcare, medical and residential development with basement and above ground car parking – the current DA1 (herein referred to as Stage 1) and subject of this report.
- Part Lot 3003, Lot 3004 and Lot 3005: retail, commercial and residential development with basement and above ground car parking – forms part of a separate DA2 (herein referred to Stage 2) and is not subject of this report other than discussion relating to parking, traffic generation and impact.

Figure 1.1: Site plan

Base image source: Crone Architects, Drawing Number DA-01-10001, dated 17 November 2021

Further discussion regarding the development yield is noted as follows:

- Stage 1 comprises 316 apartments and approx. 1,600sqm gross floor area (GFA) of supermarket, 1,100sqm GFA of general retail and 1,400sqm GFA of medical and childcare floor area. Car parking for the development is proposed in above ground and basement car parks, with a total of 436 car spaces to be provided. Loading for the development is proposed to occur in a loading dock on the southern boundary of the site on the ground floor level. All vehicle access is to be provided via Dunshea Street.
- The overall development comprises 553 apartments and approx. 1,700sqm GFA of supermarket, 1,800sqm GFA of general retail and 2,000sqm GFA of commercial, medical and childcare floor area. Additional car parking and loading is also provided, which is summarised in the separate report prepared to accompany the Stage 2 development DA.

It is understood that a DA Consent (DA17/0334) was issued in 2017 for a development on Lot 3003 that contained ground floor retail tenancies and a supermarket, commercial floor space, a childcare and 62 residential apartments. This DA was supported by a Transport Impact Assessment¹ prepared by GTA Consultants dated 21 April 2017.

In June 2021, Thornton Operations Pty Ltd engaged GTA, now Stantec (GTA) to complete a transport assessment to accompany the DA.

¹ Lot 3003 on DP1184498 - Thornton, North Penrith, Development Application, Transport Impact Assessment prepared by GTA dated 21 April 2017

1.2. Purpose of this Report

This report sets out an assessment of the anticipated transport implications of the proposed development, including consideration of the following:

- pedestrian and bicycle requirements
- existing transport conditions surrounding the site
- suitability of the proposed parking in terms of supply (quantum) and layout
- service vehicle requirements
- the traffic generating characteristics of the proposed development
- suitability of the proposed access arrangements for the site
- the transport impact of the development proposal on the surrounding road network.

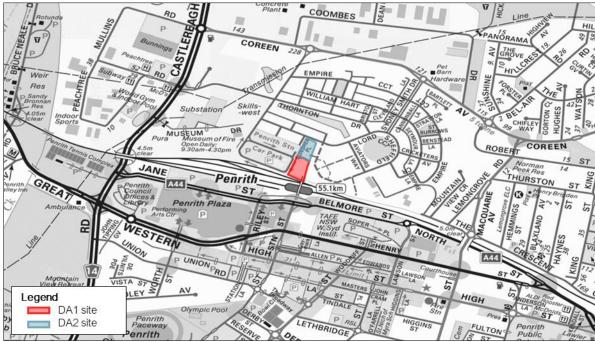
1.3. References

In preparing this report, reference has been made to the following:

- Penrith City Council Development Control Plan (DCP) 2014
- Australian Standard/ New Zealand Standard, Parking Facilities, Part 1: Off-Street Car Parking AS/NZS 2890.1:2004
- Australian Standard, Parking Facilities, Part 2: Off-Street Commercial Vehicle Facilities AS 2890.2:2002
- Australian Standard / New Zealand Standard, Parking Facilities, Part 6: Off-Street Parking for People with Disabilities AS/NZS 2890.6:2009
- plans for the proposed development prepared by Crone Architects, Project Number CA3759, dated 8
 September 2021
- other documents and data as referenced in this report.

2. EXISTING CONDITIONS

2.1. Site Context


The subject site (the site) is located within the broader North Penrith precinct and forms part of the Thornton development.

The site fronts Lord Sheffield Circuit to the north and east, Dunshea Street to the west and Penrith Railway Station and the heavy rail line to the south. The surrounding land uses are predominantly residential to the north and east, and transport infrastructure related to the west and south. The commercial core for Penrith is also located close to the site to the south of the rail line.

The site is currently vacant and accommodates a temporary pedestrian pathway linking the commuter car park to Penrith Station through the site. It is understood that the commuter car park accommodates around 1,500 car parking spaces.

The location of the site and the surrounding environs is shown in Figure 2.1.

Figure 2.1: Subject site and surrounding environs

Base image source: http://www.street-directory.com.au/

Figure 2.2: Aerial view of subject site

Base image source: Nearmap

Road Network

2.2.1. Overview

Roads are classified according to the functions they perform. The main purpose of defining a road's functional class is to provide a basis for establishing the policies which guide the management of the road according to their intended service or qualities.

In terms of functional road classification, State roads are strategically important as they form the primary network used for the movement of people and goods between regions, and throughout the State. Transport for NSW (TfNSW) is responsible for funding, prioritising and carrying out works on State roads. State roads generally include roads classified as freeways, state highways, and main roads under the Roads Act 1993, and the regulation to manage the road system is stated in the Australian Road Rules.

TfNSW defines four levels in a typical functional road hierarchy as follows:

- Arterial Roads Controlled by TfNSW, typically no limit in flow and designed to carry vehicles long distance between regional centres.
- Sub-Arterial Roads Managed by either Council or TfNSW under a joint agreement. Typically, their operating capacity ranges between 10,000 and 20,000 vehicles per day, and their aim is to carry through traffic between specific areas in a sub region or provide connectivity from arterial road routes,
- Collector Roads Provide connectivity between local sites and the sub-arterial road network, and typically carry between 2,000 and 10,000 vehicles per day.
- Local Roads Provide direct access to properties and the collector road system and typically carry between 500 and 4,000 vehicles per day.

2.2.2. Surrounding Road Network

Lord Sheffield Circuit

Lord Sheffield Circuit functions as a collector road and is aligned runs along the northern and eastern boundaries of the site.

It is a two-way road configured with one lane in each direction with around an 11 to 12 metre wide carriageway. Restricted kerbside parking is generally permitted on both sides of the road near the site, with on-road bicycle lanes also provided on Lord Sheffield Circuit to the east of the site.

Lord Sheffield Circuit is shown in Figure 2.3 and Figure 2.4.

Figure 2.3: Lord Sheffield Circuit (looking west) at the southern end of Aviators Way

Figure 2.4: Lord Sheffield Circuit (looking west) at the northern end of Aviators Way

Dunshea Street

Dunshea Street functions as a local road and is aligned in a north-south direction along the western boundary of the site.

North of the commuter car park, Dunshea Street is a two-way road with one lane in each direction over an approximately 11.5 metre wide carriageway. Along the southern section of the road, Dunshea Street is one-way with one southbound lane and an approximate carriageway width of around 7.5 metres.

The road currently primarily services the commuter car park to the west of the site.

Combewood Avenue

Combewood Avenue functions as a collector road and is aligned in a north-south direction to the west of the site, providing connection from Lord Sheffield Circuit and the commuter car park to Thornton Drive, Coreen Avenue and the broader road network. North of the commuter car park, it is a two-way road with one lane in each direction. Along the western side of the commuter car park, it is a one-way road with two northbound lanes.

2.2.3. Road Upgrades

TfNSW is upgrading 6.5 kilometres of the Mulgoa Road/ Castlereagh Road corridor between Glenmore Parkway, Glenmore Park and Andrews Road, Penrith. Mulgoa Road is a main access route from Penrith to the M4 Motorway. The upgraded road would improve road safety, reduce congestion and improve travel times.

Upgrades between Union Road and Museum Drive have already been completed. Future upgrades would be delivered in stages, subject to available funding and priorities. This includes the proposed upgrades to the Thornton Drive/ Castlereagh Road intersection, which will be upgraded to accommodate three through lanes in each direction on Castlereagh Road along with slip lanes into Peachtree Road and Thornton Drive, while buses along Castlereagh Road will also be given priority at the intersection.

The active/ already delivered stages and future proposed upgrades are shown in Figure 2.5, while the proposed upgrades to the Castlereagh Road/ Thornton Drive intersection are shown in Figure 2.6.

Figure 2.5: Mulgoa Road/ Castlereagh Road corridor upgrade

 $Source: \underline{https://roads-waterways.transport.nsw.gov.au/projects/01documents/mulgoa-rd-castlereagh-rd/mulgoa-rd-castlere$

Figure 2.6: Proposed Thornton Drive/ Castlereagh Road intersection upgrade

Source: https://caportal.com.au/rms/mulgoa#id=undefined&ct=15&pj=24 accessed 15 September 2021

2.3. Traffic Volumes

Given ongoing global events related to COVID-19, it is acknowledged that current traffic conditions may still not be considered 'normal' and as such traffic surveys completed at this time may not be considered representative of typical conditions.

In this regard, GTA has obtained historical traffic survey data for key intersections surrounding the site. The key intersections that Council has indicated require assessment include:

- 1. Castlereagh Road/ Thornton Drive
- 2. Combewood Avenue/ Thornton Drive
- 3. Coreen Avenue/ Combewood Avenue
- 4. Coreen Avenue/ Sydney Smith Drive
- 5. The Crescent/ Evan Street/ Macquarie Avenue.

The data obtained for the Castlereagh Road/ Thornton Drive. Thornton Drive/ Combewood Avenue and The Crescent/ Evan Street/ Macquarie Avenue intersections relate to traffic surveys completed on Tuesday 22 October 2019, while the data for the Coreen Avenue/ Combewood Avenue and Coreen Avenue/ Sydney Smith Drive intersections relate to traffic surveys completed on Thursday 20 February 2020.

The AM and PM peak hours were found to occur from 8:00am to 9:00am and 5:00pm to 6:00pm respectively, with traffic volumes summarised in Appendix B.

2.4. Intersection Operation

The operation of the key intersections within the study area have been assessed using SIDRA INTERSECTION² (SIDRA), a computer-based modelling package which calculates intersection performance.

The commonly used measure of intersection performance, as defined by the TfNSW, is vehicle delay. SIDRA determines the average delay that vehicles encounter and provides a measure of the level of service. Table 2.1 shows the criteria that SIDRA adopts in assessing the level of service.

Table 2.1: SIDRA level of service criteria

Level of service (LOS)	Average delay per vehicle (secs/veh)	Traffic signals, roundabout	Give way & stop sign
А	Less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	D 43 to 56		Near capacity, accident study required
E	E 57 to 70		At capacity, requires other control mode
F	Greater than 70	Extra capacity required	Extreme delay, major treatment required

All intersections except The Crescent/ Evan Street/ Macquarie Avenue intersection have been modelled as a network model. The Crescent/ Evan Street/ Macquarie Avenue intersection has been modelled as an isolated intersection given the distance between this intersection and the other modelled intersections. It is noted that historical SCATS phasing data for the Castlereagh Road/ Thornton Drive has also been obtained from TfNSW for the same day as the survey data to assist with calibrating the traffic model.

Table 2.2 presents a summary of the existing operation of the key intersections based on the historical survey data, with full results presented in Appendix C of this report. The table indicate:

- The Castlereagh Road/ Thornton Drive intersection is currently operating at capacity in the weekday PM peak hour, with a DOS of 0.98 and the average delay on the borderline of a LOS D and E overall. The intersection operates better in the AM peak hour at a LOS C overall, however still has a relatively high DOS of 0.82. These results are not surprising, noting this intersection has been flagged for future upgrades as discussed in Section 2.2.3.
- All other intersections currently operate well at a LOS B or better in any peak hour.

² Program used under license from Akcelik & Associates Pty Ltd.

Table 2.2: Existing operating conditions

Intersection	Peak	Degree of saturation (DOS)	Average delay (sec)	Queue (m)	Level of service (LOS)
Castlereagh	AM	0.82	33	199	С
Road/ Thornton Drive	PM	0.98	56	362	D
Combewood	AM	0.14	10	1	А
Avenue/ Thornton Drive	PM	0.33	14	4	А
Coreen Avenue/	AM	0.10	10	2	А
Combewood Avenue	PM	0.44	11	8	А
Coreen Avenue/	AM	0.22	12	4	А
Sydney Smith Drive	PM	0.25	11	4	А
The Crescent/	AM	0.44	17	25	В
Evan Street/ Macquarie Avenue	PM	0.26	12	12	А

Note: Average queues reported for networked intersections while 95th percentile queues are reported for isolated intersections.

2.5. Crash History

GTA, now Stantec has reviewed available crash data sourced from TfNSW Centre for Road Safety for roads surrounding the site. The crash history data provided is for the most recent five years of complete data from 2016 to 2020. The data indicates:

- Three crashes have been recorded along Sydney Smith Drive in the five-year period and five crashes along Lord Sheffield Circuit, with most crashes recorded to the east of the site.
- One crash was recorded at the Combewood Avenue/ Lord Sheffield Circuit which was classified as a non-casualty crash between two vehicles travelling in adjacent directions and was likely as a result of a vehicle on Lord Sheffield Circuit not giving way to a vehicle on Combewood Avenue.
- No crashes were recorded at the Thornton Drive/ Combewood Avenue intersection during the study period.

The location of the reported crashes during the study period is shown in Figure 2.7.

Figure 2.7: Crash history in vicinity of the site

2.6. Car Parking

2.6.1. On-Street

As part of the previous Transport Impact Assessment prepared for the existing development approval for the site, GTA compiled an inventory of available on-street car parking in the vicinity of the site. The inventory identified that car parking on the frontage of the site is generally unrestricted, subject to 2-hour parking restrictions or is used for kiss and ride car parking. These restrictions are shown in Figure 2.8.

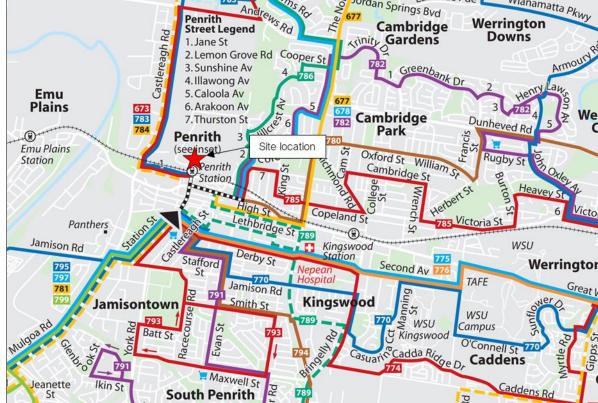
Figure 2.8: Car parking restrictions

2.6.2. Commuter Car Park

The upgraded multi-storey commuter car park west of the site was completed in August 2017, delivering an additional 450 car parking spaces, providing a total of 1,511 free unlimited spaces including 30 accessible spaces. Improved facilities included a new lift and stairs, lighting, and CCTV upgrades.

Public Transport Network

The site is well serviced by high frequency public transport services and is located immediately north of Penrith Railway Station and Penrith Bus Interchange.


The Penrith Railway Station currently services three major rail links, being:

T1 North Shore & Western Line: between Emu Plains and Central via Penrith Blue Mountains Line: between Bathurst and Central via Penrith

Regional Trains & Coaches: between Dubbo/ Broken Hill and Central via Penrith.

In addition, a number of bus services operate at the Penrith Bus Interchange providing connectivity between the station and surrounding suburbs. It is understood there are a total of 24 local bus services provided at the interchange and that these services typically operate at 30 or 60 minute frequencies during the peak and off peak periods respectively. Additionally, a number of school bus services are available for local schools south

and west of Penrith. The local bus network is shown in Figure 2.9. Figure 2.9: Surrounding bus network icreagn Rd Wianamatta Pkwy Lakeside Pde Jordan Springs Bvd Andrews Rd Penrith Werrington Cambridge Street Legend Downs kinity Gardens 1. Jane St 2. Lemon Grove Rd Cooper St Armour 3. Sunshine Av 4. Illawong Av 5. Caloola Av Emu **Plains** 6. Arakoon Av Cambridge 7. Thurston St 782

Base image source: https://www.busways.com.au/sites/default/files/network-maps/2021-05-31/R1NetworkMap180421.pdf, accessed 4/9/21

2.8. Walking and Cycling Infrastructure

Well established pedestrian paths are generally provided on both sides of most surrounding roads. In the immediate vicinity of the site, existing pedestrian paths are detailed as follows:

- Dunshea Street (both sides) 1.5 metre wide paths providing access to the Penrith railway station, bus interchange and commuter parking lot.
- Lord Sheffield Circuit (both sides) 1.5 metre wide paths connecting the site to the Smiths Paddock and other residential dwellings to the east.

In addition, a pedestrian overbridge to the Penrith Railway Station and Bus Interchange is provided to the south of the site. This overbridge, and abutting wide pedestrian pathway adjacent the site, provide excellent access to the public transport services.

The site is also well supported by cycling infrastructure, with shared paths provided along Combewood Avenue and Thornton Drive, allowing connection with the broader cycling network along Castlereagh Road and Mulgoa Road. The shared paths along Castlereagh Road and Mulgoa Road have recently been upgraded as part of the Mulgoa Road/ Castlereagh Road corridor upgrade. Marked bicycle lanes are also provided along sections of Lord Sheffield Circuit east of the site, connecting to Penrith Railway Station. Bicycle racks are available at Penrith Station on Belmore Street and in the commuter car park on Dunshea Street.

The surrounding cycling routes near the site are shown indicatively in Figure 2.10.

Figure 2.10: Surrounding cycling routes

3. PROPOSED DEVELOPMENT

3.1. Land Uses

Stage 1 comprises a mixed-use development on Lot 3003 of DP1184498 in Penrith.

The development involves construction of two towers (Tower A and B) which will have an east-west pedestrian through site link along its northern boundary providing connection between the commuter car park to the west and the Penrith Station entrance on the eastern side of the site.

The proposed Stage 1 development will accommodate 316 residential apartments, along with a supermarket, general ground floor retail and medical floor space, a childcare and minor commercial area. A detailed breakdown of the proposed uses is provided in Table 3.1, which also includes the development yields for the proposed development on Lots 3004 and 3005 as part of Stage 2 for completeness.

The ground floor plan is shown in Figure 3.1.

Table 3.1: Development schedule

Use	Description	Size (Apartments/ m² GFA)			
Use	Description	Stage 1	Stage 2	Total	
	Studio	21	4	25	
	1-bedroom	102	43	145	
High-density residential apartments	2-bedroom	166	169	335	
	3-bedroom	27	21	48	
	Subtotal	316	237	<i>553</i>	
Retail	Supermarket	1,627	0	1,627	
Retail	General	1,116	637	1,753	
Comm	Commercial		489	576	
Childcare		761 (100 children 17 staff)	0	761 (100 children 17 staff)	
Med	dical	631	0	631	

Figure 3.1: Stage 1 ground floor plan

Base image source: Crone Architects, Drawing Number DA-01-10510, dated 17 November 2021

3.2. Bicycle Parking

End of trip facilities will be provided within the basement, accommodating eight bicycle parking spaces for staff and 34 bicycle parking spaces for visitors. A total of five showers (two male, two female and one accessible) will also be provided within the basement level along with lockers.

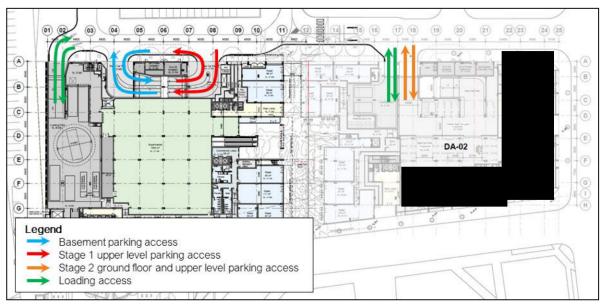
In addition to the above, 262 storage cages will be provided in Stage 1 and a further 237 storage cages will be provided in Stage 2 for residents, with these storage cages suitable for accommodating bicycles.

3.3. Car Parking

The proposed development will provide a total of 453 car parking spaces across the basement level and Levels 1 to 4 for Stage 1, with a breakdown of the provision by use detailed in Table 3.2. For completeness, the proposed car parking provision for Stage 2 has also been shown.

Table 3.2: Car parking provision

Use	Stage 1 car parking spaces	Stage 2 car parking spaces	
Residential	333	256	
Retail/ commercial	120	22	
Total	453	278	



3.4. Vehicle Access

Vehicle access to the on-site car parking is proposed via Dunshea Street, with three crossovers proposed. The vehicle access arrangements are shown in Figure 3.1 and described as follows:

- Northernmost crossover (shown in red) This crossover will provide access to residential and retail/ commercial car parking on the upper levels.
- Central crossover (shown in blue) This crossover will provide access to residential and retail car parking within the consolidated basement level.
- Southernmost crossover (shown in green) This crossover will provide access to the Stage 1 loading dock.

Figure 3.2: Vehicle access arrangements

Base image source: Crone Architects, Drawing Number DA-01-10510, dated 17 November 2021

3.5. Loading Areas

A loading dock is proposed along the southern boundary of the site at ground level.

The loading dock will accommodate four loading bays. Two bays will accommodate vehicles up to and including 12.5 metre heavy rigid vehicles (HRVs), while the other two bays will accommodate vehicles up to and including 8.8 metre medium rigid vehicles (MRVs). Two compactors will also be located on the eastern side of the loading dock.

A turntable is proposed within the loading dock to provide access to the loading bays.

4. PARKING ASSESSMENT

Provision

The car parking provision requirements for the proposed development are set out in Penrith Development Control Plan 2014 (DCP).

It is noted that the site is located within the North Penrith Precinct which has specific maximum car parking requirements. Moreover, whilst the site is located within 800 metres of a railway station and hence the SEPP 65 parking requirements would also normally apply, the DCP rates in this instance are maximums. As such, only the DCP rates have been utilised.

The parking requirement for the proposed development using the DCP rates is shown in Table 4.1, noting that the table includes the parking requirements and proposed provision for Stage 2 as it relates to the traffic impact assessment discussed in Section 7.

Table 4.1: Car parking requirements

Stage	Use	Description	Size	DCP Rate (Max)	Requirement (Max)	Provision
		Studio	21 apartments	0.5 spaces / dwelling	11	
	Residential	1-bedroom	102 apartments	1 space / dwelling	102	
	flat buildings	2-bedroom	166 apartments	1 space / dwelling	166	-
		3-bedroom	27 apartments	2 spaces / dwelling	54	
				Subtotal	333	333
		Supermarket	1,627 m ² GFA	1 space / 26 m² GFA	63	63
	Retail	General	1,116 m ² GFA	1 space / 50 m² GFA	22	22
Stage 1	Commercial	-	87 m² GFA	1 space / 50 m ² GFA	2	0
	Childcare	-	761 m ² GFA (100 children 17 staff)	1 space / 10 children plus 1 space / employee	27 (17 for staff and 10 for visitors)	27
	Medical	-	631 m² GFA	3 spaces / health care professional plus 1 space / receptionist/ support staff	30	8
				Subtotal	144	120
				Stage 1 total	477	453
		Studio	4 apartments	0.5 spaces / dwelling	2	
	Residential	1-bedroom	43 apartments	1 space / dwelling	43	
	flat buildings	2-bedroom	169 apartments	1 space / dwelling	169	
Stage 2		3-bedroom	21 apartments	2 spaces / dwelling	42	
				Subtotal	256	256
	Retail	General	637 m ² GFA	1 space / 50 m ² GFA	13	12

Stage	Use	Description	Size	DCP Rate (Max)	Requirement (Max)	Provision
	Commercial	-	489 m² GFA	1 space / 50 m ² GFA	10	10
				Subtotal	23	22
				Stage 2 total	279	278

^[1] A minimum of 1 space per 75 square metres GFA is required for all commercial/ retail uses.

Table 4.1 indicates the proposed development that forms Stage 1 presents a maximum DCP requirement of 477 car parking spaces, including 333 spaces for residents and 144 spaces for the retail/ commercial uses. The proposed provision of 453 car parking spaces, including 333 spaces for residents and 120 spaces for the retail/ commercial uses, meets this requirement.

4.2. Design

4.2.1. Overview

The car park and loading dock layout has been reviewed against the requirements of the DCP and the Australian Standard for Off Street Car Parking (AS/NZS2890.1:2004 and AS/NZS2890.6:2009). This assessment included a review of the following:

- bay and aisle width
- adjacent structures
- turnaround facilities
- circulation roads and ramps
- ramp grades
- height clearances
- internal queuing
- parking for persons with disabilities.

Details of this assessment are discussed below with key swept paths included in Appendix A of this report.

4.2.2. Vehicle Access

The crossovers proposed to Dunshea Street will provide separate access for basement, upper-level parking, and loading respectively.

The basement and upper-level parking crossovers have been designed to simultaneously accommodate two 99th percentile cars travelling in opposite directions; which exceeds Australian Standard requirements (which calls for an ability for a 99th percentile car to pass an 85th percentile car). The crossovers have also been set back into the site, away from Dunshea Street, to ensure that exiting vehicles are positioned perpendicularly when exiting and thus have clear sight lines to oncoming cars and pedestrians. Sight line triangles are also provided at these crossovers to further enhance pedestrian safety in this area.

^[2] No parking provision is proposed for the minor commercial floor area for Stage 1 as this largely relates to lobby floor area which does not generate any parking demand.

^[3] Assumes 6 doctors and 12 support staff.

PARKING ASSESSMENT

Boom gates will be provided at the entrances to the car park for all car parking areas. This includes at the top of the ramp to Level 1 and at the bottom of the ramp to the basement. A queuing assessment has been completed based on the anticipated peak traffic volumes estimated in Section 7.1, confirming that the 95th percentile inbound queue expected at these boom gates is less than two vehicles long for the basement car park access and less than one vehicle long for the above ground car park access. As such, there is adequate storage capacity on approach to these boom gates to accommodate the expected 95th percentile queue.

4.2.3. Car Park Layout

The proposed car parking layout generally complies with AS/NZS2890.1:2004 and AS/NZS2890.6:2009 and Penrith DCP 2014 requirements, with the car park areas meeting the following minimum requirements:

- Residential: 2.5m x 5.4m (with a 5.8m wide aisle)
- Retail: 2.6m x 5.4m (with a 6.2m wide aisle)
- Childcare: 2.6m x 5.4m (with a 5.8m wide aisle).

Blind aisles have been designed with aisle extensions and a formal turnaround area to allow cars to enter and exit each aisle in a forward direction where required.

Ramps have generally been designed with grades which accord with Australian Standard requirements. Specifically, the ramp to the retail basement car park has been designed with a maximum grade of 1:6, whereas the residential ramp has been designed with a maximum grade of 1:4. Both ramps have also been designed with appropriate transitions to avoid vehicle scraping/ bottoming-out.

The internal intersections have been designed to allow two vehicles to pass as far as practicable. In some situations, however, this design standard cannot be achieved, and one vehicle may accordingly need to prop to allow another to pass. This arrangement is acceptable and not uncommon.

5. LOADING AND WASTE COLLECTION

5.1. Loading Provision

5.1.1. DCP Requirements

The Transport, Access and Parking Section of the Penrith DCP requires that for a site of 1,500 to 4,000 square metres, the site must accommodate an HRV.

In this instance, a loading dock is proposed on the ground floor facilitating four loading bays. Two of these bays will be able to accommodate vehicles up to and including a 12.5 metre HRV. As such, the DCP requirement is met. The other two bays within the loading dock will be able to accommodate trucks up to 8.8 metre MRVs.

5.1.2. Adequacy of Loading Provision

In estimating the anticipated loading demand of the proposed retail/ commercial uses, reference has been made to GTA's database of loading demand.

It is understood that there are a few ground floor tenancies that are anticipated to function as event spaces. It is expected that there would be limited loading activity associated with these uses on a day-to-day basis and has been excluded for the purposes of this assessment.

The average residential apartment turnover rate is around 0.7 per cent of all apartments in any given week³. Considering 316 apartments, this equates to around two apartments moving in or out in any given week. Waste collection for the residential apartments is expected to equate to one or two vehicles a week. Waste collection would typically occur during the week while removalist activity would likely occur on the weekend.

In this context, Table 5.1 has been prepared to summarise the anticipated loading demand for each use.

Table 5.1: Anticipated loading demand

Use	Size/ tenancies	Loading demand rate (service vehicles per tenancy per day)	Loading demand (service vehicles per day)
Residential	316	-	2
Supermarket (Metro size)	1	3.1	3
Retail	7	0.5	4
Food and beverage	5	1.1	5
Commercial (including childcare and medical)	3	0.7	2
		Total	16

Table 5.1 indicates the proposed development could be expected to generate up to 16 service vehicle deliveries per day.

The loading dock is expected to be open for a minimum 10 hours per day. Based on the provision of four loading bays and a duration of stay of less than 20 minutes per vehicle as is typical for delivery vehicles and waste collection vehicles, this equates to a theoretical capacity of 120 short-stay deliveries per day. Any removalist vehicle activity on the weekends would naturally reduce this capacity slightly as a result of the need

³ Rental Report December quarter 2019 accessed from https://www.dhhs.vic.gov.au/past-rental-reports

LOADING AND WASTE COLLECTION

for a longer duration of stay for these vehicles, however even considering this, it is clear that the anticipated demand of up to 16 service vehicles per day could be easily accommodated within the available loading dock provision.

Overall, the minor loading activity associated with the proposed uses would be able to be managed by the proposed loading dock. Implementation of a loading and servicing management plan would also be key to ensuring appropriate use of the loading dock across the day and week. This would include scheduling of deliveries through a booking system. Such fundamental management measures are common for new mixed-use developments across Sydney to ensure loading demand is appropriately managed with demand to not exceed loading supply at any given time.

5.2. Loading Dock Layout

The loading dock crossover has also been designed to accommodate the largest truck requiring access to the site; being a 12.5 metre HRV. The proposed supermarket tenancy has confirmed that this is the largest vehicle required to service the supermarket.

The loading dock has been designed to facilitate independent vehicle access to each loading bay. A truck turntable in the centre of the loading dock is proposed which will provide adequate room for vehicle manoeuvres. As such, the loading dock will allow for vehicles to enter/ exit in a forward direction as confirmed in the swept path assessment provided in Appendix A.

5.3. Waste Collection

Waste collection is proposed to occur within the loading dock via Council collection for the residential land uses and private contractor collection for the commercial and retail land uses. It is understood that rubbish chutes will be provided to transfer waste direct to a processing room within the basement, with a service lift provided to transport this waste to the collection area on ground level when required.

5.4. Loading Dock and Waste Collection Management

To minimise potential conflicts at the entrance to the loading dock, the following measures are recommended:

- Introduce an electronic booking system to prevent overdemand at peak times.
- Install "dock full" signage at the entrance to the site to prevent loading vehicles from entering the site
 when there is not capacity to facilitate them. To facilitate this, sensors would be installed under each
 loading dock, and the sign activated when there are no available spaces.
- As far as practical, work with Council to arrange for the collection of waste from the proposed compactors
 outside of peak times for the retail and residential car parks, and the loading dock.

It is noted that the introduction of an electronic booking system (such as Bestrane's MobileDOCK) would allow for the following:

- Deliveries to be scheduled to minimise the chance of demand exceeding the capacity of the loading dock.
- Providing a permanent booking at an agreed time each week for regular services such as waste collection.
- Restrict bookings during certain times such as when waste collection is occurring which will prevent other vehicles from being able to manoeuvre within the loading dock.
- Restrictions on the size of vehicles servicing the site to be enforced in advance of a vehicle arriving at the site.

LOADING AND WASTE COLLECTION

Further information on how an electronic booking system for the loading dock could be used for the site and some of the associated benefits is included in Appendix D.

6. SUSTAINABLE TRANSPORT

6.1. Bicycle Parking

Bicycle parking provisions are not specifically outlined in the Penrith DCP, with this document instead deferring to the recommended rates in the 'Planning Guidelines for Walking and Cycling' (NSW Government 2004).

An assessment of the recommended bicycle provision based on the rates outlined in this Guideline is presented in Table 6.1 and indicates that the proposed Stage 1 development should provide in the order of 67-101 resident/ staff bicycle parking spaces and 22-44 customer/visitor bicycle parking spaces.

Table 6.1: Bicycle parking recommendation

Stage	Use	Size	Bicycle parking rate		Bicycle parking requirement	
			Resident/Staff	Customer/Visitor	Resident/Staff	Customer/Visitor
Stage 1	Residential	316 apartments	20-30% of number of units	5-10% of number of units	63-95 spaces	16-32 spaces
	Supermarket	1,627 m ² GFA 47 employees ^[4]	3-5% of number of staff	5-10% of number of staff	1-2 spaces	2-5 spaces
	Retail	1,116 m ² GFA 32 employees ^[4]	3-5% of number of staff	5-10% of number of staff	1-2 spaces	2-3 spaces
	Commercial	87m ² GFA 0 staff ^[5]	3-5% of number of staff	5-10% of number of staff	0 spaces	0 spaces
	Childcare	761 m ² GFA 17 staff	3-5% of number of staff	5-10% of number of staff	1 space	1-2 spaces
	Medical	631 m ² GFA 18 staff	3-5% of number of staff	5-10% of number of staff	1 space	1-2 spaces
Stage 1 total					67-101 spaces	22-44 spaces
Stage 2	Residential	237 apartments	20-30% of number of units	5-10% of number of units	47-71 spaces	12-24 spaces
	Retail	637 m ² GFA 18 employees ^[3]	3-5% of number of staff	5-10% of number of staff	1 space	1-2 spaces
	Commercial	489 m ² GFA 24 staff ^[4]	3-5% of number of staff	5-10% of number of staff	1 space	1-2 spaces
Stage 2 total					49-73 spaces	14-28 spaces
Grand total					116-174 spaces	36-72 spaces

^[4] Based on a density of one employee per 35m² GFA.

End of trip facilities will be provided within the southwest corner of the basement, accommodating 34 bicycle parking spaces for use by staff and visitors which generally aligns with the recommended provision for the whole development. A total of four showers (two male and two female) will also be provided within the basement level along with lockers.

It is understood that 262 storage cages will be provided in Stage 1 and a further 237 storage cages will be provided in Stage 2 for residents, with these storage cages suitable for accommodating bicycles. This provision therefore exceeds the minimum recommendations outlined above.

^[5] Assumes no staff as commercial area in Stage 1 largely relates to lobby floor area.

^[6] Based on a density of one employee per 20m² GFA.

6.2. Pedestrian Access

As outlined earlier, existing pedestrian access between the commuter car park and the Penrith Railway Station will be altered by the proposed development.

Currently, commuters can utilise a pedestrian crossing on the eastern side of the carpark and directly cross the site to access the station. As part of this proposal, this pedestrian crossing will be removed, with pedestrians to be directed to use the existing pedestrian crossing across Dunshea Street that connects with the proposed pedestrian link through the site between Lot 3003 and Lot 3004. Active retail frontages have been considered along this through site link to encourage use. Kerb adjustments are proposed adjacent to the pedestrian crossing to effectively narrow the road and increase the footpath width on the eastern side of the road to reduce the length of the pedestrian crossing and better facilitate pedestrian movement between the commuter car park and Penrith Station. This arrangement is indicated in Figure 6.1.

While it is noted that this rerouting of pedestrians will lengthen the walking distance for some commuters, many commuters will be unaffected by the change. In addition, the pedestrian amenity will be vastly improved for all pedestrians. In this regard, the benefits of the change to existing pedestrian arrangements are considered to outweigh the increased distance for some commuters.

Existing pedestrian (zebra) crossing to be removed

DA-02

Legend

Site location
Penrith Railway Station
Commuter car park
Existing pedestrian route
New pedestrian route

Figure 6.1: Pedestrian access through the site

Base image source: Nearmap

7. TRAFFIC IMPACT ASSESSMENT

7.1. Overview

In assessing the likely traffic impact of the development on the surrounding road network, traffic modelling has been completed in SIDRA for the following scenarios:

- Scenario 1: 2025 Future Year with no development.
- Scenario 2: 2025 Future Year with full development (both Stage 1 and Stage 2).
- Scenario 3: Scenario 2 with planned intersection upgrades to surrounding intersections.

It is important to note that the local intersection upgrades assessed in this scenario are not proposed as "mitigation works" of the development as they are understood to be upgrades proposed by Council to improve the precinct accessibility. Moreover, the analysis presented in following sections indicates that the works are not "required" to accommodate the development generated traffic. Notwithstanding this, it is understood that discussions have been held between Council and the developer for contributions towards the roundabout works at the Combewood Avenue / Thornton Drive intersection.

7.2. Traffic Generation

7.2.1. Traffic Generation Rates

Traffic generation estimates for the proposed development have been calculated based on the Transport for NSW (TfNSW) Guide to Traffic Generating Developments, Update Traffic Surveys (TDT 2013/04a), and other empirical data sources.

Given the location of the site adjacent to Penrith Station and restrictions on permissible car parking provision as per the DCP maximum requirements, traffic generation is best estimated based on car parking provision rather than floor area. As such, a vehicle trip per car space rate has been applied where possible for the various land uses.⁴

It is noted that this approach is consistent with the traffic impact assessment presented in the GTA TIA report for the approved DA Consent (DA17/0334) issued in 2017 for a development on Lot 3003.

Residential

For the residential uses, the standard traffic generation rates in the TDT 2013/04a for high density residential apartments of 0.15 and 0.12 vehicle trips per car space in the respective AM and PM peak hours have been applied. The TDT 2013/04a indicates these rates are appropriate for residential apartment buildings that are over six storeys high and have good access to public transport, which the proposed development meets.

Supermarket

Reference has been made to the NSW Small Suburban Shopping Centres Data Report⁵ prepared by Bitzios Consulting for TfNSW which has analysed the traffic generation of several shopping centres around NSW that have anchor supermarket tenancies similar to the proposed development. A summary of the traffic generation for the surveyed shopping centres on a Thursday is provided in Table 7.1.

⁵ Roads And Maritime Trip Generation Surveys NSW Small Suburban Shopping Centres Data Report prepared by Bitzios Consulting for Roads and Maritime NSW dated 7 November 2018

⁴ It is noted that the application of the typical rates per 100sqm would be inappropriate for the retail land uses given car parking is proposed at rates far lower than recorded at the RMS surveyed sites.

Table 7.1: Traffic generation rates for shopping centres on a Wednesday/ Thursday

Site	GLFA	Anchor tenant	Development AM peak	Development PM peak	AM peak hour vehicle trips per parking space	PM peak hour vehicle trips per parking space
1	5,142	Woolworths	9:00 AM	3:15 PM	2.14	2.63
2	3,445	SupalGA	9:45 AM	3:15 PM	1.74	2.09
3	3,182	Woolworths	8:30 AM	5:30 PM	2.61	3.86
4	4,976	Woolworths	8:45 AM	4:45 PM	1.5	3.13
5	991	ALDI	10:00 AM	5:00 PM	2.15	2.22
6	991	ALDI	10:15 AM	12:30 PM	2.43	2.63
7	6,394	Woolworths	11:00 AM	6:30 PM	1.33	1.72
8	4,740	Coles	12:00 PM	12:30 PM	1.18	1.22
9	9,700	Woolworths and ALDI	11:45 AM	4:45 PM	1.36	1.94
10	1,452	Coles	10:30 AM	5:00 PM	2.07	3.28
11	4,027	Woolworths	12:00 PM	5:45 PM	2.04	2.95
12	991	ALDI	10:30 AM	1:15 PM	2.12	2.63
13	4,831	Coles	11:45 AM	4:15 PM	1.97	2.5
14	5,028	Coles	10:30 AM	12:30 PM	1.57	1.48
15	991	ALDI	10:30 AM	3:30 PM	1.37	2.05
16	4,933	Coles	10:45 AM	4:30 PM	2.08	3.41
17	5,000	Coles	11:30 AM	5:00 PM	2.26	3.5
18	9,505	Woolworths	9:45 AM	12:00 PM	1.5	1.44
19	1,411	ALDI	11:15 AM	4:45 PM	2.51	3.32
20	660	IGA	10:00 AM	4:00 PM	0.93	1.2
				Average	1.8	2.5

Table 7.1 indicates that the average traffic generation rates across the 20 shopping centres that were surveyed were around 1.8 and 2.5 vehicle trips per car parking space in the AM and PM peak hours respectively.

However, it is important to note that these average traffic generation rates relate to the AM and PM peak hours of the shopping centres, with many of the shopping centres experiencing their AM peak hour later than the assessed AM road network peak hour and experiencing their PM peak hour earlier than the assessed PM road network peak hour. As such, a 20 per cent reduction factor has been applied to the above average rates to better reflect traffic generation during road network peak periods, resulting in rates of 1.5 and 2.0 vehicle trips per car space during the assessed AM and PM peak hours.

These rates are generally consistent with the rates that were adopted for the TIA that supported the existing approval for the site.

General Retail

For the purposes of this assessment, it has been assumed that the traffic generation of the general retail will be 50 per cent of the supermarket rate, or 0.75 and 1 vehicle trip(s) per car space in the AM and PM peak hours respectively.

This is considered conservative, noting the Thursday PM specialty retail traffic generation rates specified in the TfNSW Guide 2002 represent around 29.7 per cent of the corresponding supermarket traffic generation rates. Further to this, given the location of the site between Penrith Station and the commuter car park, it is expected that much of the demand for the general retail shops will be walk-by trips associated with commuters at the station rather than destination-based vehicle trips.

Again, these rates are generally consistent with the rates that were adopted for the TIA that supported the existing approval for the site.

Commercial

A review of the traffic generation rates for commercial developments in Sydney referenced in the TDT 2013/04a results in an average traffic generation rate 0.47 and 0.29 trips per car space during the AM and PM peak hours respectively. The surveyed data for these sites is provided in Table 7.2.

Table 7.2: Peak hour vehicle trip generation per parking space for similar commercial sites

Survey location	North Sydney	Chatswood	Macquarie Park	Parramatta	Average
Parking spaces	136	142	269	252	-
AM peak hour trips	51	47	119	185	-
PM peak hour trips	44	36	72	75	-
AM trip rate	0.38	0.33	0.44	0.73	0.47
PM trip rate	0.32	0.25	0.27	0.30	0.29

For the purposes of this assessment, it has conservatively been assumed that the commercial uses will generate around 0.5 vehicle trips per car space in both the AM and PM peak hours.

These rates are generally consistent with the rates that were adopted for the TIA that supported the existing approval for the site.

Childcare

For the childcare uses, staff are required to be on-site prior to children being dropped off and therefore it has been assumed that all staff would arrive and depart outside of the assessed peak hours.

Childcare spaces for parents are generally subject to 15 minute parking restrictions, which corresponds to each childcare space for parent/ carer use turning over four times in an hour. As such, a rate of 4 vehicle trips per parent/ carer car space has been assumed for both the AM and PM peak hours.

These rates are generally consistent with the rates that were adopted for the TIA that supported the existing approval for the site.

Medical Centre

Given the lack of available data associated with traffic generation rates based on car parking spaces for medical centres, the standard rates from the TfNSW Guide 2002 of 10.4 and 8.8 vehicle trips per 100 square metres GFA for the AM and PM peak hours respectively have been adopted for this assessment.

7.2.2. Traffic Generation Estimates

This assessment considers the traffic impact of the full site development associated with both Stage 1 and Stage 2 in order to provide a complete assessment. Using these rates, the expected traffic generation of the Thornton Central Village project is summarised in Table 7.3.

Table 7.3: Traffic generation estimates

Stage	Land Use	Size (GFA/ number of car spaces)	Traffic gene (vehicle trip	eration rate os per hour)	Traffic generation estimate (vehicle trips per hour)		
			AM	PM	AM	PM	
	Residential	333 spaces	0.15 / space	0.12 / space	50	40	
	Supermarket	63 spaces	1.50 / space	2.00 / space	95	126	
	Retail	22 spaces	0.75 / space	1.0 / space	17	22	
Stage 1	Childcare	10 visitor spaces	4.0 / visitor space	4.0 / visitor space	40	40	
	Medical	631m ² GFA	10.4 / 100m² GFA	8.8 / 100m ² GFA	66	56	
Stage 1 total						284	
	Residential	256 spaces	0.15 / space	0.12 / space	38	31	
Stage 2	Retail	12 spaces	0.75 / space	1.0 / space	9	12	
	Commercial	10 spaces	0.5 / space	0.5 / space	5	5	
	Stage 2 total						
	320	332					

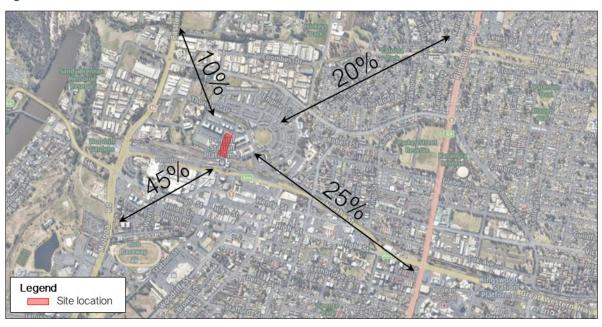
Table 7.3 indicates that the proposed Stage 1 development is expected to generate around 268 and 284 vehicle trips during the weekday AM and PM peak hours respectively, with the full development of the site expected to generate up to 332 vehicle trips in any weekday peak hour.

As mentioned previously, a DA Consent (DA17/0334) was issued in 2017 for a development on the site that contained ground floor retail tenancies and a supermarket, commercial floor space, a childcare and 62 residential apartments. The Transport Impact Assessment (GTA, 2017) that supported the DA estimated that the development would generate around 114 and 249 vehicle trips in the AM and PM peak hours respectively. As such, the current proposal for the site represents an increase of around 206 and 83 vehicle trips in the AM and PM peak hours respectively from the existing approval for the site.

7.3. Distribution and Assignment

The directional distribution and assignment of traffic generated by the proposed development will be influenced by a range of factors, including the:

- configuration of the arterial road network in the immediate vicinity of the site
- existing operation of intersections providing access between the local and arterial road network
- surrounding employment centres, retail centres and schools in relation to the site
- configuration of access points to the precinct



For the purposes of estimating vehicle movements, the directional distributions shown in Figure 7.1 have been assumed. These distributions are generally consistent with those estimated in the Transport Mobility and Accessibility Plan⁶ prepared by Parsons Brinckerhoff for the North Penrith Development.

Figure 7.1: Assumed traffic distributions

Base image source: Nearmap

In addition, the following directional splits (i.e., the ratio between the inbound and outbound traffic movements) have been assumed:

- Residential trips: 20 per cent inbound and 80 per cent outbound in the AM peak hour and vice versa in the PM peak hour.
- Commercial trips: 80 per cent inbound and 20 per cent outbound in the AM peak hour and vice versa in the PM peak hour.
- Retail, childcare and medical trips: 50 per cent inbound and 50 per cent outbound both peak hours.

Base 2025 traffic volumes through the key surveyed intersections have been estimated by applying a two per cent per annum growth rate to the 2019 and 2020 turning movement counts outlined in Section 2.3 as recommended by Council.

Based on the above assumptions, the figures in Appendix B have been prepared to show the estimated increase in turning movements at the key intersections near the subject site following full site development.

⁶ North Penrith Development, Transport Mobility and Accessibility Plan⁶ prepared by Parsons Brinckerhoff dated October 2010

7.4. Traffic Impact

7.4.1. Scenario 1: 2025 without Development

The key intersections near the site have been modelled with the anticipated 2025 base traffic volumes without any proposed development traffic. Table 7.4 provides a summary of the SIDRA modelling results.

Table 7.4: Scenario 1: 2025 future year intersection operation without development

Intersection	Peak	Degree of saturation (DOS)	Average delay (sec)	Queue (m)	Level of service (LOS)
Castlereagh	AM	0.91	46	279	D
Road/ Thornton Drive	PM	1.13	100	569	F
Combewood	AM	0.17	11	2	А
Avenue/ Thornton Drive	PM	0.38	16	4	В
Coreen Avenue/	AM	0.11	11	2	А
Combewood Avenue	PM	0.50	12	11	А
Coreen Avenue/	AM	0.26	12	4	А
Sydney Smith Drive	PM	0.29	11	5	A
The Crescent/ Evan Street/	AM	0.60	24	43	В
Macquarie Avenue	PM	0.32	13	15	А

Note: Average queues reported for networked intersections while 95th percentile queues are reported for isolated intersections.

Table 7.4 indicates all intersections with the exception of the Castlereagh Road/ Thornton Drive intersection are expected to operate satisfactorily at a LOS A or B in both weekday peak hours in 2025.

The Castlereagh Road/ Thornton Drive intersection is expected to be over capacity in the PM peak hour as indicated by the DOS of 1.13. This results high delay overall for the intersection and an associated LOS F. The operation of this intersection in the AM peak hour is expected to be better at a LOS D, however it is still expected to be close to capacity as indicated by the DOS of 0.91. However, as outlined earlier in this report, it is expected that works will have been completed by TFNSW at this intersection by 2025 to improve its operation.

It is noted that at the Combewood Avenue/ Thornton Drive intersection, the analysis indicates that the existing unsignalised cross-intersection is expected to operate with Level of Service of A and B, with degrees of saturation of 0.17 and 0.38, during the AM and PM peak hours respectively.

7.4.2. Scenario 2: 2025 with Development

The key intersections near the site have been modelled with the anticipated additional traffic from the proposed development. Table 7.5 provides a summary of the SIDRA modelling results.

Table 7.5: Scenario 2: 2025 future year intersection operation with development

Intersection	Peak	Degree of saturation (DOS)	Average delay (sec)	Queue (m)	Level of service (LOS)
Castlereagh	AM	0.97	63	344	Е
Road/ Thornton Drive	PM	1.20	133	669	F
Combewood	AM	0.32	13	4	А
Avenue/ Thornton Drive	PM	0.63	20	10	В
Coreen Avenue/	AM	0.13	11	2	А
Combewood Avenue	PM	0.52	13	12	А
Coreen Avenue/	AM	0.37	13	7	А
Sydney Smith Drive	PM	0.78	14	33	A
The Crescent/ Evan Street/	AM	0.60	24	43	В
Macquarie Avenue	PM	0.32	13	15	А

Note: Average queues reported for networked intersections while 95th percentile queues are reported for isolated intersections.

Similar to Scenario 1, Table 7.5 indicates all intersections with the exception of the Castlereagh Road/ Thornton Drive intersection are expected to operate satisfactorily at a LOS A or B in both weekday peak hours in 2025 with additional traffic generated by the proposed development.

Delay and queues are expected to increase at the Castlereagh Road/ Thornton Drive intersection as expected, with the intersection expected to operate at a LOS E and F in the AM and PM peak hours respectively. Again, it is noted that this intersection is required to be upgraded regardless of whether the proposed development proceeds or not.

At the Combewood Avenue/ Thornton Drive intersection, the analysis indicates that the existing unsignalised cross-intersection is expected to continue to operate with Level of Service of A and B, albeit with slightly higher degrees of saturation of 0.32 and 0.63 (up from 0.17 and 0.38 in Scenario 1) during the AM and PM peak hours respectively. This analysis indicates that the provision of a roundabout is not "required" as a result of the development on capacity grounds (noting there is also no accident history at the intersection), although it is accepted that an unsignalised cross-intersection is atypical for this location.

7.4.3. Scenario 3: 2025 with Development and Planned Intersection Upgrades

As mentioned, the Castlereagh Road/ Thornton Drive intersection is expected to be over capacity in 2025 even without the proposed development. As such, modelling for Scenario 3 considers the planned upgrades to this intersection as discussed in Section 2.2.3.

Council has also advised it is investigating potentially upgrading the Coreen Avenue/ Combewood Avenue and Coreen Avenue/ Sydney Smith Drive intersection. The proposed upgrades involve changing the Coreen Avenue/ Combewood Avenue intersection to be a give-way intersection and restricting movements to left-in and left-out of Combewood Avenue, while the Coreen Avenue/ Sydney Smith Drive intersection is proposed to be upgraded to traffic signals. In addition, Council has indicated its preference for the Thornton Drive/ Combewood Avenue intersection to be upgraded to a roundabout.

It is noted that the Coreen Avenue and Combewood Avenue intersections are expected to operate satisfactorily in 2025 with full development of the site as indicated by the SIDRA modelling results for Scenario 2.

The assumed Scenario 3 layouts for the above intersections are shown in Figure 7.2 to Figure 7.5.

Figure 7.2: Assumed Scenario 3 Castlereagh Road/ Thornton Drive intersection layout

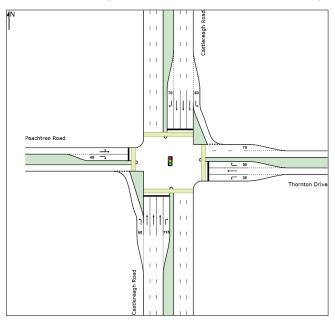


Figure 7.3: Assumed Scenario 3 Thornton Drive/ Combewood Avenue intersection layout

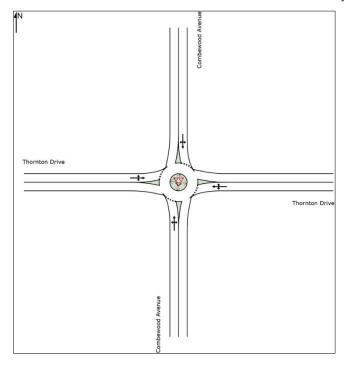


Figure 7.4: Assumed Scenario 3 Coreen Avenue/ Combewood Avenue intersection layout

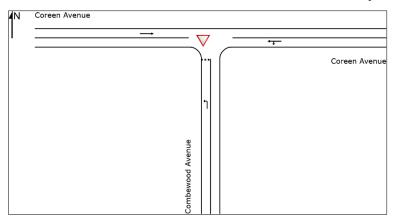


Figure 7.5: Assumed Scenario 3 Coreen Avenue/ Sydney Smith Drive intersection layout

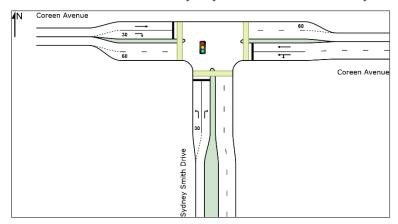


Table 7.6 provides a summary of the SIDRA modelling results for Scenario 3, with modelling considering a slight redistribution of existing traffic associated with Coreen Avenue/ Combewood Avenue being restricted to left-in left-out.

The table indicates that the planned upgrades to the Castlereagh Road/ Thornton Drive intersection would result in the intersection operating at a satisfactory LOS C or D in the weekday peak hours in 2025 with the proposed development. Similarly, the other key intersections are also expected to operate satisfactorily with the potential upgrades to the Combewood Avenue/ Thornton Drive, Coreen Avenue/ Combewood Avenue and Coreen Avenue/ Sydney Smith Drive intersections at a LOS A or B. This is not dissimilar to the expected operation of these intersections in their current configuration.

As outlined earlier, however, it is important to note that the local intersection upgrades assessed in this scenario are not proposed as "mitigation works" of the development as they are understood to be upgrades proposed by Council to improve the precinct accessibility. Moreover, the analysis presented in following sections indicates that the works are not "required" to accommodate the development generated traffic. Notwithstanding this, it is understood that discussions have been held between Council and the developer for contributions towards the roundabout works at the Combewood Avenue/Thornton Drive intersection.

Table 7.6: Scenario 3: 2025 future year intersection operation with development and potential road upgrades

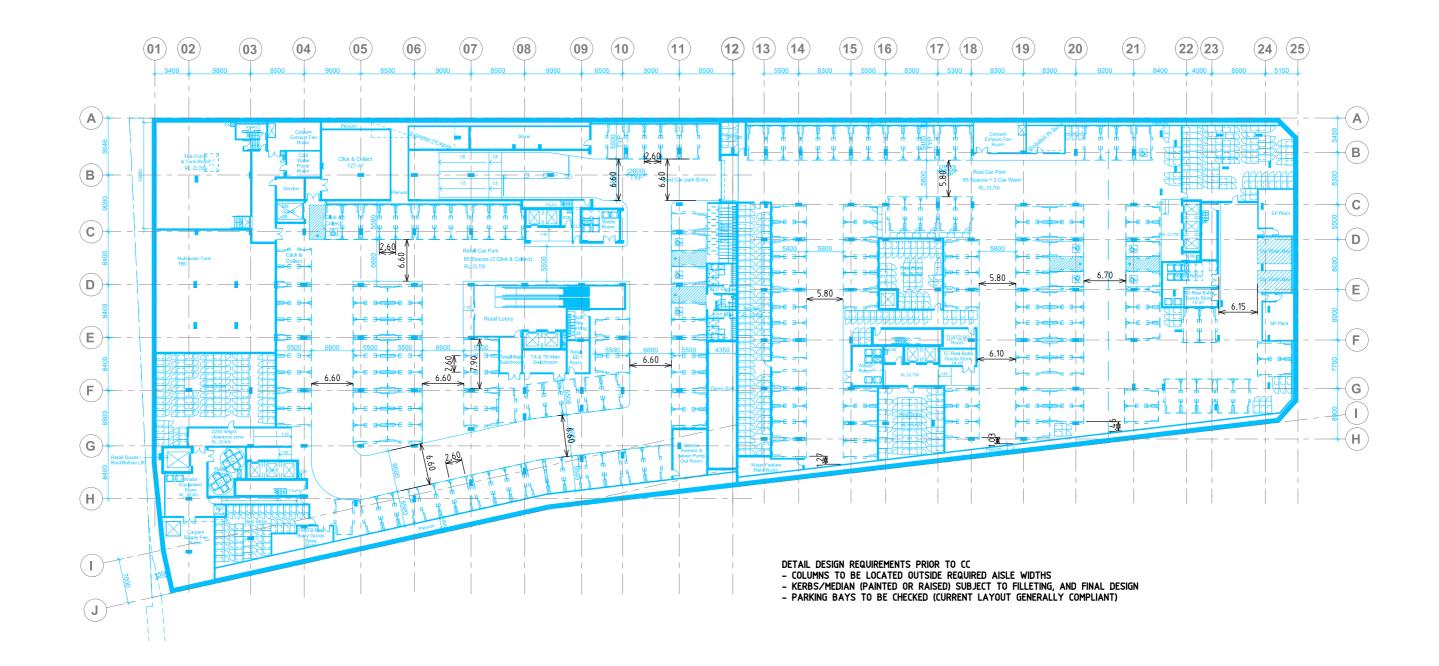
Intersection	Peak	Degree of saturation (DOS)	Average delay (sec)	Queue (m)	Level of service (LOS)
Castlereagh	AM	0.79	35	164	С
Road/ Thornton Drive	PM	0.92	50	233	D
Combewood	AM	0.04	10	1	А
Avenue/ Thornton Drive	PM	0.05	10	1	А
Coreen Avenue/	AM	0.06	7	1	А
Combewood Avenue	PM	0.18	8	2	A
Coreen Avenue/	AM	0.53	19	67	В
Sydney Smith Drive	PM	0.73	25	82	В
The Crescent/ Evan Street/	AM	0.60	24	43	В
Macquarie Avenue	PM	0.32	13	15	А

Note: Average queues reported for networked intersections while 95th percentile queues are reported for isolated intersections.

8. CONCLUSION

Based on the analysis and discussions presented within this report, the following conclusions are made:

- A mixed-use development is proposed on Lot 3003 of DP1184498 in Penrith comprising 316 apartments and approximately 1,600sqm GFA of supermarket, 1,100sqm GFA of general retail and 1,400sqm GFA of medical and childcare floor area.
- 2. The proposed development the first stage of the overall development to be known as Penrith Central Village which will comprise 553 apartments and approximately 1,700sqm GFA of supermarket, 1,800sqm GFA of general retail and 2,000sqm GFA of commercial, medical and childcare floor area.
- 3. The proposed development generates a maximum DCP requirement of 477 car parking spaces, including 333 spaces for residents and 144 spaces for the retail/ commercial uses.
- 4. The proposed provision of 453 car parking spaces, including 333 spaces for residents and 120 spaces for the retail/ commercial uses therefore meets this maximum requirement.
- 5. The provision of a loading docks with capacity for up to four vehicles is considered suitable for meeting the servicing needs of the development.
- 6. It is recommended that an electronic booking system and loading dock occupancy signage be installed at the loading dock entrances to minimise the chance of service vehicles arriving when the dock is full.
- 7. The proposed parking and loading dock areas are generally consistent with the dimensional requirements as set out in the Australian/New Zealand Standard for Off Street Car Parking (AS/NZS2890.1:2004 and AS/NZS2890.6:2009) and Off-Street Commercial Vehicle Facilities (AS2890.2-2018).
- 8. Full development of the site (Stage 1 and Stage 2) is expected to generate an increase of around 320 and 332 vehicle trips in the weekday AM and PM peak hours respectively from existing conditions (268 and 284 of which are associated with Stage 1).
- 9. This represents an increase of around 204 and 83 vehicle trips in the AM and PM peak hours respectively from the existing approval for the site.
- 10. Traffic modelling indicates that the anticipated additional traffic generated by full development of the site is not expected to materially change the operation of the key surveyed intersections near the site in their current configuration when compared to base traffic conditions without the proposed development.
- 11. An additional modelling scenario was completed at the request of Council to consider potential future upgrades to several intersections near the site. The modelling results also confirm that these intersections are expected to continue operating well with the additional traffic generated by full development of the site once upgraded.
- 12. Overall, the proposed development can be supported from a transport and parking perspective.



A.SWEPT PATH ASSESSMENT

- MAXIMUM CHANGE IN GRADE FOR CARS SHOULD BE 1:8 OVER 2m
- A MINIMUM HEIGHT CLEARANCE OF 2.2m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE CIRCULATION AISLES AND PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 2.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE DISABLED PARKING SPACES

- A MINIMUM HEIGHT CLEARANCE OF 4.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS ROADWAYS AND LOADING DOCKS

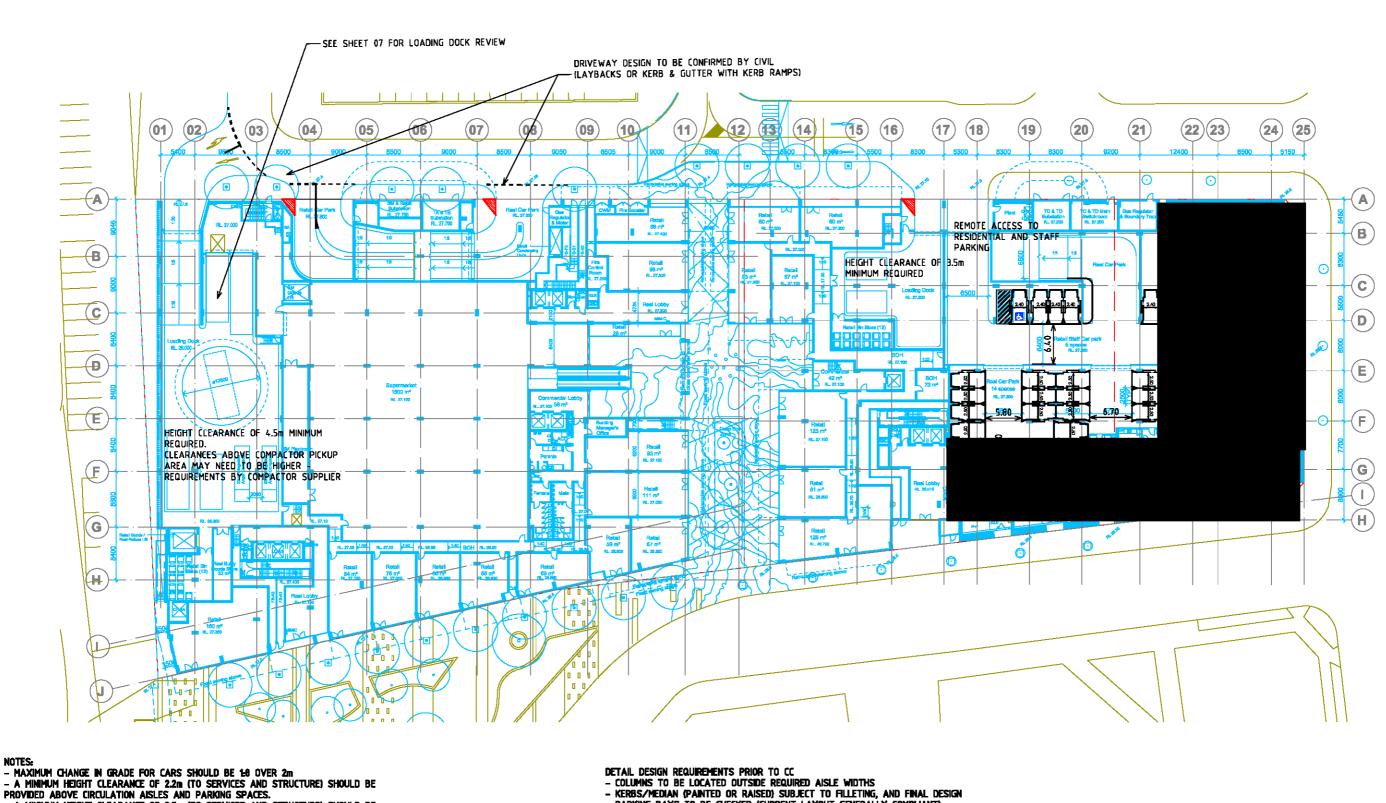
- HEIGHT CLEARANCE ABOVE A SAG CHANGE IN GRADES SHOULD BE MEASURED IN

ACCORDANCE WITH FIGURE 5.3 AS2890.1-2004.

BASE DRAWING: PROPOSED FLOOR PLAN - LEVEL B1 DRAWING NUMBER: DA-01-10509 BY: CRONE ARCHITECTS ISSUE: A DATED: 17.11.2021

PRELIMINARY PLAN FOR DISCUSSION PURPOSES
ONLY SUBJECT TO CHANGE
WITHOUT MOTIFICATION

WARNING


DESIGNED H.OBERMAIER DESIGN CHECK APPROVED BY T.DE YOUNG DATE ISSUED 19 NOVEMBER 2021 CAD FILE NO. N208910-01-P5.dgn

THORNTON VILLAGE CENTRE

BASEMENT 01 CAR PARK COMPLIANCE REVIEW DRAWING NO. N208910-01-01

SHEET 01 OF 25

ISSUE P5

PROVIDED ABOVE LIKCULATION ASLES AND PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 2.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE DISABLED PARKING SPACES

- A MINIMUM HEIGHT CLEARANCE OF 4.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS ROADWAYS AND LOADING DOCKS.

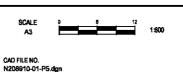
- SRV LOADING DOCK IN STAGE 2 - A MINIMUM HEIGHT CLEARANCE OF 3.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS DRABNAYS AND LOADING DOCKS. ROADWAYS AND LOADING DOCKS.

- HEIGHT CLEARANCE ABOVE A SAG CHANGE IN GRADES SHOULD BE MEASURED IN ACCORDANCE WITH FIGURE 5.3 AS2890.1-2004.

- PARKING BAYS TO BE CHECKED (CURRENT LAYOUT GENERALLY COMPLIANT)

BASE DRAWING: PROPOSED FLOOR PLAN - GROUND FLOOR DRAWING NUMBER: DA-01-10510 BY; CRONE ARCHITECTS ISSUE: A DATED: 17.11.2021

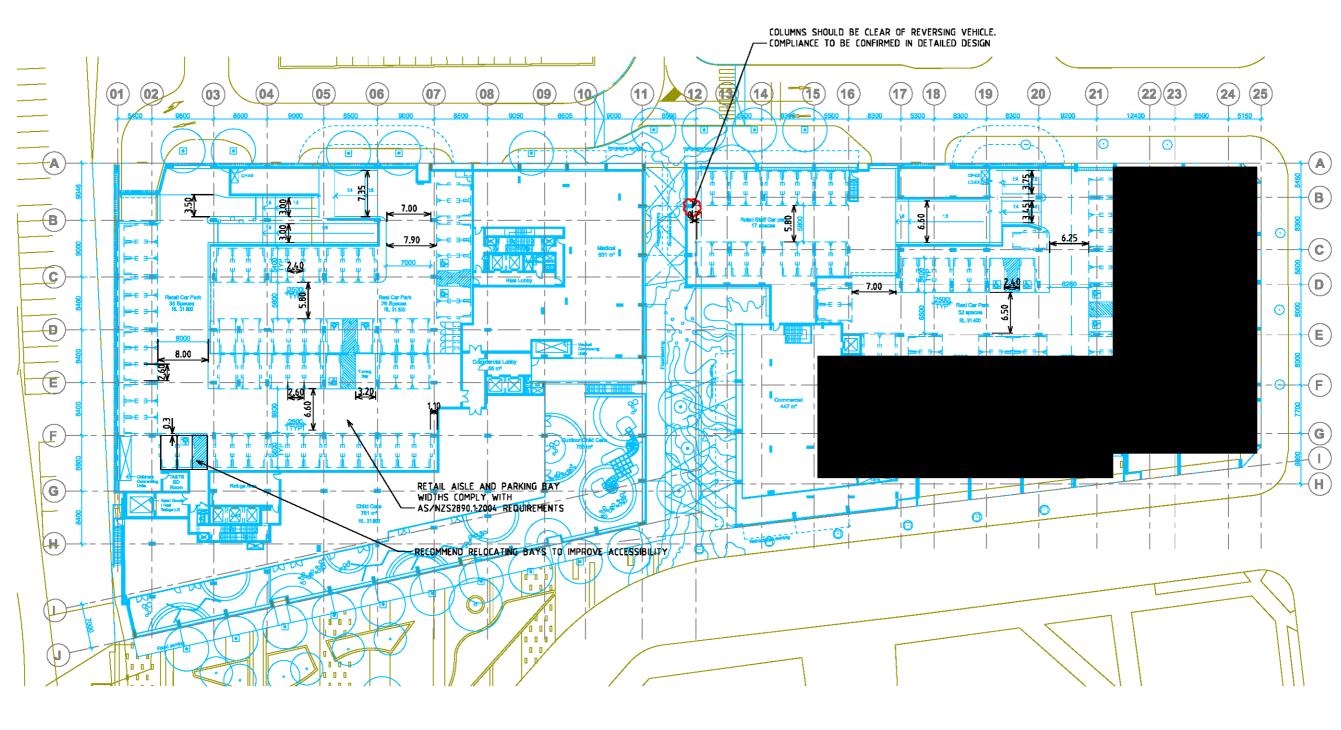
ISSUE P5


PRELIMINARY PLAN FOR DISCUSSION PURPOSES ONLY SUBJECT TO CHANGE WITHOUT NOTIFICATION

WARNING

APPROVED BY T.DE YOUNG

DESIGN CHECK


DATE ISSUED 19 NOVEMBER 2021

THORNTON VILLAGE CENTRE

GROUND CAR PARK COMPLIANCE REVIEW DRAWING NO. N208910-01-02

SHEET 02 OF 25

NOTES:

- MAXIMUM CHANGE IN GRADE FOR CARS SHOULD BE 1:8 OVER 2m

- A MINIMUM HEIGHT CLEARANCE OF 2.2m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE CIRCULATION AISLES AND PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 2.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE DISABLED PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 4.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS ROADWAYS AND LOADING DOOKS.

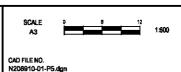
- HEIGHT CLEARANCE ABOVE A SAG CHANGE IN GRADES SHOULD BE MEASURED IN ACCORDANCE WITH FIGURE 5.3 AS2890.1-2004.

DETAIL DESIGN REQUIREMENTS PRIOR TO CC
- COLUMNS TO BE LOCATED OUTSIDE REQUIRED AISLE WIDTHS

- KERBS/MEDIAN (PAINTED OR RAISED) SUBJECT TO FILLETING, AND FINAL DESIGN

- PARKING BAYS TO BE CHECKED (CURRENT LAYOUT GENERALLY COMPLIANT)

BASE DRAWING: PROPOSED FLOOR PLAN - LEVEL 01 DRAWING NUMBER: DA-01-10511 BY: CRONE ARCHITECTS ISSUE: A DATED: 17.11.2021

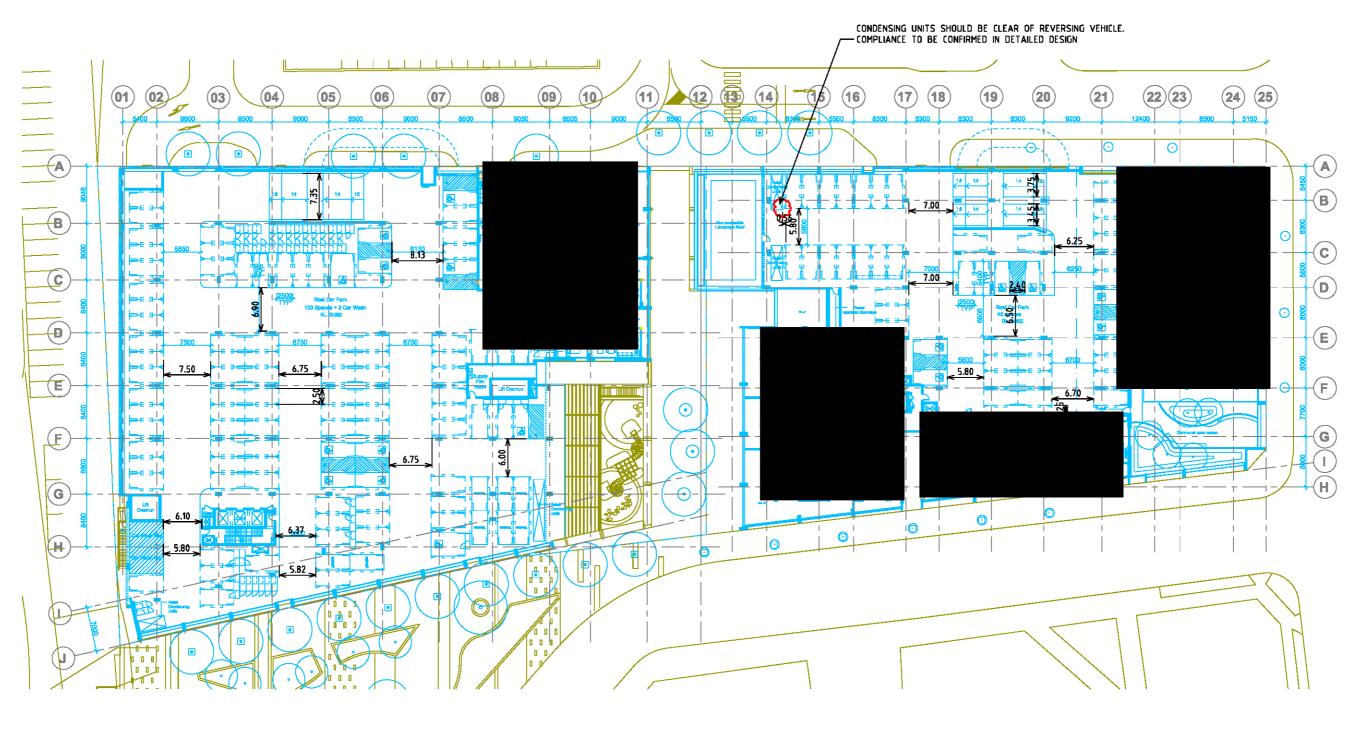


PRELIMINARY PLAN FOR DISCUSSION PURPOSES ONLY SUBJECT TO CHANGE WITHOUT NOTIFICATION

DESIGNED H.OBERMAIE APPROVED BY T.DE YOUNG

DESIGN CHECK

DATE ISSUED 19 NOVEMBER 2021



THORNTON VILLAGE CENTRE

LEVEL 01 CAR PARK COMPLIANCE REVIEW DRAWING NO. N208910-01-03

SHEET 03 OF 25

ISSUE P5

- NOTES:

 MAXIMUM CHANGE IN GRADE FOR CARS SHOULD BE 1:8 OVER 2m

 A MINIMUM HEIGHT CLEARANCE OF 2.2m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE CIRCULATION AISLES AND PARKING SPACES.

 A MINIMUM HEIGHT CLEARANCE OF 2.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE DISABLED PARKING SPACES.

 A MINIMUM HEIGHT CLEARANCE OF 4.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS ROADWAYS AND LOADING DOOKS. - HEIGHT CLEARANCE ABOVE A SAG CHANGE IN GRADES SHOULD BE MEASURED IN ACCORDANCE WITH FIGURE 5.3 AS2890.1-2004.

- DETAIL DESIGN REQUIREMENTS PRIOR TO CC

 COLUMNS TO BE LOCATED OUTSIDE REQUIRED AISLE WIDTHS

 KERBS/MEDIAN (PAINTED OR RAISED) SUBJECT TO FILLETING, AND FINAL DESIGN
- PARKING BAYS TO BE CHECKED (CURRENT LAYOUT GENERALLY COMPLIANT)

APPROVED BY T.DE YOUNG

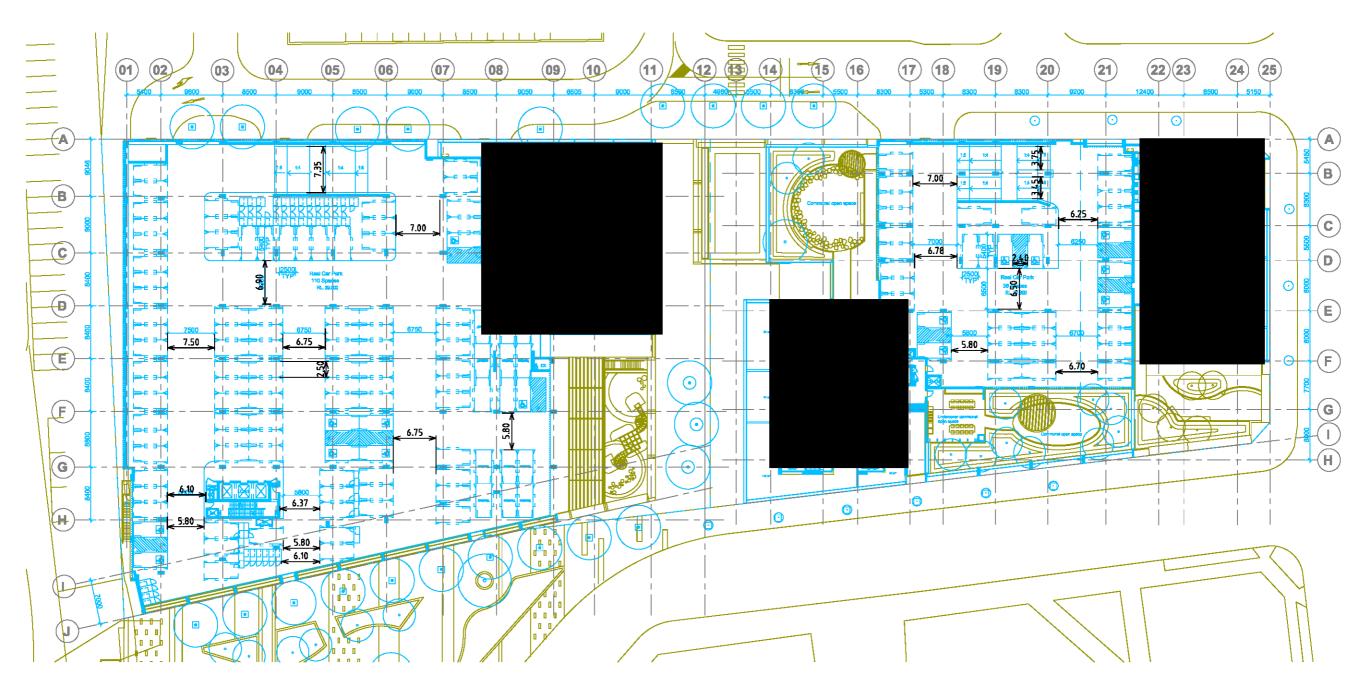
BASE DRAWING: PROPOSED FLOOR PLAN - LEVEL 02 DRAWING NUMBER: DA-01-10512 BY: CRONE ARCHITECTS ISSUE: A DATED: 17.11.2021

PRELIMINARY PLAN FOR DISCUSSION PURPOSES ONLY SUBJECT TO CHANGE WITHOUT NOTIFICATION

DESIGN CHECK

DATE ISSUED 19 NOVEMBER 2021

CAD FILE NO. N208910-01-P5.dgn


THORNTON VILLAGE CENTRE LEVEL 02

CAR PARK COMPLIANCE REVIEW DRAWING NO. N208910-01-04

SHEET 04 OF 25 ISSUE P5

Document Set ID: 9958511

Version: 1, Version Date: 24/03/2022

NOTES:

- MAXIMUM CHANGE IN GRADE FOR CARS SHOULD BE 1:8 OVER 2m

- A MINIMUM HEIGHT CLEARANCE OF 2.2m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE CIRCULATION AISLES AND PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 2.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE DISABLED PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 4.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS ROADWAYS AND LOADING DOCKS.

- HEIGHT CLEARANCE ABOVE A SAG CHANGE IN GRADES SHOULD BE MEASURED IN ACCORDANCE WITH FIGURE 5.3 AS2890.1-2004.

DETAIL DESIGN REQUIREMENTS PRIOR TO CC

- COLUMNS TO BE LOCATED OUTSIDE REQUIRED AISLE WIDTHS

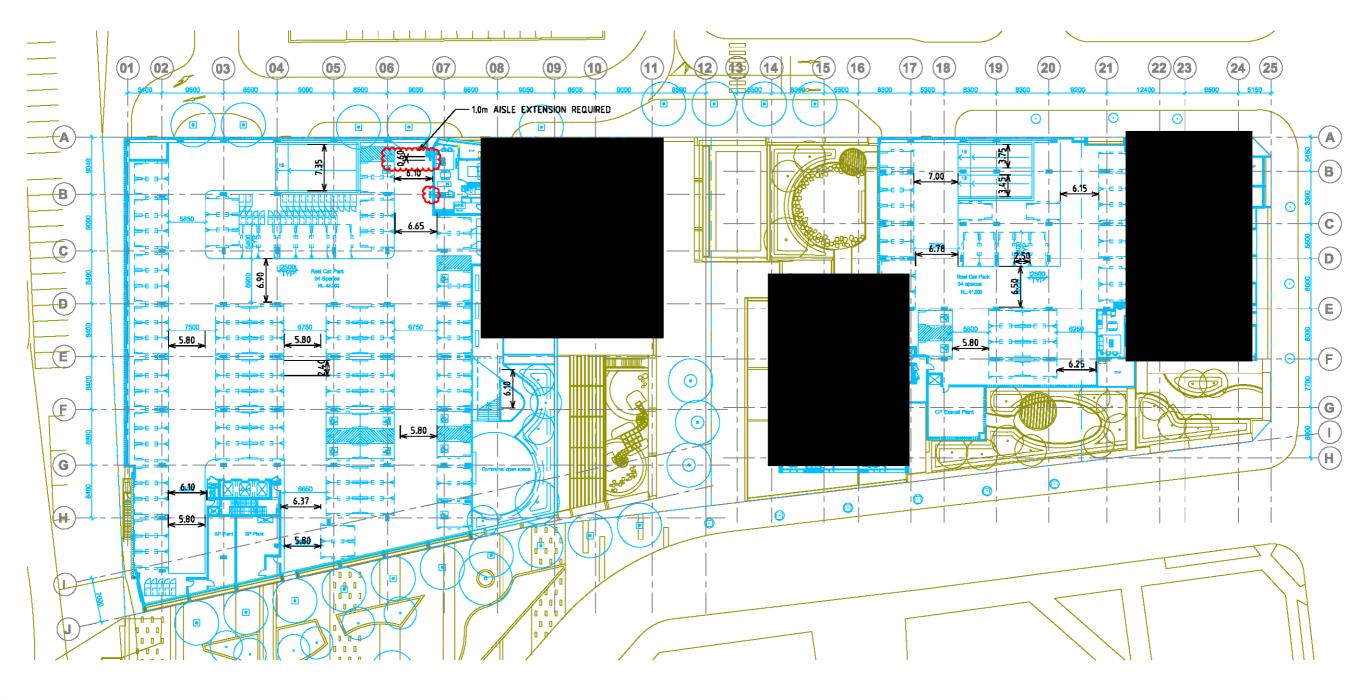
- KERBS/MEDIAN (PAINTED OR RAISED) SUBJECT TO FILLETING, AND FINAL DESIGN

- PARKING BAY'S TO BE CHECKED (CURRENT LAYOUT GENERALLY COMPLIANT)

BASE DRAWING: PROPOSED FLOOR PLAN - LEVEL 03 DRAWING NUMBER: DA-01-10513 BY: CRONE ARCHITECTS ISSUE: A DATED: 17.11.2021

PRELIMINARY PLAN FOR DISCUSSION PURPOSES ONLY SUBJECT TO CHANGE WITHOUT NOTIFICATION

APPROVED BY T.DE YOUNG


DATE ISSUED 19 NOVEMBER 2021

THORNTON VILLAGE CENTRE

LEVEL 03 CAR PARK COMPLIANCE REVIEW DRAWING NO. N208910-01-05

SHEET 05 OF 25 ISSUE P5

NOTES:

- MAXIMUM CHANGE IN GRADE FOR CARS SHOULD BE 1:8 OVER 2m

- A MINIMUM HEIGHT CLEARANCE OF 2.2m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE CIRCULATION AISLES AND PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 2.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE DISABLED PARKING SPACES.

- A MINIMUM HEIGHT CLEARANCE OF 4.5m (TO SERVICES AND STRUCTURE) SHOULD BE PROVIDED ABOVE SERVICE VEHICLE ACCESS ROADWAYS AND LOADING DOCKS.

- HEIGHT CLEARANCE ABOVE A SAG CHANGE IN GRADES SHOULD BE MEASURED IN ACCORDANCE WITH FIGURE 5.3 AS2890.1-2004.

DETAIL DESIGN REQUIREMENTS PRIOR TO CC

- COLUMNS TO BE LOCATED OUTSIDE REQUIRED AISLE WIDTHS

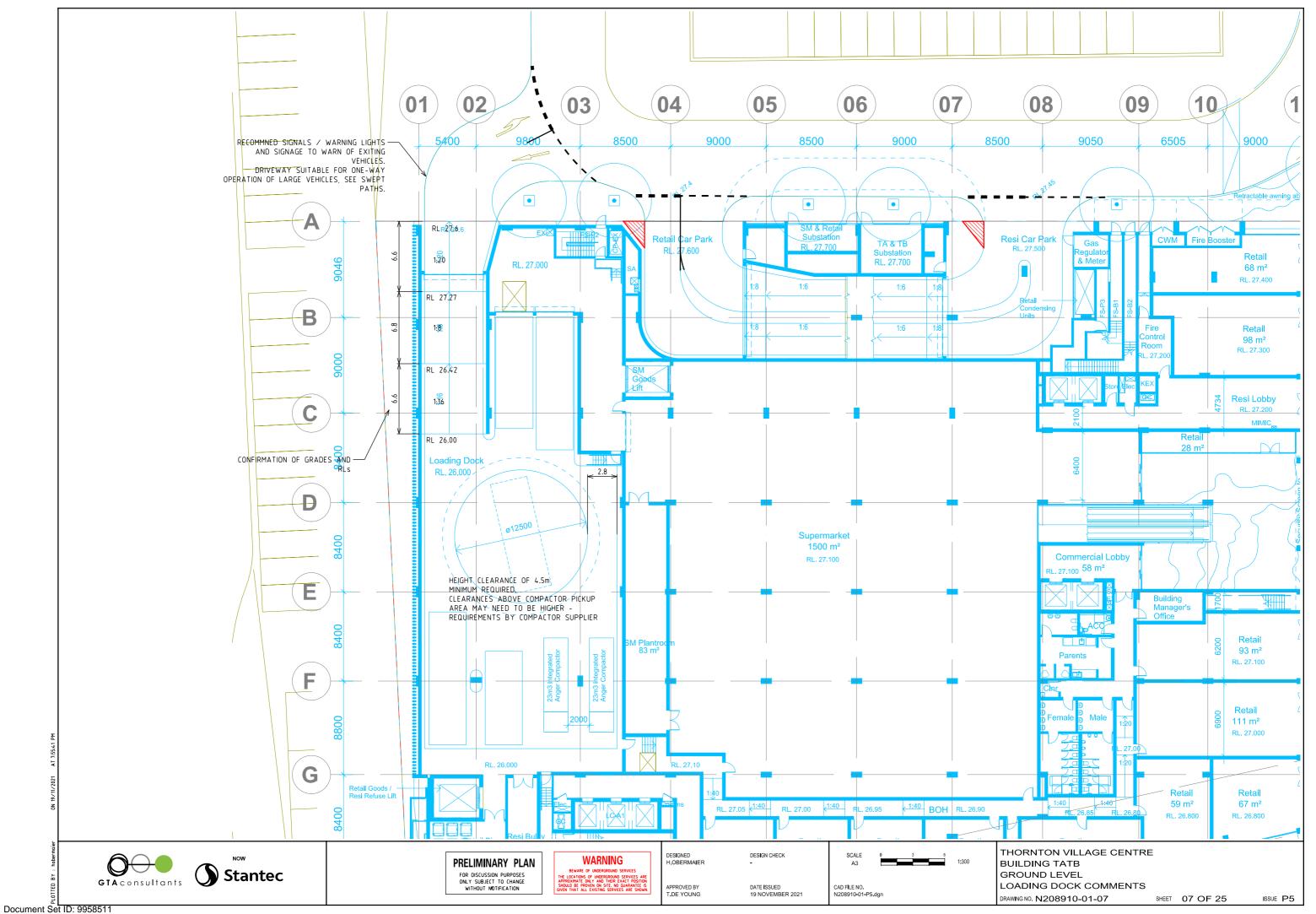
- KERBS/MEDIAN (PAINTED OR RAISED) SUBJECT TO FILLETING, AND FINAL DESIGN

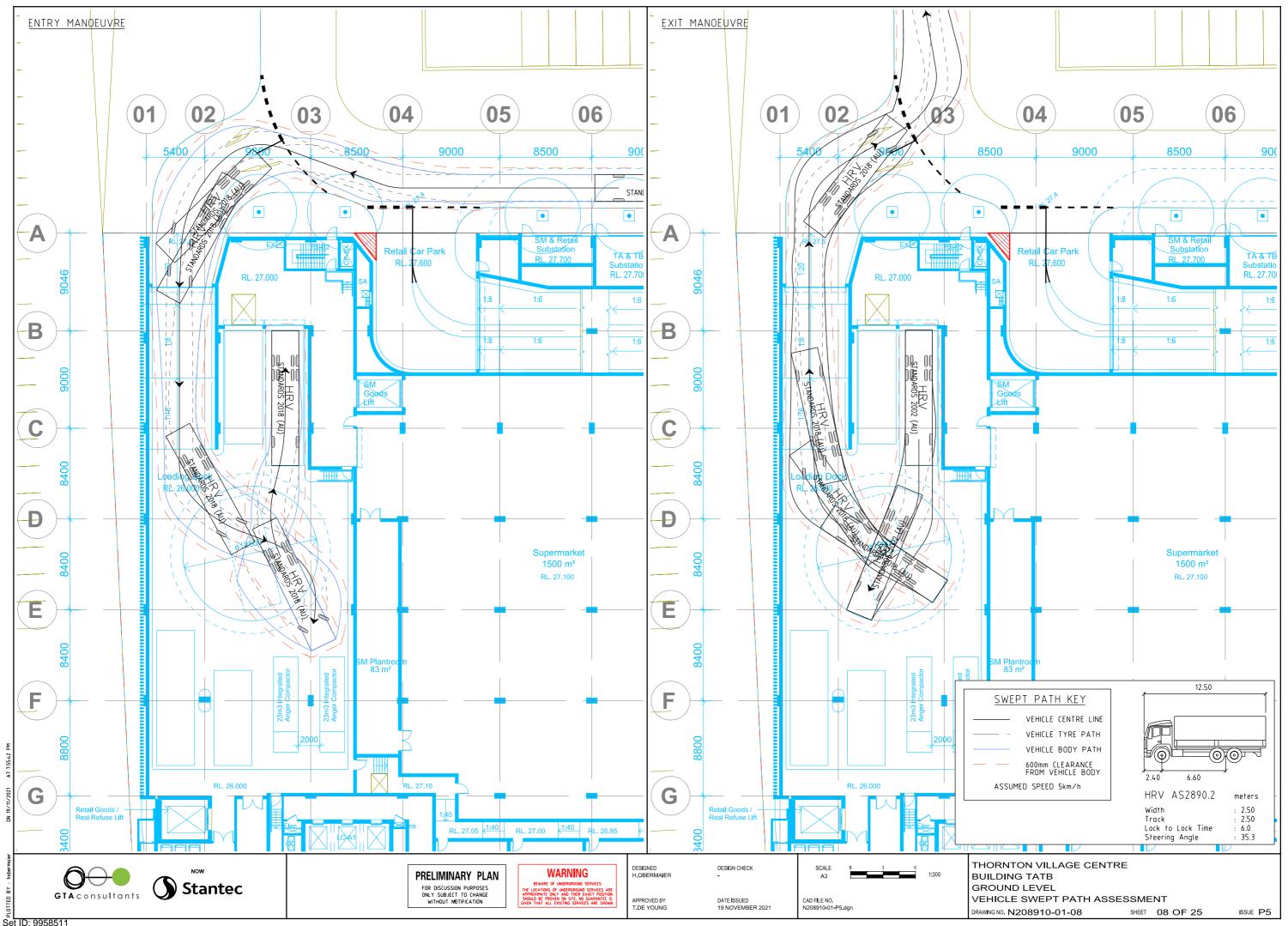
- PARKING BAYS TO BE CHECKED (CURRENT LAYOUT GENERALLY COMPLIANT)

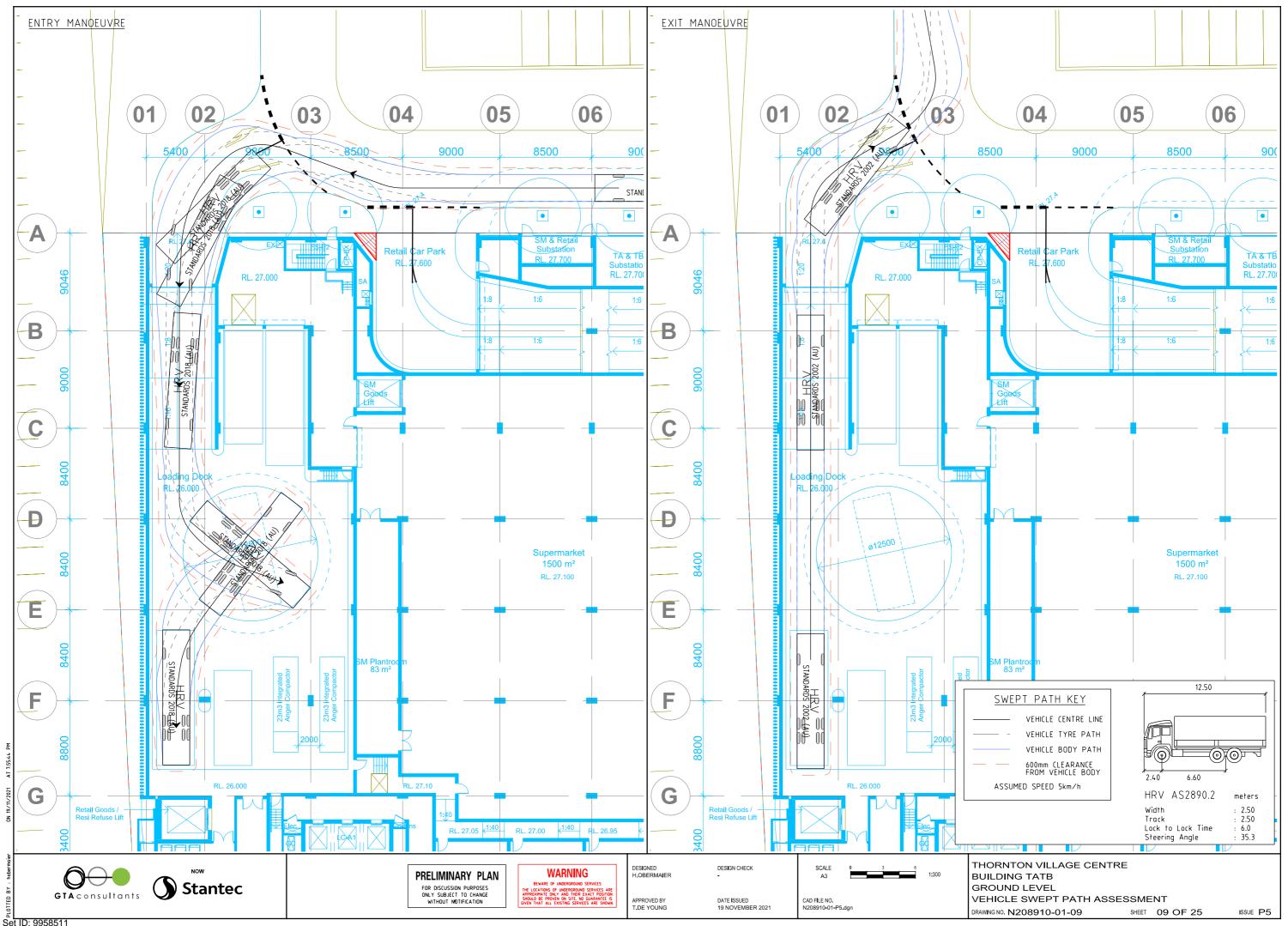
BASE DRAWING: PROPOSED FLOOR PLAN - LEVEL 04 DRAWING NUMBER: DA-01-10514 BY: CRONE ARCHITECTS ISSUE: A DATED: 17.11.2021

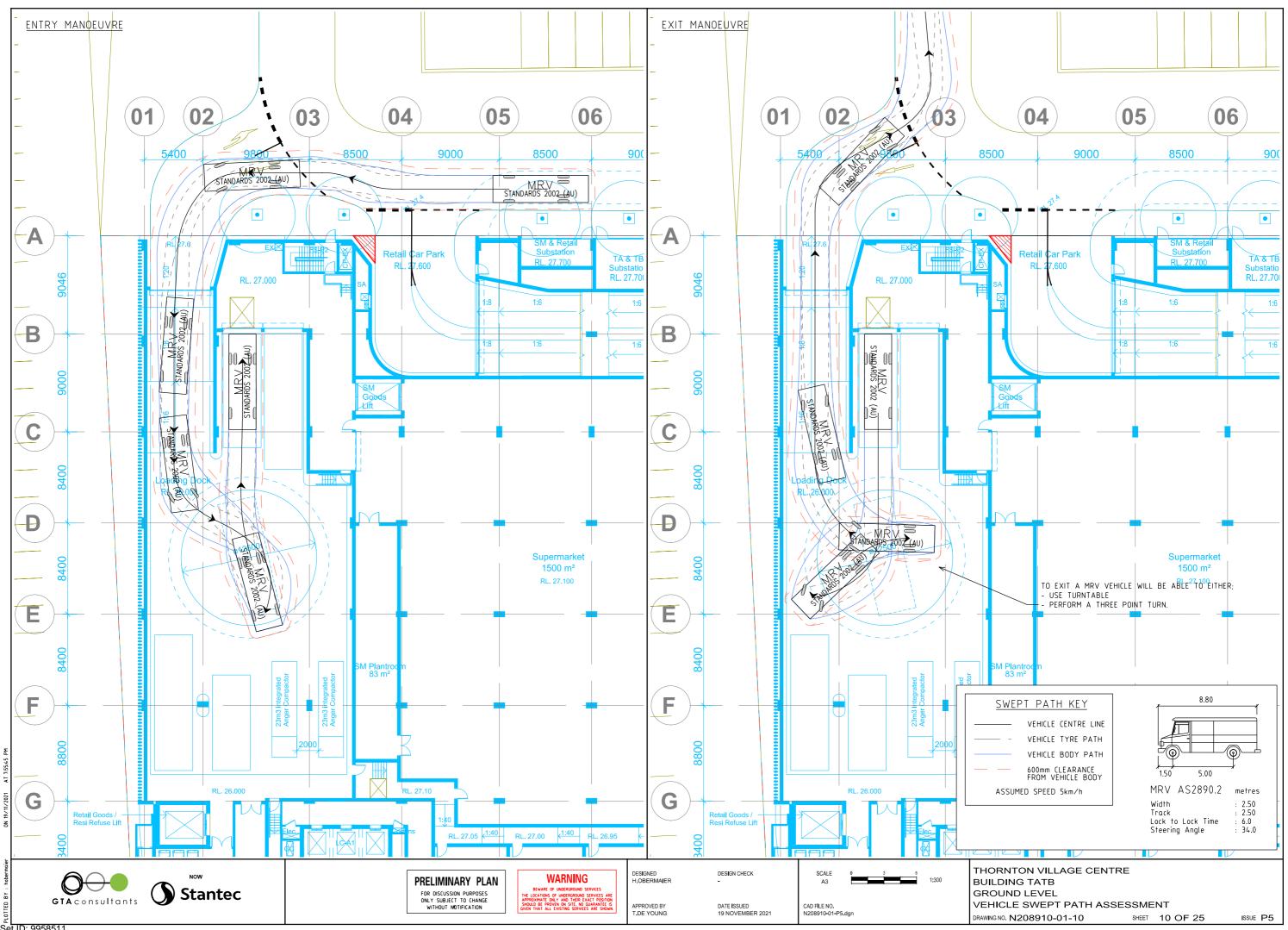
PRELIMINARY PLAN FOR DISCUSSION PURPOSES ONLY SUBJECT TO CHANGE WITHOUT NOTIFICATION

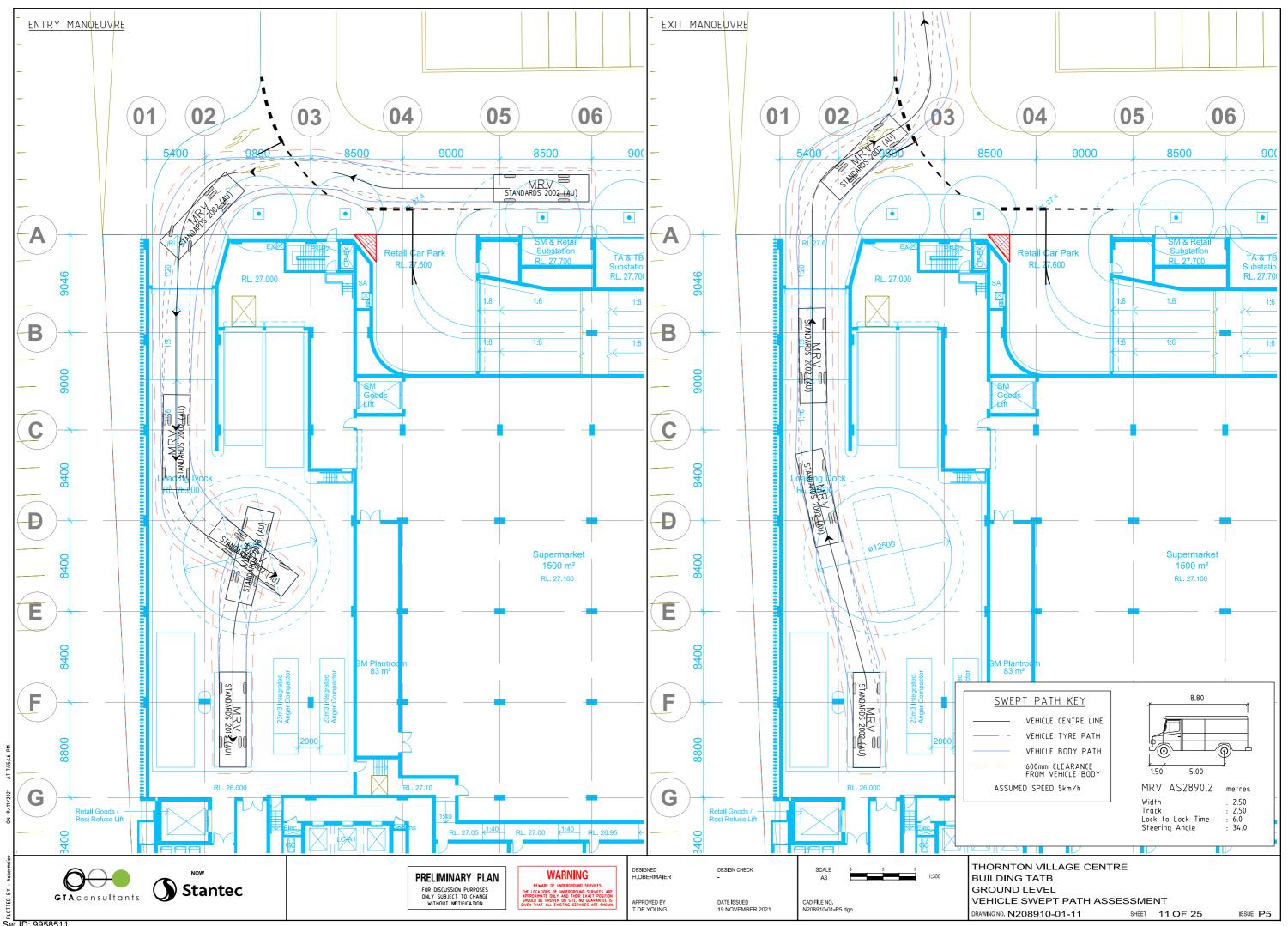
APPROVED BY T.DE YOUNG

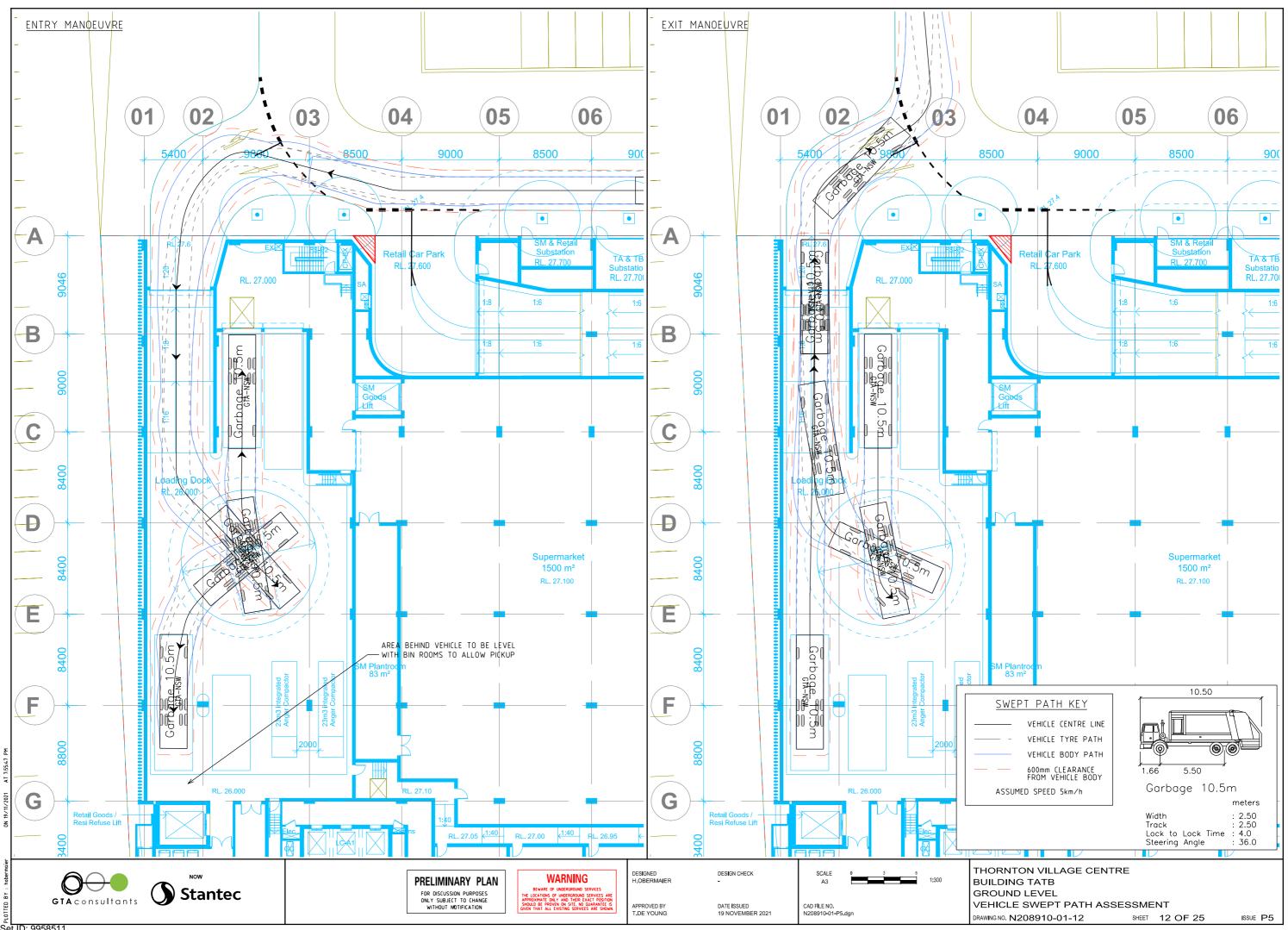

DESIGN CHECK DATE ISSUED 19 NOVEMBER 2021

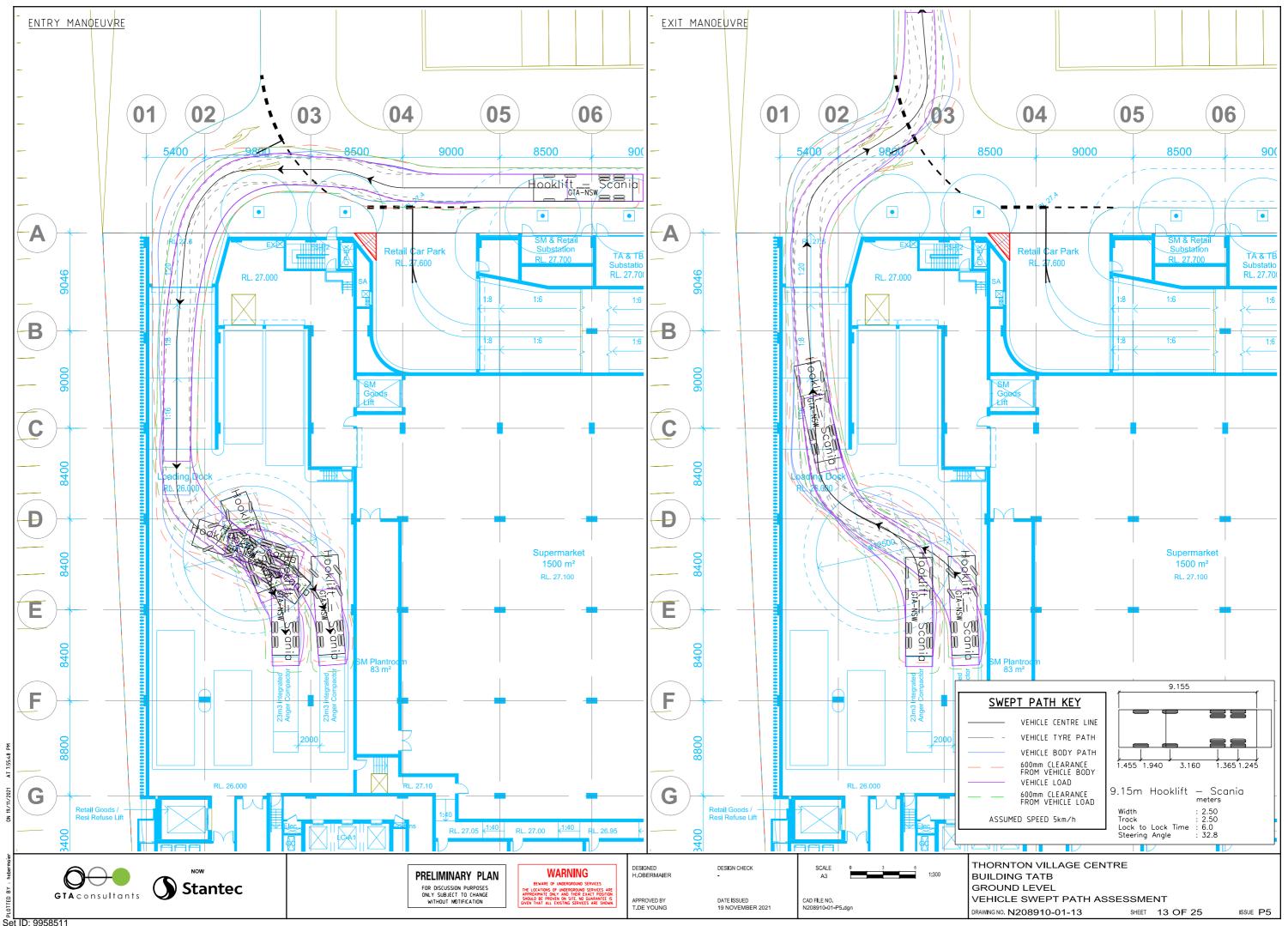


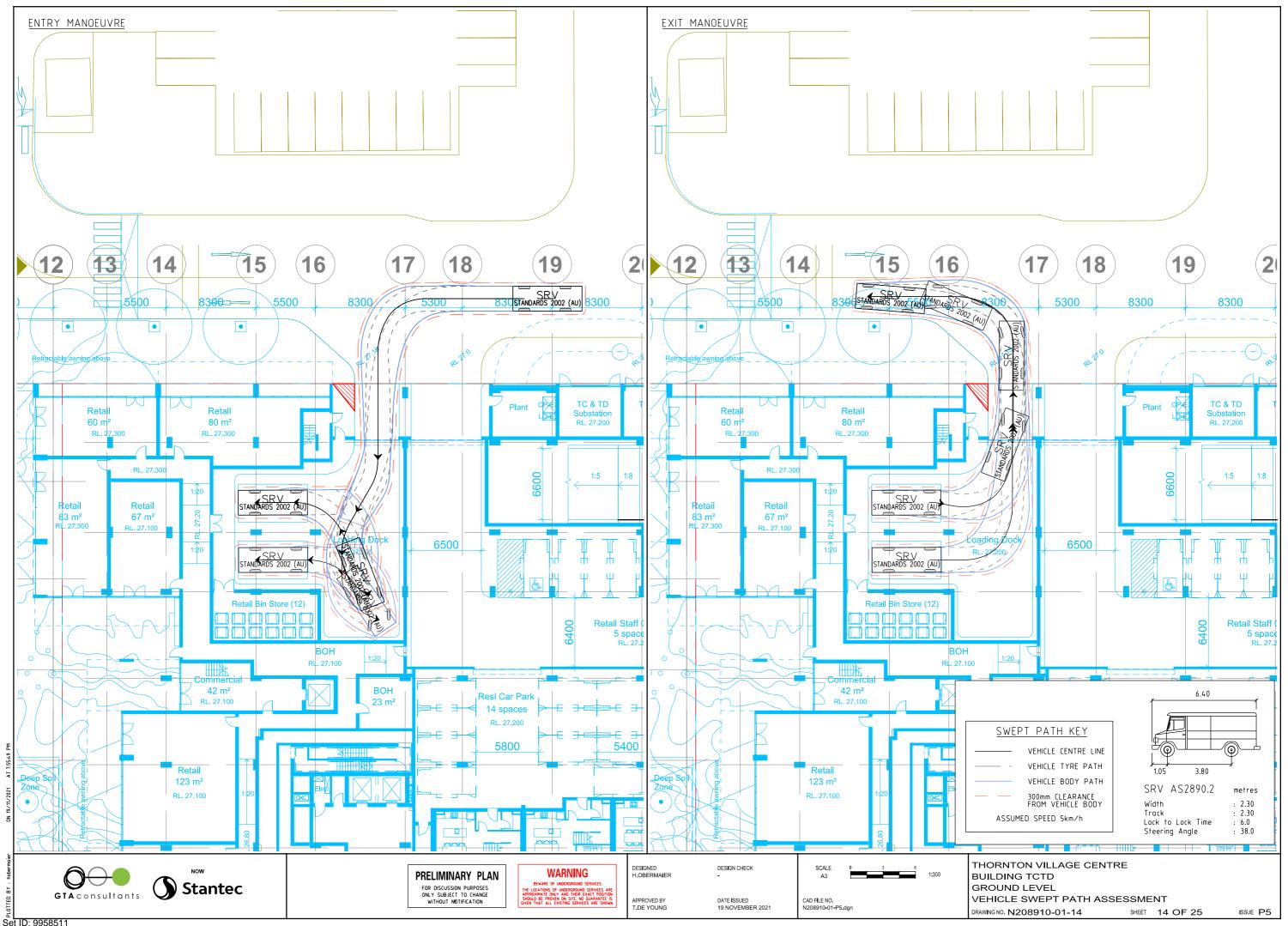

THORNTON VILLAGE CENTRE

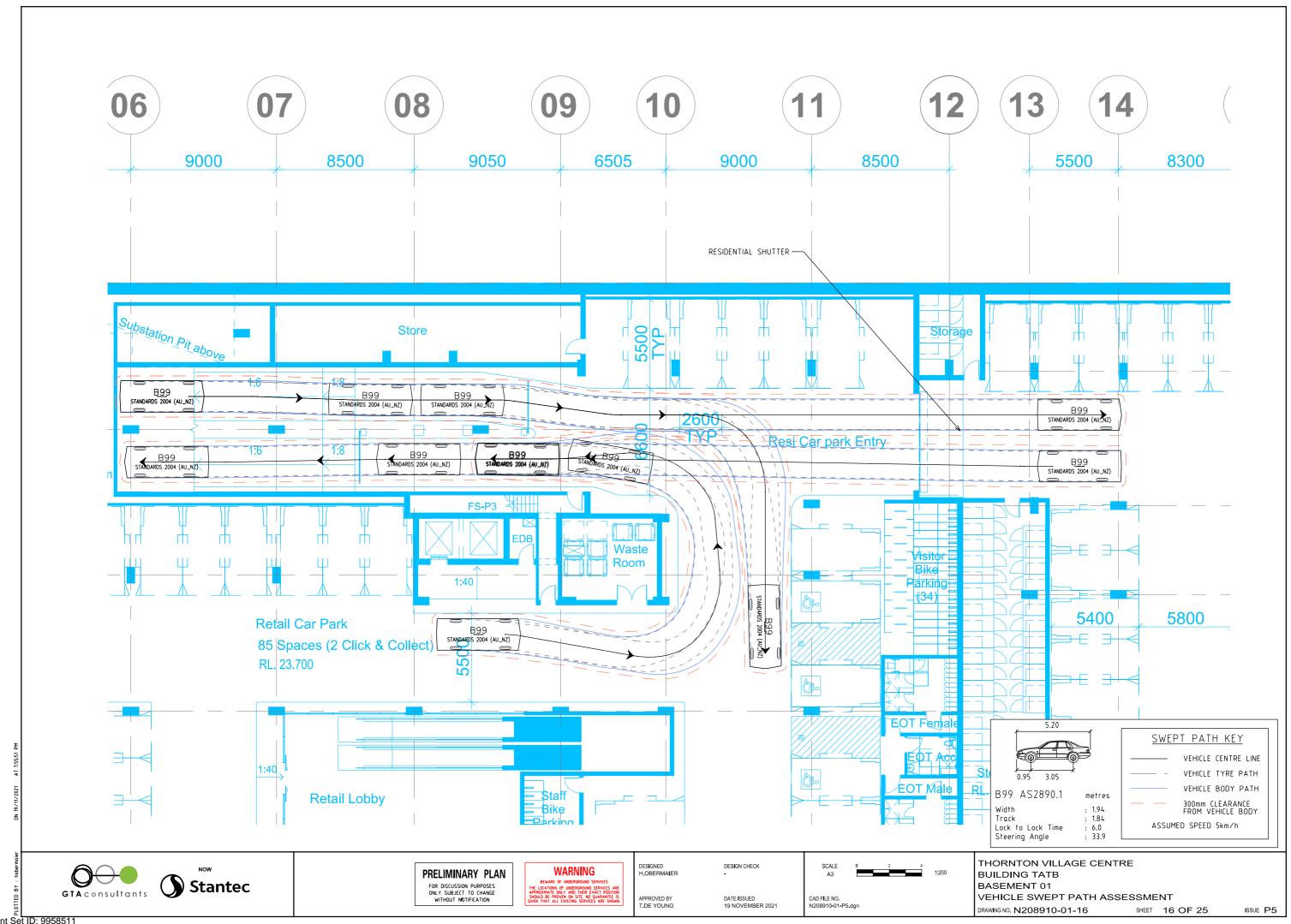

LEVEL 04 CAR PARK COMPLIANCE REVIEW DRAWING NO. N208910-01-06

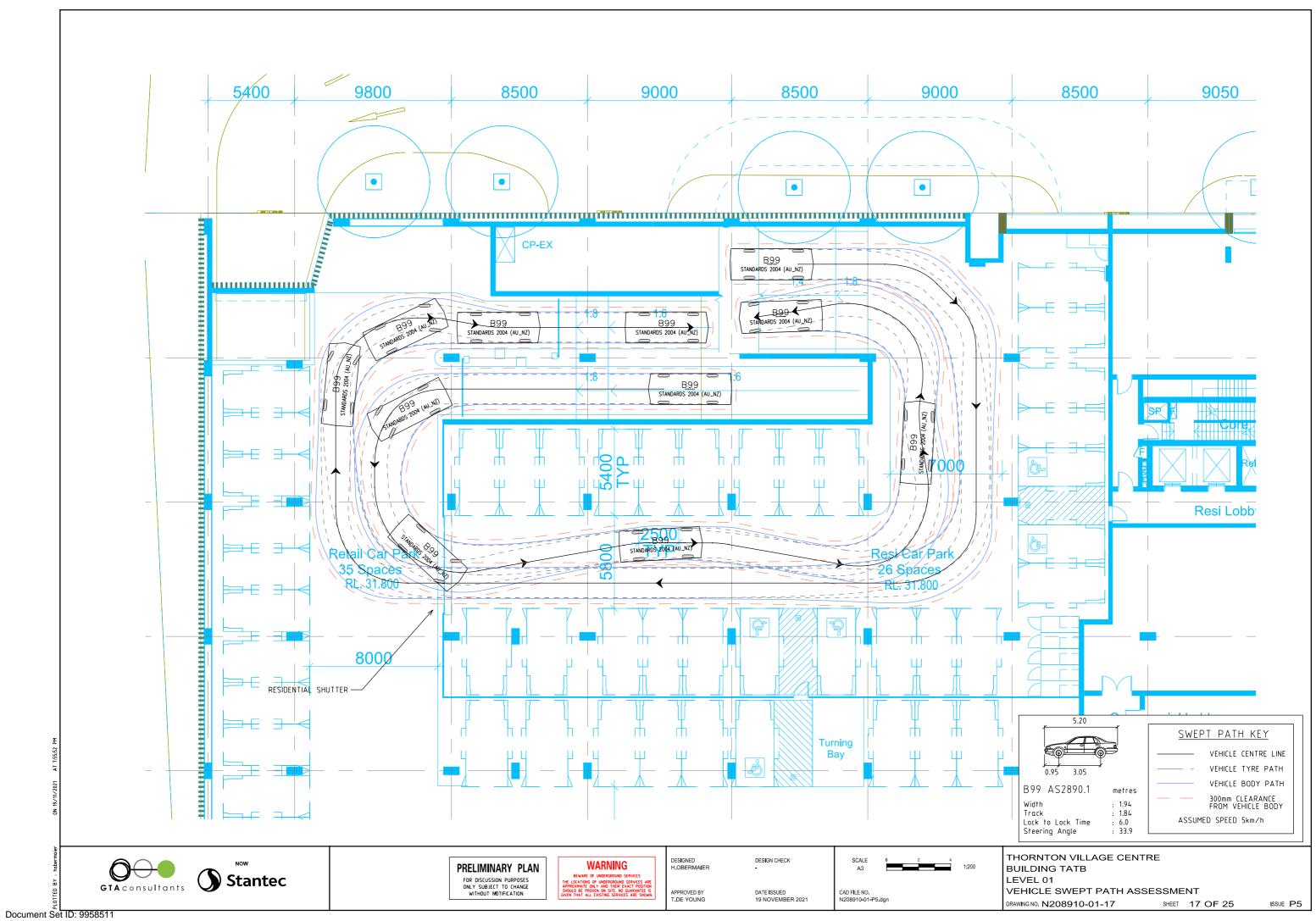

SHEET 06 OF 25 ISSUE P5

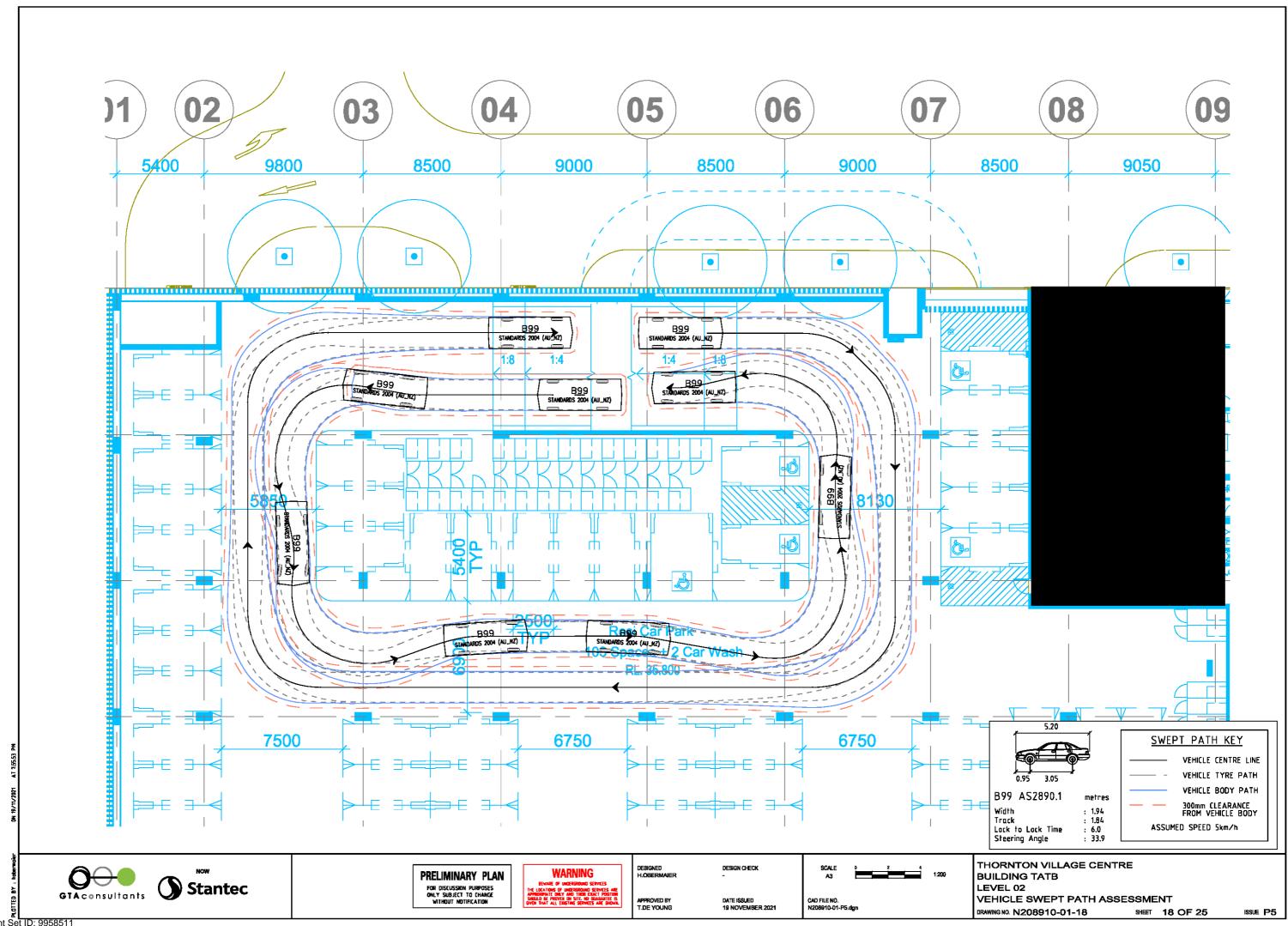


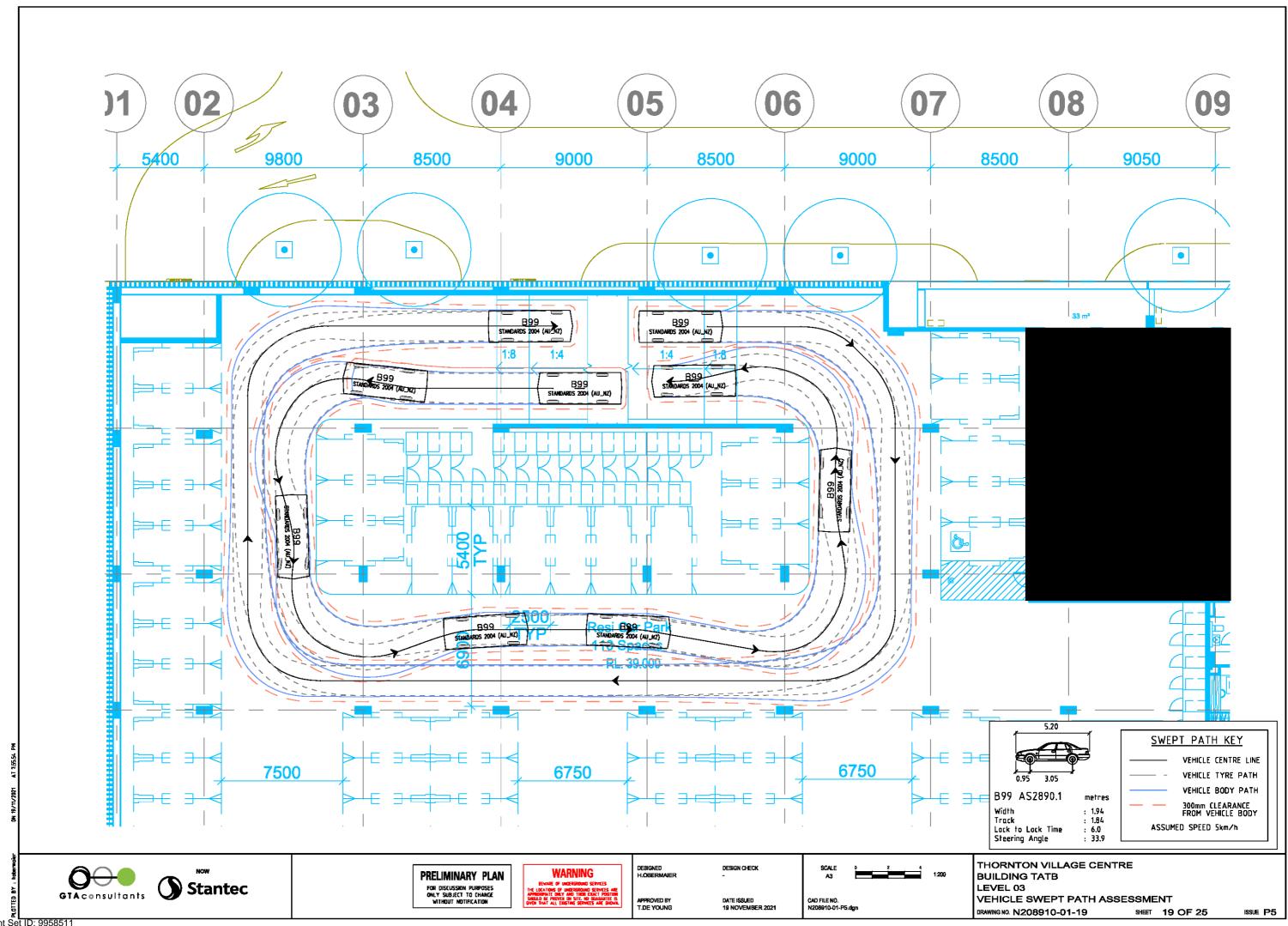


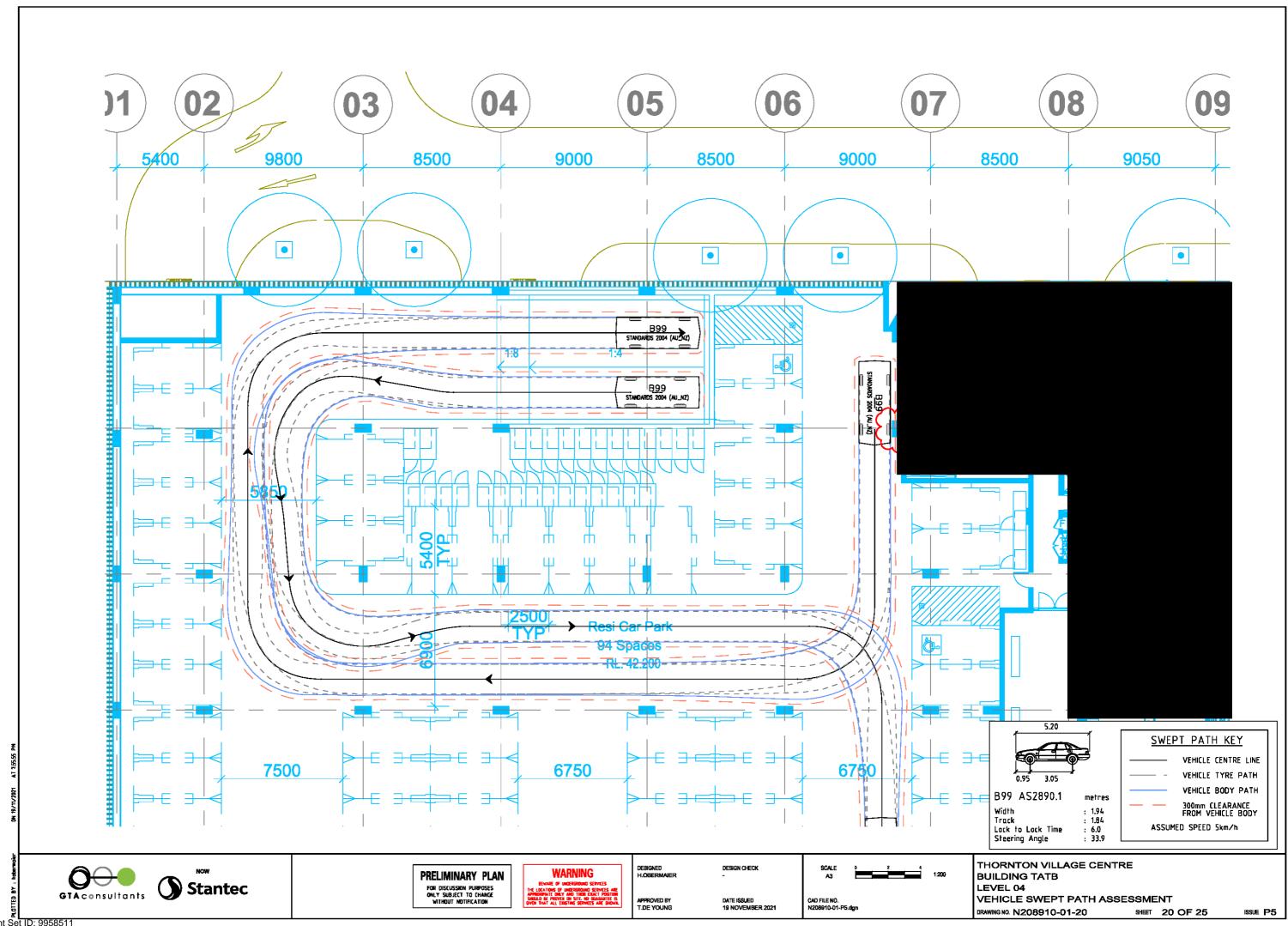


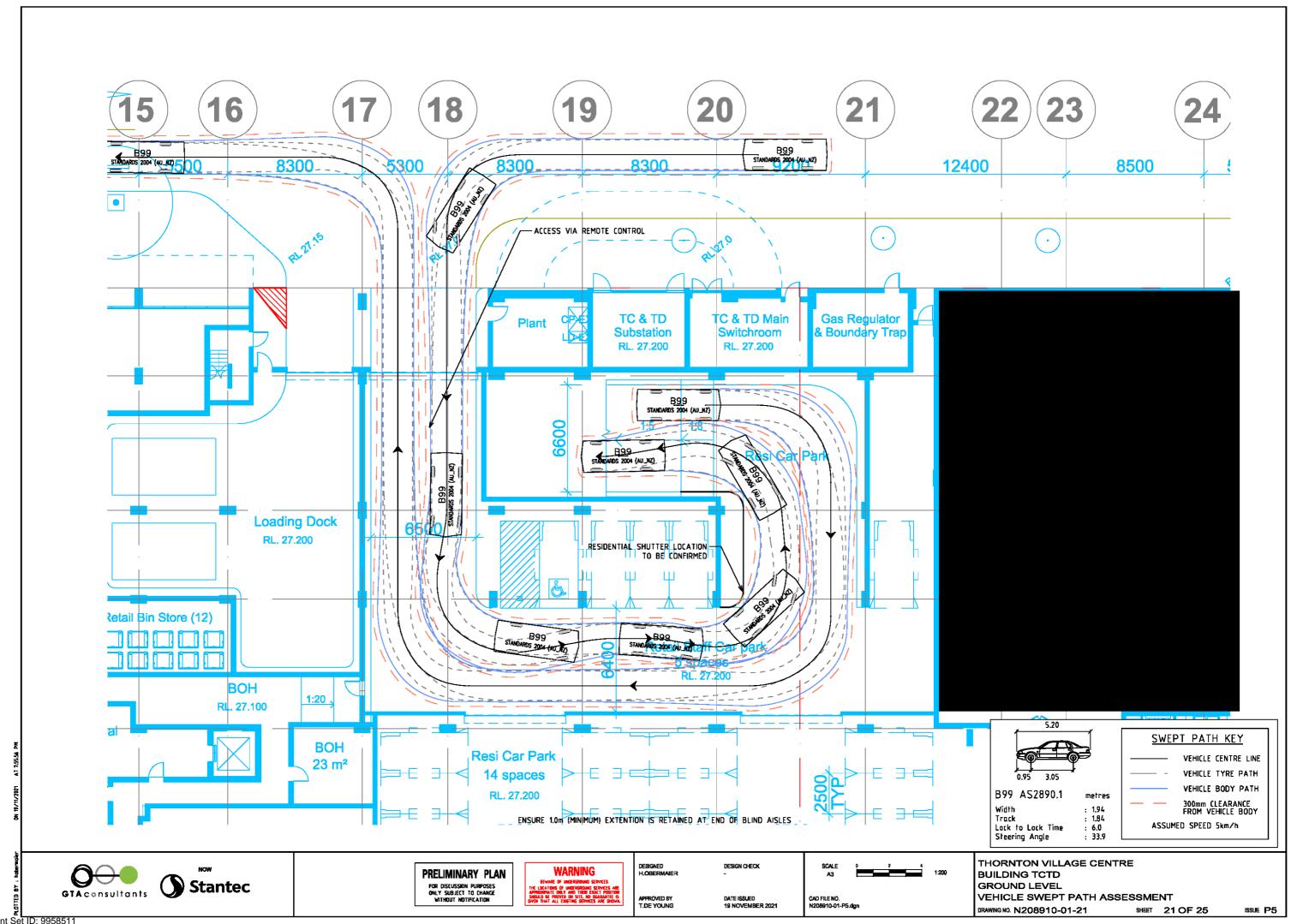


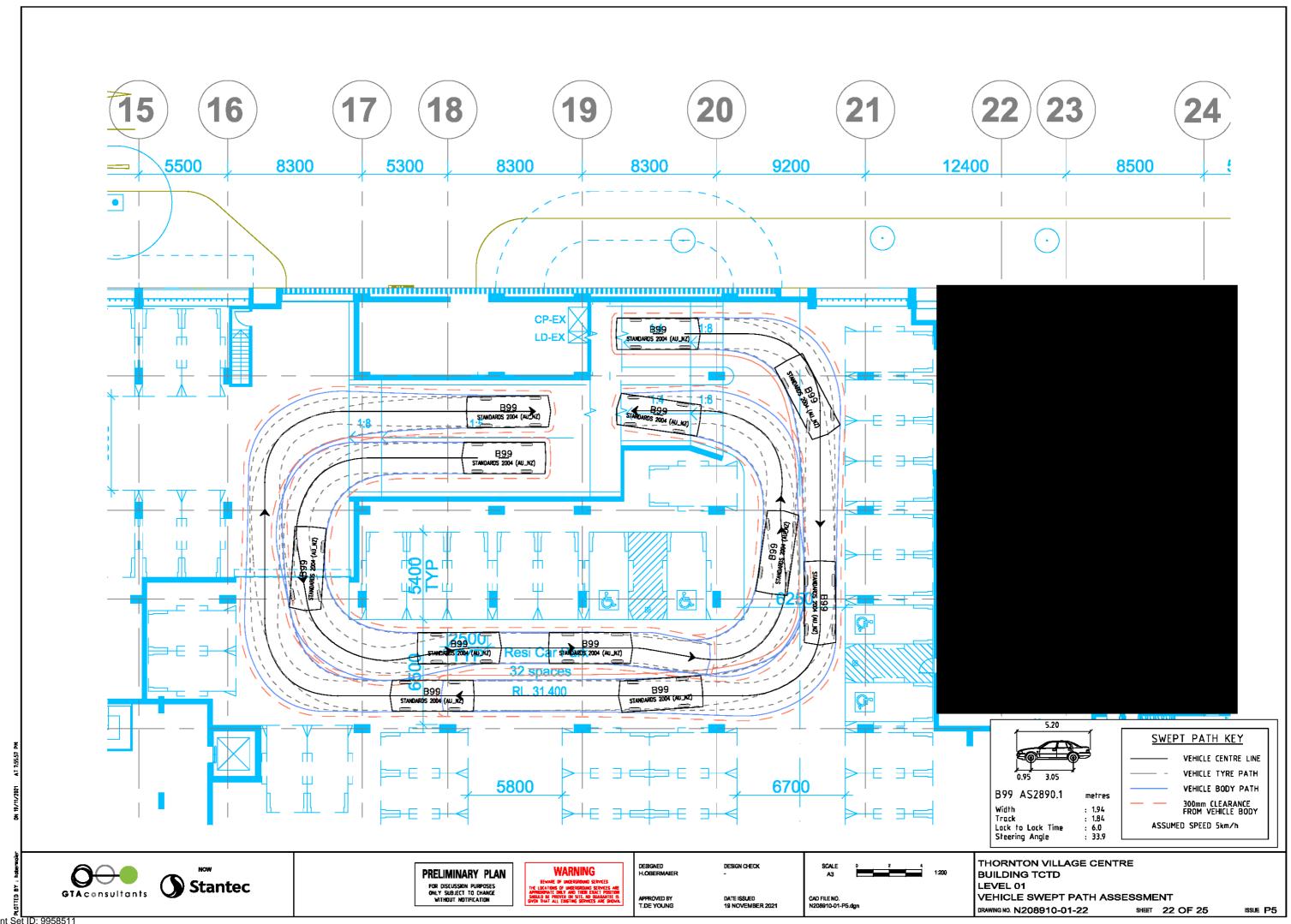


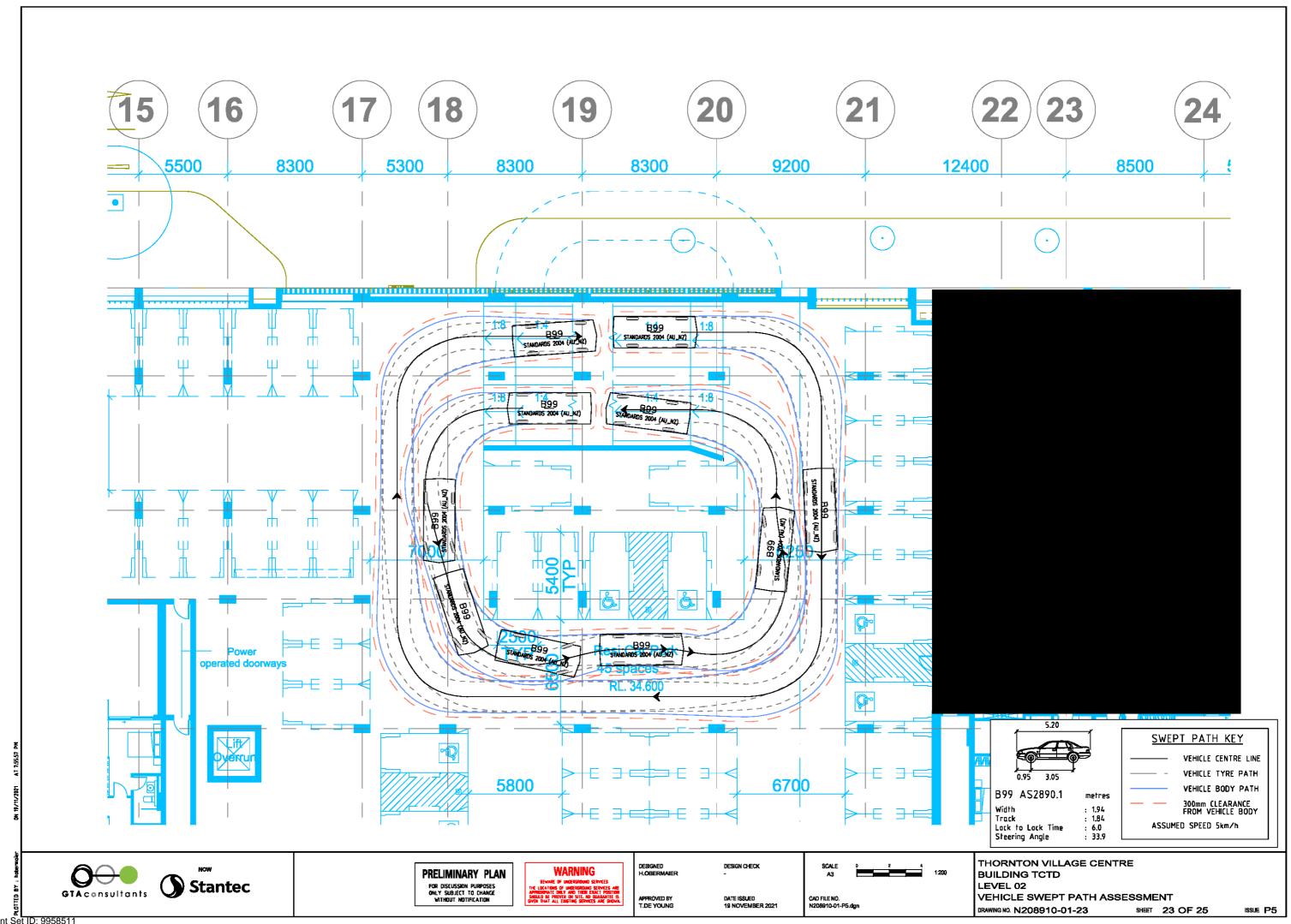


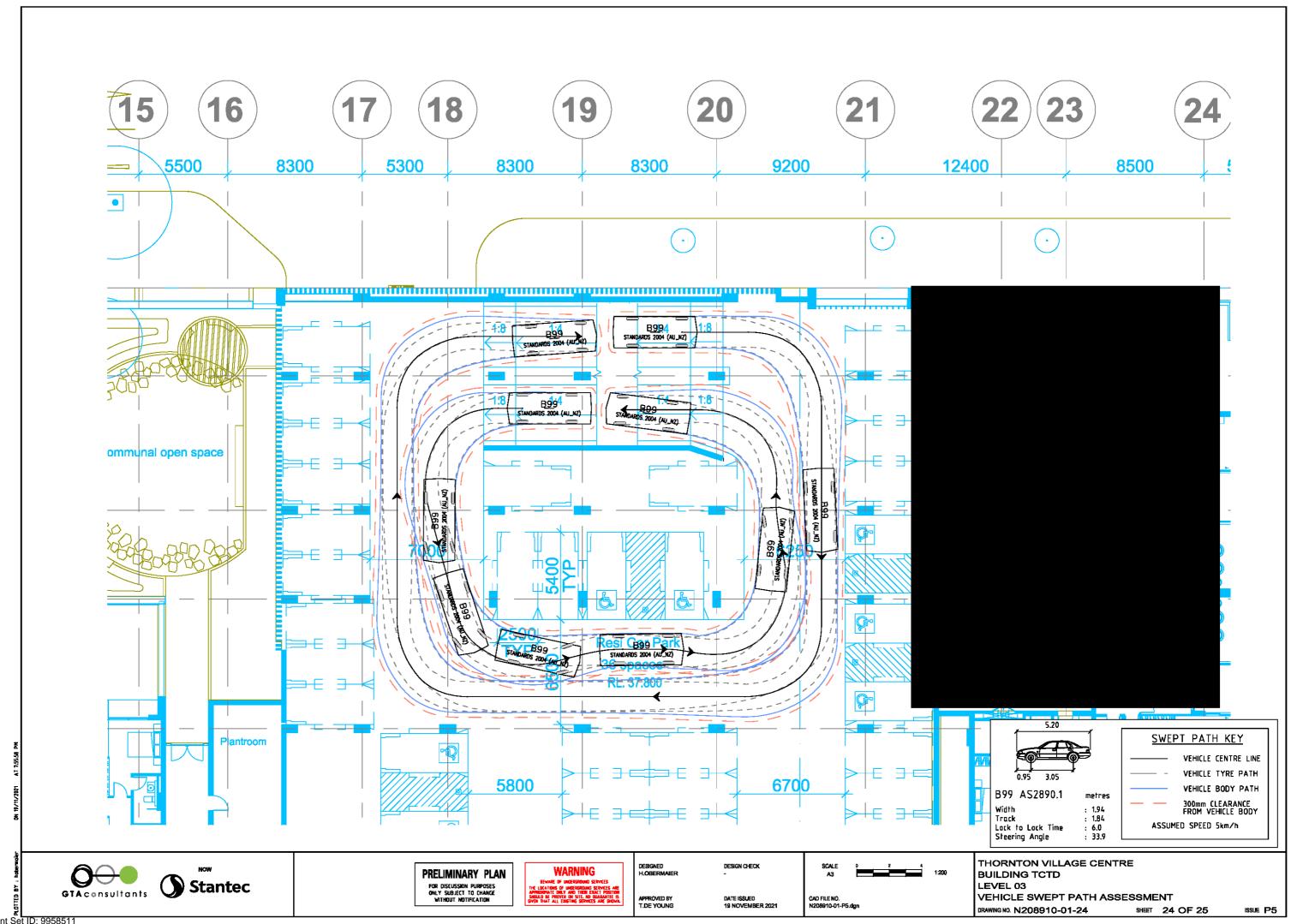


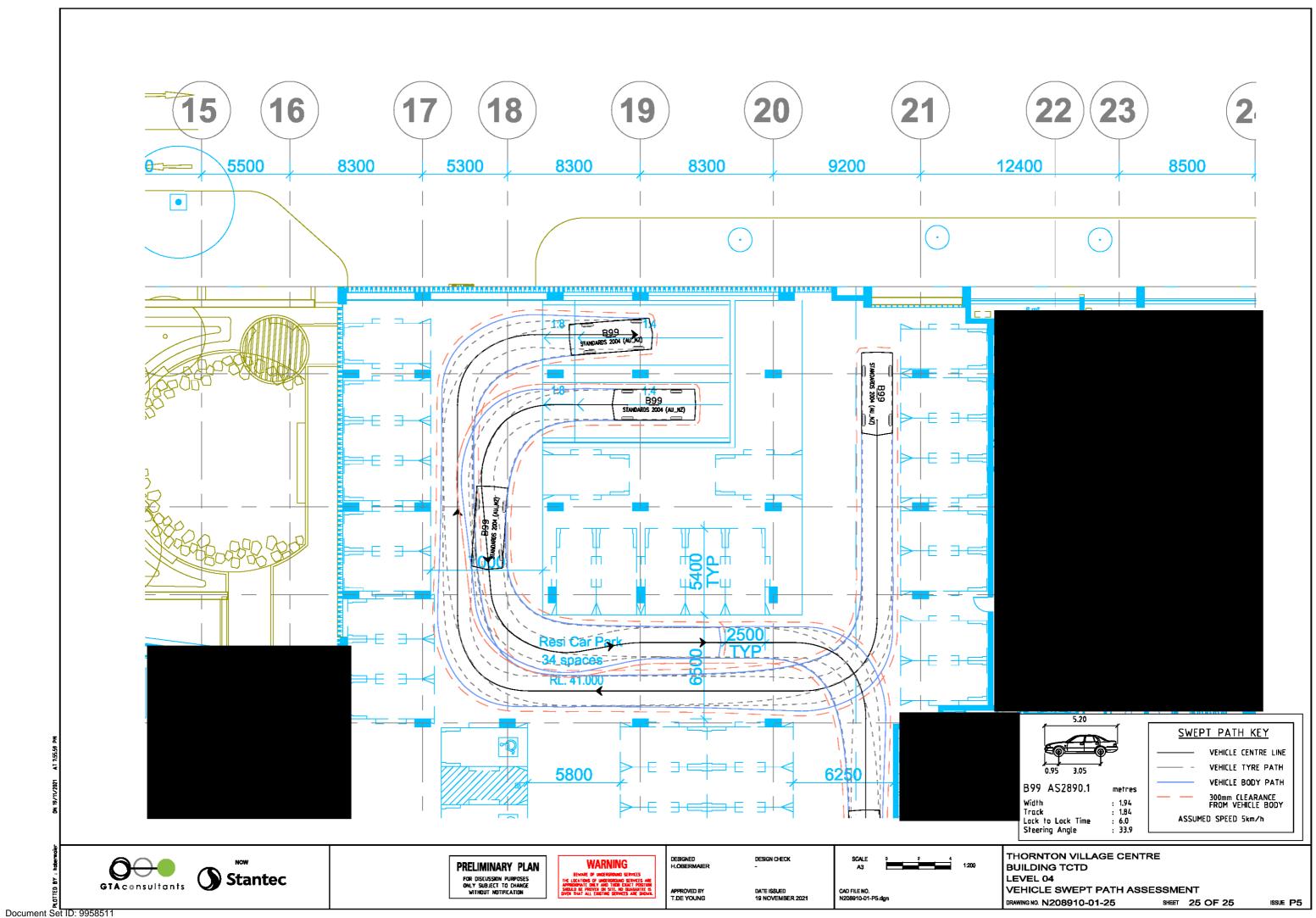












B.TRAFFIC VOLUMES

APPENDIX: TRAFFIC VOLUMES

Figure B.1: AM existing traffic volumes

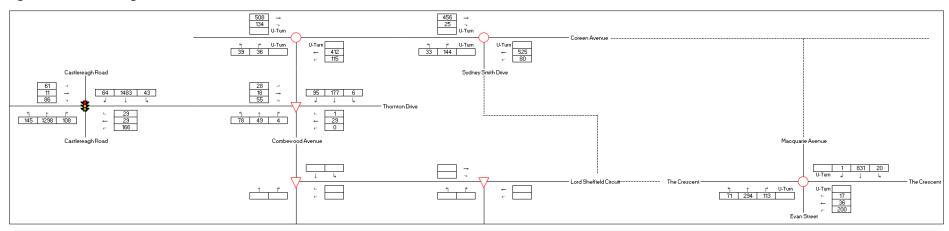
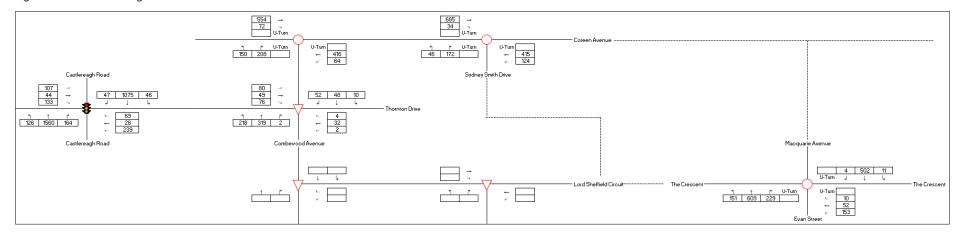



Figure B.2: AM existing traffic volumes

APPENDIX: TRAFFIC VOLUMES

Figure B.3: AM development traffic volumes

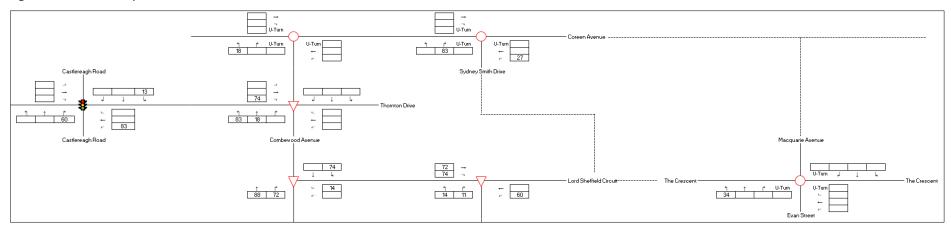
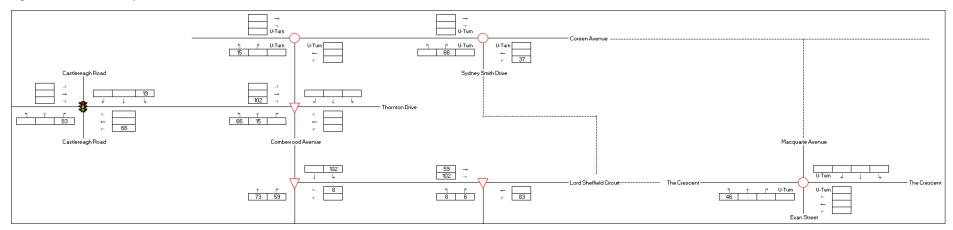



Figure B.4: PM development traffic volumes

C. SIDRA MODELLING RESULTS

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User

Report

Site: [1 Castlereagh/ Thornton Ex AM (Site

■■ Network: 1 [AM Ex (Network Folder: General)]

Folder: General)]

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Downstream lane blockage effects included in determining phase times

Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfor	manc	е									
Mov ID	Turn	DEM/ FLO\ [Total		ARRI FLO	WS	Deg. Satn	Aver. Delay	Level of Service		GE BACK QUEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed
		veh/h	%	veh/h		v/c	sec		ven. veh	m m		Male		km/h
South	n: Castle	ereagh Ro	oad											
1	L2	153	12.4	153	12.4	0.803	32.6	LOS C	26.1	198.8	0.87	0.82	0.87	34.1
2	T1	1366	9.9	1366	9.9	0.803	26.3	LOS B	26.1	198.8	0.85	0.79	0.85	28.3
3	R2	114	1.9	114	1.9	* 0.789	80.3	LOS F	5.1	36.0	1.00	0.88	1.21	6.5
Appro	oach	1633	9.5	1633	9.5	0.803	30.7	LOS C	26.1	198.8	0.86	0.80	0.88	26.5
East:	Thornto	on Drive												
4	L2	175	1.2	175	1.2	0.423	54.2	LOS D	6.2	43.7	0.89	0.80	0.89	22.0
5	T1	31	3.4	31	3.4	0.118	57.6	LOS E	1.1	8.1	0.91	0.67	0.91	29.1
6	R2	31	0.0	31	0.0	0.230	74.1	LOS F	1.3	8.8	0.98	0.72	0.98	20.2
Appro	oach	236	1.3	236	1.3	0.423	57.2	LOS E	6.2	43.7	0.91	0.77	0.91	22.8
North	: Castle	reagh Ro	oad											
7	L2	45	4.7	45	4.7	0.040	15.5	LOS B	0.7	5.0	0.39	0.65	0.39	29.6
8	T1	1561	7.6	1561	7.6	* 0.815	26.7	LOS B	25.9	192.9	0.86	0.79	0.86	28.4
9	R2	67	1.6	67	1.6	0.467	74.7	LOS F	2.8	19.9	1.00	0.76	1.00	22.2
Appro	oach	1674	7.3	1674	7.3	0.815	28.3	LOS B	25.9	192.9	0.85	0.78	0.85	27.8
West	: Peach	tree Road	d											
10	L2	64	4.9	64	4.9	0.237	58.2	LOS E	2.7	19.7	0.89	0.75	0.89	25.8
11	T1	12	0.0	12	0.0	* 0.237	52.8	LOS D	2.7	19.7	0.89	0.75	0.89	21.1
12	R2	91	19.8	91	19.8	* 0.779	81.8	LOS F	4.1	33.4	1.00	0.87	1.23	19.1
Appro	oach	166	12.7	166	12.7	0.779	70.7	LOS F	4.1	33.4	0.95	0.82	1.07	21.6
All Ve	hicles	3708	8.1	3708	8.1	0.815	33.1	LOS C	26.1	198.8	0.86	0.79	0.87	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: [2 Combewood/ Thornton Ex AM (Site ■■ Network: 1 [AM Ex (Network Folder: General)] Folder: General)]

Site Category: -Stop (Two-Way)

Vehi	cle Mo	vement l	Perfo	rmanc	9									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood Av			- / -	.,,								,
1 2	L2 T1	82 52	0.0	82 52	0.0	0.073 0.073	5.6 0.1	LOS A	0.0	0.1	0.03	0.36 0.36	0.03	46.9 46.9
3 Appro	R2 oach	138	0.0	138	0.0	0.073	6.1 3.5	LOS A NA	0.0	0.1	0.03	0.36	0.03	51.5 47.2
East:	Thornto	n Drive												
4 5 6	L2 T1 R2	1 31 1	0.0 0.0 0.0	1 31 1	0.0 0.0 0.0	0.044 0.044 0.044	8.7 10.1 10.1	LOS A LOS A LOS A	0.1 0.1 0.1	0.4 0.4 0.4	0.44 0.44 0.44	0.95 0.95 0.95	0.44 0.44 0.44	46.3 43.6 43.6
Appro		33	0.0	33	0.0	0.044	10.1	LOSA	0.1	0.4	0.44	0.95	0.44	43.8
North	: Comb	ewood Av	е											
7 8 9	L2 T1 R2	6 186 100	0.0 0.0 1.1	6 186 100	0.0 0.0 1.1	0.164 0.164 0.164	6.0 0.2 5.9	LOS A LOS A LOS A	0.3 0.3 0.3	1.8 1.8 1.8	0.19 0.19 0.19	0.21 0.21 0.21	0.19 0.19 0.19	53.9 54.6 51.0
Appro	oach	293	0.4	293	0.4	0.164	2.3	NA	0.3	1.8	0.19	0.21	0.19	53.7
West	: Thornt	on Drive												
10 11 12 Appro	L2 T1 R2 pach	29 19 58 106	7.1 0.0 1.8 3.0	29 19 58 106	7.1 0.0 1.8 3.0	0.140 0.140 0.140 0.140	8.5 10.1 10.8 10.0	LOS A LOS A LOS A	0.2 0.2 0.2 0.2	1.2 1.2 1.2 1.2	0.19 0.19 0.19 0.19	0.97 0.97 0.97 0.97	0.19 0.19 0.19 0.19	42.7 48.1 44.7 45.1
	ehicles	569	0.7	569	0.7	0.164 (DTA NG)A()	4.5	NA	0.3	1.8	0.16	0.43	0.16	49.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

₩ Site: [3 Coreen/ Combewood Ex AM (Site

■■ Network: 1 [AM Ex (Network Folder: General)]

Folder: General)]

Site Category: - Roundabout

Vehi	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood Av	venue											
1	L2	41	0.0	41	0.0	0.095	7.5	LOSA	0.2	1.5	0.58	0.70	0.58	47.3
3	R2	38	2.8	38	2.8	0.095	10.4	LOS A	0.2	1.5	0.58	0.70	0.58	38.7
Appro	oach	79	1.3	79	1.3	0.095	8.9	LOSA	0.2	1.5	0.58	0.70	0.58	44.6
East:	Coreen	Avenue												
4	L2	121	0.0	121	0.0	0.473	6.0	LOS A	1.4	10.4	0.46	0.56	0.46	47.8
5	T1	434	6.3	434	6.3	0.473	6.0	LOSA	1.4	10.4	0.46	0.56	0.46	51.8
Appro	oach	555	4.9	555	4.9	0.473	6.0	LOS A	1.4	10.4	0.46	0.56	0.46	51.3
West	: Coreer	n Avenue												
11	T1	535	3.9	535	3.9	0.471	5.1	LOS A	1.7	12.1	0.25	0.51	0.25	47.9
12	R2	141	1.5	141	1.5	0.471	8.0	LOSA	1.7	12.1	0.25	0.51	0.25	47.9
Appro	oach	676	3.4	676	3.4	0.471	5.7	LOSA	1.7	12.1	0.25	0.51	0.25	47.9
All Ve	hicles	1309	3.9	1309	3.9	0.473	6.0	LOSA	1.7	12.1	0.36	0.54	0.36	49.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: [4 Coreen/ Sydney Smith Ex AM (Site **■■** Network: 1 [AM Ex (Network Folder: General)]

Folder: General)]

Site Category: -Roundabout

Vehic	cle Mo	vement	Perfor	mance	Э									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Sydne	y Smith I	Drive											
1 3	L2 R2	35 152	3.0 0.0	35 152	3.0 0.0	0.224 0.224	7.9 11.8	LOS A LOS A	0.5 0.5	3.6 3.6	0.65 0.65	0.78 0.78	0.65 0.65	36.8 45.3
Appro	ach	186	0.6	186	0.6	0.224	11.1	LOSA	0.5	3.6	0.65	0.78	0.65	44.2
East:	Coreen	Avenue												
4	L2	84	0.0	84	0.0	0.417	4.3	LOSA	1.4	9.7	0.18	0.44	0.18	50.2
5	T1	553	2.3	553	2.3	0.417	4.6	LOSA	1.4	9.7	0.18	0.44	0.18	47.2
Appro	ach	637	2.0	637	2.0	0.417	4.6	LOSA	1.4	9.7	0.18	0.44	0.18	47.8
West:	Coreer	n Avenue												
11	T1	480	5.9	480	5.9	0.433	5.6	LOSA	1.3	9.9	0.48	0.54	0.48	51.5
12	R2	26	0.0	26	0.0	0.433	9.3	LOSA	1.3	9.9	0.48	0.54	0.48	51.0
Appro	ach	506	5.6	506	5.6	0.433	5.8	LOSA	1.3	9.9	0.48	0.54	0.48	51.5
All Ve	hicles	1329	3.2	1329	3.2	0.433	5.9	LOSA	1.4	9.9	0.36	0.52	0.36	49.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:51:21 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User

Report

Site: [1 Castlereagh/ Thornton Ex PM (Site

■■ Network: 2 [PM Ex (Network Folder: General)]

Folder: General)]

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Downstream lane blockage effects included in determining phase times

Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfor	mance)									
Mov ID	Turn	DEMA FLO\	NS	ARRI FLO	WS	Deg. Satn	Aver. Delay	Level of Service	OF C	GE BACK QUEUE	Prop. Que	Effective A Stop	ver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h		v/c	sec		[Veh. veh	Dist] m		Rate		km/h
South	n: Castle	ereagh Ro												
1	L2	133	1.6	133	1.6	* 0.969	73.0	LOS F	49.6	362.1	1.00	1.12	1.26	21.8
2	T1	1642	5.5	1642	5.5	0.969	67.4	LOS E	49.6	362.1	0.98	1.11	1.25	15.7
3	R2	173	1.2	173	1.2	* 0.938	93.9	LOS F	8.6	61.1	1.00	1.02	1.47	5.7
Appro	oach	1947	4.9	1947	4.9	0.969	70.1	LOS E	49.6	362.1	0.98	1.10	1.27	15.2
East:	Thornto	on Drive												
4	L2	252	0.0	252	0.0	0.559	53.6	LOS D	9.0	63.3	0.91	0.82	0.91	22.2
5	T1	29	3.6	29	3.6	0.114	57.5	LOS E	1.1	7.9	0.91	0.67	0.91	29.1
6	R2	73	0.0	73	0.0	0.498	75.0	LOS F	3.0	21.3	1.00	0.77	1.00	20.1
Appro	oach	354	0.3	354	0.3	0.559	58.3	LOS E	9.0	63.3	0.93	0.80	0.93	22.3
North	: Castle	ereagh Ro	ad											
7	L2	48	0.0	48	0.0	0.042	16.7	LOS B	0.8	5.4	0.42	0.66	0.42	28.5
8	T1	1132	2.6	1132	2.6	0.605	24.8	LOS B	16.3	116.8	0.74	0.67	0.74	29.5
9	R2	49	2.1	49	2.1	0.270	69.9	LOS E	2.0	14.0	0.96	0.75	0.96	23.1
Appro	oach	1229	2.5	1229	2.5	0.605	26.3	LOS B	16.3	116.8	0.74	0.67	0.74	28.9
West	Peach	tree Road	d d											
10	L2	113	1.9	113	1.9	0.572	65.3	LOS E	6.3	44.3	0.98	0.81	0.98	24.5
11	T1	46	0.0	46	0.0	* 0.572	60.1	LOS E	6.3	44.3	0.98	0.81	0.98	19.7
12	R2	140	2.3	140	2.3	0.975	106.4	LOS F	7.5	53.2	1.00	1.06	1.63	16.1
Appro	oach	299	1.8	299	1.8	0.975	83.7	LOS F	7.5	53.2	0.99	0.92	1.28	19.3
All Ve	hicles	3829	3.4	3829	3.4	0.975	56.0	LOS D	49.6	362.1	0.90	0.92	1.07	19.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: [2 Combewood/ Thornton Ex PM (Site ■■ Network: 2 [PM Ex (Network Folder: General)] Folder: General)]

Site Category: -Stop (Two-Way)

Vehi	cle Mo	vement l	Perfo	manc	е									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAG OF QU [Veh. veh		Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver Speed km/h
South	n: Comb	ewood Av		VC11/11	70	V/C	300		VCII	- '''				KITI/I
1	L2	229	0.0	229	0.0	0.297	5.5	LOSA	0.0	0.1	0.00	0.24	0.00	50.9
2	T1	336	0.0	336	0.0	0.297	0.0	LOSA	0.0	0.1	0.00	0.24	0.00	50.9
3	R2	2	0.0	2	0.0	0.297	5.7	LOSA	0.0	0.1	0.00	0.24	0.00	53.2
Appro	oach	567	0.0	567	0.0	0.297	2.3	NA	0.0	0.1	0.00	0.24	0.00	50.9
East:	Thornto	n Drive												
4	L2	2	0.0	2	0.0	0.075	8.2	LOSA	0.1	0.7	0.46	1.02	0.46	44.0
5	T1	34	0.0	34	0.0	0.075	12.8	LOSA	0.1	0.7	0.46	1.02	0.46	40.7
6	R2	4	0.0	4	0.0	0.075	11.8	LOSA	0.1	0.7	0.46	1.02	0.46	40.7
Appro	oach	40	0.0	40	0.0	0.075	12.5	LOSA	0.1	0.7	0.46	1.02	0.46	40.9
North	: Combe	ewood Av	е											
7	L2	11	0.0	11	0.0	0.088	8.0	LOSA	0.2	1.3	0.50	0.37	0.50	50.8
8	T1	51	0.0	51	0.0	0.088	2.1	LOSA	0.2	1.3	0.50	0.37	0.50	50.3
9	R2	55	1.9	55	1.9	0.088	8.0	LOSA	0.2	1.3	0.50	0.37	0.50	44.7
Appro	oach	116	0.9	116	0.9	0.088	5.4	NA	0.2	1.3	0.50	0.37	0.50	48.4
West	: Thornto	on Drive												
10	L2	84	1.3	84	1.3	0.333	10.3	LOSA	0.5	3.6	0.52	1.01	0.60	40.7
11	T1	52	0.0	52	0.0	0.333	12.8	LOSA	0.5	3.6	0.52	1.01	0.60	46.8
12	R2	80	0.0	80	0.0	0.333	14.0	LOSA	0.5	3.6	0.52	1.01	0.60	43.5
Appro	oach	216	0.5	216	0.5	0.333	12.3	LOSA	0.5	3.6	0.52	1.01	0.60	43.7
All Ve	hicles	939	0.2	939	0.2	0.333	5.4	NA	0.5	3.6	0.20	0.47	0.22	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Folder: General)]

Site Category: - Roundabout

Vehic	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Comb	ewood A	/enue											
1	L2 R2	158 219	0.0 0.5	158 219	0.0 0.5	0.441 0.441	8.4 11.2	LOS A LOS A	1.2 1.2	8.3 8.3	0.70 0.70	0.80 0.80	0.70 0.70	46.3 37.0
Appro	ach	377	0.3	377	0.3	0.441	10.0	LOSA	1.2	8.3	0.70	0.80	0.70	42.5
East:	Coreen	Avenue												
4	L2	67	0.0	67	0.0	0.388	5.4	LOS A	1.2	8.6	0.34	0.50	0.34	48.6
5	T1	438	1.2	438	1.2	0.388	5.3	LOS A	1.2	8.6	0.34	0.50	0.34	52.5
Appro	ach	505	1.0	505	1.0	0.388	5.3	LOSA	1.2	8.6	0.34	0.50	0.34	52.2
West:	Coreer	n Avenue												
11	T1	583	2.0	583	2.0	0.619	7.0	LOSA	2.3	16.7	0.70	0.67	0.71	45.3
12	R2	76	4.2	76	4.2	0.619	10.0	LOSA	2.3	16.7	0.70	0.67	0.71	45.3
Appro	ach	659	2.2	659	2.2	0.619	7.3	LOSA	2.3	16.7	0.70	0.67	0.71	45.3
All Ve	hicles	1541	1.4	1541	1.4	0.619	7.3	LOSA	2.3	16.7	0.58	0.65	0.58	47.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Folder: General)]

Site Category: - Roundabout

Vehic	cle Mov	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Sydne	y Smith I	Orive											
1	L2 R2	48 181	0.0 0.6	48 181	0.0	0.252 0.252	6.9 11.0	LOS A LOS A	0.6 0.6	4.1 4.1	0.60 0.60	0.75 0.75	0.60 0.60	38.0 46.1
Appro	ach	229	0.5	229	0.5	0.252	10.1	LOSA	0.6	4.1	0.60	0.75	0.60	45.0
East:	Coreen	Avenue												
4	L2	131	0.0	131	0.0	0.382	4.4	LOS A	1.2	8.7	0.21	0.44	0.21	50.0
5	T1	437	0.2	437	0.2	0.382	4.6	LOS A	1.2	8.7	0.21	0.44	0.21	46.8
Appro	ach	567	0.2	567	0.2	0.382	4.6	LOSA	1.2	8.7	0.21	0.44	0.21	47.9
West:	Coreer	n Avenue												
11	T1	721	1.3	721	1.3	0.641	6.1	LOSA	2.6	18.1	0.66	0.60	0.66	50.8
12	R2	36	2.9	36	2.9	0.641	10.0	LOS A	2.6	18.1	0.66	0.60	0.66	49.7
Appro	ach	757	1.4	757	1.4	0.641	6.3	LOSA	2.6	18.1	0.66	0.60	0.66	50.8
All Ve	hicles	1554	8.0	1554	8.0	0.641	6.2	LOSA	2.6	18.1	0.49	0.57	0.49	49.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:51:50 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User

Report

Site: [1 Castlereagh/ Thornton 2025 AM (Site ■ Network: 3 [AM 2025 (Network Folder: Folder: General)]

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfor	manc	Э									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Castle	ereagh Ro	oad											
1	L2	171	12.4	171	12.4	0.899	45.2	LOS D	36.6	279.0	0.97	0.96	1.05	28.9
2	T1	1531	9.9	1531	9.9	0.899	39.4	LOS C	36.6	279.0	0.93	0.93	1.02	22.5
3	R2	127	1.9	127	1.9	* 0.884	86.6	LOS F	6.0	42.6	1.00	0.96	1.38	6.1
Appro	oach	1828	9.5	1828	9.5	0.899	43.2	LOS D	36.6	279.0	0.94	0.94	1.05	21.6
East:	Thornto	on Drive												
4	L2	196	1.2	196	1.2	0.480	54.9	LOS D	7.0	49.6	0.91	0.81	0.91	21.8
5	T1	34	3.4	34	3.4	0.130	57.7	LOS E	1.2	9.0	0.91	0.68	0.91	29.1
6	R2	34	0.0	34	0.0	0.254	74.3	LOS F	1.4	9.7	0.98	0.73	0.98	20.2
Appro	oach	263	1.3	263	1.3	0.480	57.7	LOS E	7.0	49.6	0.92	0.78	0.92	22.7
North	: Castle	reagh Ro	ad											
7	L2	51	4.7	51	4.7	0.044	15.6	LOS B	0.8	5.6	0.39	0.66	0.39	29.5
8	T1	1748	7.6	1748	7.6	* 0.914	43.0	LOS D	37.5	279.3	0.94	0.96	1.06	21.5
9	R2	76	1.6	76	1.6	0.525	75.2	LOS F	3.2	22.6	1.00	0.77	1.00	22.2
Appro	oach	1875	7.3	1875	7.3	0.914	43.6	LOS D	37.5	279.3	0.93	0.95	1.04	21.6
West	Peach	tree Road	t											
10	L2	72	4.9	72	4.9	0.262	58.5	LOS E	3.0	22.0	0.90	0.76	0.90	25.8
11	T1	13	0.0	13	0.0	* 0.262	53.2	LOS D	3.0	22.0	0.90	0.76	0.90	21.0
12	R2	101	19.8	101	19.8	* 0.869	87.0	LOS F	4.8	38.9	1.00	0.95	1.39	18.4
Appro	oach	185	12.7	185	12.7	0.869	73.7	LOS F	4.8	38.9	0.95	0.86	1.17	21.1
All Ve	hicles	4152	8.1	4152	8.1	0.914	45.7	LOS D	37.5	279.3	0.93	0.93	1.04	21.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: [2 Combewood/ Thornton 2025 AM (Site ■■ Network: 3 [AM 2025 (Network Folder: Folder: General)]

Site Category: -Stop (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	9									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood A			- / -	.,,								
1 2	L2 T1	92 58	0.0	92 58	0.0	0.082 0.082	5.6 0.1	LOS A LOS A	0.0 0.0	0.1 0.1	0.03 0.03	0.36 0.36	0.03	46.9 46.9
3	R2	4	0.0	4	0.0	0.082	6.2	LOSA	0.0	0.1	0.03	0.36	0.03	51.5
Appro	oach	154	0.0	154	0.0	0.082	3.5	NA	0.0	0.1	0.03	0.36	0.03	47.2
East:	Thornto	on Drive												
4	L2	1	0.0	1	0.0	0.051	8.8	LOSA	0.1	0.5	0.47	0.96	0.47	45.9
5	T1	34	0.0	34	0.0	0.051	10.5	LOSA	0.1	0.5	0.47	0.96	0.47	43.2
6	R2	11	0.0	1	0.0	0.051	10.5	LOSA	0.1	0.5	0.47	0.96	0.47	43.2
Appro	oach	36	0.0	36	0.0	0.051	10.5	LOSA	0.1	0.5	0.47	0.96	0.47	43.3
North	: Comb	ewood Av	'e											
7	L2	7	0.0	7	0.0	0.184	6.1	LOSA	0.3	2.1	0.20	0.21	0.20	53.8
8	T1	208	0.0	208	0.0	0.184	0.3	LOSA	0.3	2.1	0.20	0.21	0.20	54.5
9	R2	112	1.1	112	1.1	0.184	6.0	LOSA	0.3	2.1	0.20	0.21	0.20	50.9
Appro	oach	327	0.4	327	0.4	0.184	2.4	NA	0.3	2.1	0.20	0.21	0.20	53.6
West	: Thornt	on Drive												
10	L2	33	7.1	33	7.1	0.166	8.6	LOSA	0.2	1.5	0.22	0.97	0.22	42.3
11	T1	21	0.0	21	0.0	0.166	10.5	LOSA	0.2	1.5	0.22	0.97	0.22	47.8
12	R2	65	1.8	65	1.8	0.166	11.3	LOSA	0.2	1.5	0.22	0.97	0.22	44.4
Appro	oach	119	3.0	119	3.0	0.166	10.4	LOSA	0.2	1.5	0.22	0.97	0.22	44.7
All Ve	hicles	636	0.7	636	0.7	0.184	4.6	NA	0.3	2.1	0.18	0.43	0.18	49.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site Category: - Roundabout

Vehic	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Comb	ewood Av	venue											
1	L2	45	0.0	45	0.0	0.111	7.8	LOSA	0.2	1.8	0.61	0.72	0.61	47.0
3	R2	42	2.8	42	2.8	0.111	10.7	LOSA	0.2	1.8	0.61	0.72	0.61	38.1
Appro	ach	87	1.3	87	1.3	0.111	9.2	LOSA	0.2	1.8	0.61	0.72	0.61	44.2
East:	Coreer	Avenue												
4	L2	134	0.0	134	0.0	0.528	6.2	LOSA	1.7	12.4	0.51	0.58	0.51	47.5
5	T1	477	6.3	477	6.3	0.528	6.3	LOSA	1.7	12.4	0.51	0.58	0.51	51.6
Appro	ach	611	4.9	611	4.9	0.528	6.3	LOSA	1.7	12.4	0.51	0.58	0.51	51.0
West	Coree	n Avenue												
11	T1	588	3.9	588	3.9	0.521	5.2	LOSA	2.0	14.6	0.28	0.50	0.28	47.7
12	R2	155	1.5	155	1.5	0.521	8.1	LOSA	2.0	14.6	0.28	0.50	0.28	47.7
Appro	ach	743	3.4	743	3.4	0.521	5.8	LOSA	2.0	14.6	0.28	0.50	0.28	47.7
All Ve	hicles	1441	3.9	1441	3.9	0.528	6.2	LOSA	2.0	14.6	0.40	0.55	0.40	49.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included). Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site Category: - Roundabout

Vehic	cle Mo	vement	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	ı: Sydne	ey Smith I	Drive											
1	L2	38	3.0	38	3.0	0.259	8.4	LOSA	0.6	4.3	0.69	0.81	0.69	36.0
3	R2	166	0.0	166	0.0	0.259	12.4	LOSA	0.6	4.3	0.69	0.81	0.69	44.7
Appro	ach	204	0.6	204	0.6	0.259	11.6	LOSA	0.6	4.3	0.69	0.81	0.69	43.7
East:	Coreen	Avenue												
4	L2	93	0.0	93	0.0	0.461	4.4	LOSA	1.6	11.6	0.20	0.44	0.20	50.1
5	T1	608	2.3	608	2.3	0.461	4.6	LOSA	1.6	11.6	0.20	0.44	0.20	46.9
Appro	ach	701	2.0	701	2.0	0.461	4.6	LOSA	1.6	11.6	0.20	0.44	0.20	47.5
West	Coree	n Avenue												
11	T1	528	5.9	528	5.9	0.485	5.8	LOSA	1.6	11.7	0.54	0.56	0.54	51.3
12	R2	29	0.0	29	0.0	0.485	9.5	LOSA	1.6	11.7	0.54	0.56	0.54	50.8
Appro	ach	558	5.6	558	5.6	0.485	6.0	LOSA	1.6	11.7	0.54	0.56	0.54	51.2
All Ve	hicles	1463	3.2	1463	3.2	0.485	6.1	LOSA	1.6	11.7	0.40	0.54	0.40	48.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included). Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:52:09 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User Report

Site: [1 Castlereagh/ Thornton 2025 PM (Site ■ Network: 4 [PM 2025 (Network Folder: Folder: General)]

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfo	rmance	•									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Castle	ereagh Ro	oad											
1	L2	148	1.6	148	1.6	* 1.085	151.0	LOS F	77.9	568.6	1.00	1.49	1.74	12.5
2	T1	1839	5.5	1839	5.5	1.085	146.8	LOS F	77.9	568.6	1.00	1.51	1.75	8.3
3	R2	194	1.2	194	1.2	* 1.133	206.2	LOS F	15.2	107.8	1.00	1.32	2.17	2.6
Appro	oach	2181	4.9	2181	4.9	1.133	152.3	LOS F	77.9	568.6	1.00	1.49	1.79	8.0
East:	Thornto	on Drive												
4	L2	282	0.0	282	0.0	0.649	55.6	LOS D	10.5	73.2	0.94	0.83	0.94	21.7
5	T1	33	3.6	33	3.6	0.126	57.7	LOS E	1.2	8.7	0.91	0.67	0.91	29.1
6	R2	81	0.0	81	0.0	0.509	74.0	LOS F	3.4	23.6	1.00	0.77	1.00	20.2
Appro	oach	396	0.3	396	0.3	0.649	59.5	LOS E	10.5	73.2	0.95	0.81	0.95	22.0
North	: Castle	reagh Ro	ad											
7	L2	55	0.0	55	0.0	0.047	16.3	LOS B	0.9	6.1	0.41	0.66	0.41	28.8
8	T1	1267	2.6	1267	2.6	0.680	26.1	LOS B	19.2	137.2	0.78	0.71	0.78	28.7
9	R2	56	2.1	56	2.1	0.328	71.5	LOS F	2.3	16.1	0.98	0.75	0.98	22.8
Appro	oach	1378	2.5	1378	2.5	0.680	27.5	LOS B	19.2	137.2	0.78	0.71	0.78	28.2
West	: Peach	tree Road	ŀ											
10	L2	126	1.9	126	1.9	0.733	68.0	LOS E	7.3	51.5	0.99	0.86	1.07	23.9
11	T1	52	0.0	52	0.0	* 0.733	62.8	LOS E	7.3	51.5	0.99	0.86	1.07	19.1
12	R2	157	2.3	157	2.3	1.046	143.4	LOS F	10.0	71.2	1.00	1.16	1.87	12.7
Appro	oach	335	1.8	335	1.8	1.046	102.5	LOS F	10.0	71.2	0.99	1.00	1.45	16.6
All Ve	hicles	4289	3.4	4289	3.4	1.133	99.8	LOS F	77.9	568.6	0.92	1.14	1.36	12.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: [2 Combewood/ Thornton 2025 PM (Site ■■ Network: 4 [PM 2025 (Network Folder: Folder: General)]

Site Category: -Stop (Two-Way)

Vehi	cle Mo	vement	Perfor	rmanc	9 _									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAG OF QI [Veh. veh		Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood A			- / -	.,,								,
1	L2	257	0.0	257	0.0	0.332	5.5	LOSA	0.0	0.1	0.00	0.24	0.00	50.9
2	T1	376	0.0	376	0.0	0.332	0.0	LOSA	0.0	0.1	0.00	0.24	0.00	50.9
3	R2	2	0.0	2	0.0	0.332	5.7	LOSA	0.0	0.1	0.00	0.24	0.00	53.2
Appro	oach	635	0.0	635	0.0	0.332	2.3	NA	0.0	0.1	0.00	0.24	0.00	50.9
East:	Thornto	n Drive												
4	L2	2	0.0	2	0.0	0.095	8.2	LOS A	0.1	0.9	0.53	1.02	0.53	43.1
5	T1	38	0.0	38	0.0	0.095	14.0	LOSA	0.1	0.9	0.53	1.02	0.53	39.6
6	R2	4	0.0	4	0.0	0.095	12.6	LOSA	0.1	0.9	0.53	1.02	0.53	39.6
Appro	oach	44	0.0	44	0.0	0.095	13.6	LOSA	0.1	0.9	0.53	1.02	0.53	39.8
North	: Comb	ewood Av	'e											
7	L2	12	0.0	12	0.0	0.105	8.5	LOS A	0.2	1.6	0.54	0.38	0.54	50.3
8	T1	57	0.0	57	0.0	0.105	2.5	LOSA	0.2	1.6	0.54	0.38	0.54	49.5
9	R2	61	1.9	61	1.9	0.105	8.5	LOSA	0.2	1.6	0.54	0.38	0.54	43.7
Appro	oach	129	0.9	129	0.9	0.105	5.9	NA	0.2	1.6	0.54	0.38	0.54	47.6
West	: Thornt	on Drive												
10	L2	95	1.3	88	1.2	0.379	10.9	LOSA	0.6	4.3	0.58	1.03	0.72	39.5
11	T1	58	0.0	54	0.0	0.379	14.1	LOSA	0.6	4.3	0.58	1.03	0.72	46.0
12	R2	89	0.0	83	0.0	0.379	15.6	LOS B	0.6	4.3	0.58	1.03	0.72	42.6
Appro	oach	242	0.5	224 ^{N1}	0.5	0.379	13.4	LOSA	0.6	4.3	0.58	1.03	0.72	42.7
All Ve	ehicles	1051	0.2	1032 ^N	0.2	0.379	5.6	NA	0.6	4.3	0.22	0.46	0.25	46.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site Category: - Roundabout

Vehi	cle Mo	vement	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood A	venue											
1	L2 R2	174 241	0.0 0.5	171 237	0.0 0.4	0.499 0.499	9.6 12.4	LOS A LOS A	1.5 1.5	10.8 10.8	0.76 0.76	0.87 0.87	0.83 0.83	45.2 35.4
Appro		415	0.3	408 ^{N1}	0.3	0.499	11.2	LOSA	1.5	10.8	0.76	0.87	0.83	41.2
East:	Coreer	n Avenue												
4	L2	74	0.0	74	0.0	0.431	5.5	LOSA	1.5	10.3	0.38	0.50	0.38	48.3
5	T1	482	1.2	482	1.2	0.431	5.4	LOSA	1.5	10.3	0.38	0.50	0.38	52.3
Appro	oach	556	1.0	556	1.0	0.431	5.4	LOSA	1.5	10.3	0.38	0.50	0.38	52.0
West	Coree	n Avenue												
11	T1	641	2.0	641	2.0	0.694	8.3	LOSA	3.3	23.3	0.80	0.74	0.86	44.6
12	R2	83	4.2	83	4.2	0.694	11.3	LOSA	3.3	23.3	0.80	0.74	0.86	44.6
Appro	oach	724	2.2	724	2.2	0.694	8.7	LOSA	3.3	23.3	0.80	0.74	0.86	44.6
All Ve	hicles	1695	1.4	1688 ^N	1.4	0.694	8.2	LOSA	3.3	23.3	0.65	0.69	0.70	47.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

♥ Site: [4 Coreen/ Sydney Smith 2025 PM (Site Network: 4 [PM 2025 (Network Folder: Folder: General)]

Site Category: - Roundabout

Vehi	cle Mo	vement	Perfo	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Sydne	y Smith I	Drive											
1	L2 R2	54 199	0.0 0.6	54 199	0.0	0.288 0.288	7.3 11.4	LOS A LOS A	0.7 0.7	4.9 4.9	0.64 0.64	0.77 0.77	0.64 0.64	37.4 45.7
Appro	oach	253	0.5	253	0.5	0.288	10.6	LOSA	0.7	4.9	0.64	0.77	0.64	44.5
East:	Coreen	Avenue												
4 5	L2 T1	143 481	0.0 0.2	143 481	0.0 0.2	0.422 0.422	4.4 4.6	LOS A LOS A	1.5 1.5	10.4 10.4	0.24 0.24	0.44 0.44	0.24 0.24	49.9 46.6
Appro		624	0.2	624	0.2	0.422	4.6	LOSA	1.5	10.4	0.24	0.44	0.24	47.7
West	: Coreer	n Avenue												
11 12	T1 R2	794 39	1.3 2.9	790 39	1.3 2.9	0.716 0.716	7.1	LOS A LOS A	3.4 3.4	24.3	0.76 0.76	0.66 0.66	0.79 0.79	50.3
Appro		833	1.4	829 ^{N1}	1.4	0.716	7.2	LOSA	3.4	24.3	0.76	0.66	0.79	49.2 50.3
All Ve	hicles	1709	0.8	1706 ^N	8.0	0.716	6.8	LOSA	3.4	24.3	0.55	0.60	0.57	48.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:52:22 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

E Desirate 240020 N200044

Project: 210920-N208910 Thornton SIDRA Template: Default Site User

Report

Site: [1 Castlereagh/ Thornton 2025 AM w Dev Network: 5 [AM 2025 w Dev (Network Folder: (Site Folder: General)]

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfor	manc	Э									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Castle	ereagh Ro	oad											
1	L2	171	12.4	171	12.4	0.952	65.4	LOS E	45.1	344.0	1.00	1.08	1.21	23.2
2	T1	1531	9.9	1531	9.9	0.952	59.6	LOS E	45.1	344.0	0.96	1.06	1.19	17.1
3	R2	191	1.9	191	1.9	* 0.970	103.8	LOS F	10.1	72.2	1.00	1.06	1.56	5.2
Appro	oach	1892	9.3	1892	9.3	0.970	64.6	LOS E	45.1	344.0	0.97	1.06	1.23	16.2
East:	Thornto	on Drive												
4	L2	283	1.2	283	1.2	0.623	53.7	LOS D	10.3	72.9	0.93	0.83	0.93	22.1
5	T1	34	3.4	34	3.4	0.130	57.7	LOS E	1.2	9.0	0.91	0.68	0.91	29.1
6	R2	34	0.0	34	0.0	0.282	75.8	LOS F	1.4	9.8	0.99	0.73	0.99	19.9
Appro	oach	351	1.3	351	1.3	0.623	56.2	LOS D	10.3	72.9	0.93	0.81	0.93	22.7
North	: Castle	reagh Ro	ad											
7	L2	65	4.7	65	4.7	0.060	17.3	LOS B	1.1	7.9	0.43	0.67	0.43	28.0
8	T1	1748	7.6	1748	7.6	* 0.958	61.7	LOS E	43.5	324.7	0.98	1.10	1.22	16.8
9	R2	76	1.6	76	1.6	0.385	69.9	LOS E	3.0	21.5	0.97	0.77	0.97	23.2
Appro	oach	1889	7.3	1889	7.3	0.958	60.5	LOS E	43.5	324.7	0.96	1.07	1.18	17.3
West	: Peach	tree Road	d											
10	L2	72	4.9	72	4.9	0.254	57.5	LOS E	3.0	21.8	0.89	0.76	0.89	26.0
11	T1	13	0.0	13	0.0	* 0.254	52.3	LOS D	3.0	21.8	0.89	0.76	0.89	21.2
12	R2	101	19.8	101	19.8	* 0.966	105.0	LOS F	5.3	43.5	1.00	1.06	1.66	16.1
Appro	oach	185	12.7	185	12.7	0.966	83.1	LOS F	5.3	43.5	0.95	0.92	1.31	19.5
All Ve	hicles	4317	7.9	4317	7.9	0.970	62.9	LOS E	45.1	344.0	0.96	1.04	1.19	17.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: [2 Combewood/ Thornton 2025 AM w Network: 5 [AM 2025 w Dev (Network Folder: Dev (Site Folder: General)]

Site Category: -Stop (Two-Way)

Vehi	cle Mo	vement l	Perfo	rmanc	е									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAG OF QI [Veh. veh		Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood Av		V 311/11	70	V/ 0	300		٧٥١١					IXIII/II
1 2	L2 T1	179 77	0.0	179 77	0.0	0.139 0.139	5.6 0.0	LOS A LOS A	0.0	0.1 0.1	0.02 0.02	0.41 0.41	0.02	45.8 45.8
3	R2	4	0.0	4	0.0	0.139	6.2	LOSA	0.0	0.1	0.02	0.41	0.02	51.0
Appro	oach	260	0.0	260	0.0	0.139	3.9	NA	0.0	0.1	0.02	0.41	0.02	46.0
East:	Thornto	on Drive												
4	L2	1	0.0	1	0.0	0.058	8.8	LOSA	0.1	0.6	0.51	0.98	0.51	45.2
5	T1	34	0.0	34	0.0	0.058	11.4	LOSA	0.1	0.6	0.51	0.98	0.51	42.2
6	R2	1	0.0	1	0.0	0.058	10.7	LOSA	0.1	0.6	0.51	0.98	0.51	42.2
Appro	oach	36	0.0	36	0.0	0.058	11.3	LOSA	0.1	0.6	0.51	0.98	0.51	42.3
North	: Comb	ewood Av	е											
7	L2	7	0.0	7	0.0	0.192	6.5	LOSA	0.3	2.3	0.28	0.22	0.28	53.4
8	T1	208	0.0	208	0.0	0.192	0.6	LOSA	0.3	2.3	0.28	0.22	0.28	53.9
9	R2	112	1.1	112	1.1	0.192	6.5	LOSA	0.3	2.3	0.28	0.22	0.28	50.0
Appro	oach	327	0.4	327	0.4	0.192	2.7	NA	0.3	2.3	0.28	0.22	0.28	53.0
West	: Thornt	on Drive												
10	L2	33	7.1	33	7.1	0.324	9.0	LOSA	0.5	3.5	0.38	1.00	0.43	40.5
11	T1	21	0.0	21	0.0	0.324	11.8	LOSA	0.5	3.5	0.38	1.00	0.43	46.7
12	R2	143	1.8	143	1.8	0.324	12.9	LOSA	0.5	3.5	0.38	1.00	0.43	43.1
Appro	oach	197	2.5	197	2.5	0.324	12.2	LOSA	0.5	3.5	0.38	1.00	0.43	43.2
All Ve	ehicles	820	0.7	820	0.7	0.324	5.7	NA	0.5	3.5	0.23	0.50	0.24	47.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site Category: - Roundabout

Vehic	cle Mo	vement	Perfor	mance	Э									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK QUEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Comb	ewood Av		VC11/11	70	V/C	300		VCII	- '''				KIII/II
1	L2	64	0.0	64	0.0	0.134	7.9	LOSA	0.3	2.2	0.62	0.73	0.62	47.1
3	R2	42	2.8	42	2.8	0.134	10.8	LOSA	0.3	2.2	0.62	0.73	0.62	38.3
Appro	ach	106	1.1	106	1.1	0.134	9.0	LOS A	0.3	2.2	0.62	0.73	0.62	45.0
East:	Coreer	Avenue												
4	L2	134	0.0	134	0.0	0.528	6.2	LOSA	1.7	12.4	0.51	0.58	0.51	47.5
5	T1	477	6.3	477	6.3	0.528	6.3	LOSA	1.7	12.4	0.51	0.58	0.51	51.6
Appro	ach	611	4.9	611	4.9	0.528	6.3	LOS A	1.7	12.4	0.51	0.58	0.51	51.0
West:	Coree	n Avenue												
11	T1	588	3.9	588	3.9	0.521	5.2	LOSA	2.0	14.6	0.29	0.50	0.29	47.7
12	R2	155	1.5	155	1.5	0.521	8.1	LOSA	2.0	14.6	0.29	0.50	0.29	47.7
Appro	ach	743	3.4	743	3.4	0.521	5.8	LOSA	2.0	14.6	0.29	0.50	0.29	47.7
All Ve	hicles	1460	3.9	1460	3.9	0.528	6.2	LOSA	2.0	14.6	0.40	0.55	0.40	49.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included). Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: [4 Coreen/ Sydney Smith 2025 AM w Dev (Site Folder: General)]

■■ Network: 5 [AM 2025 w Dev (Network Folder: General)]

Site Category: - Roundabout

Vehi	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Sydne	y Smith I	Drive											
1	L2	38	3.0	38	3.0	0.369	8.8	LOSA	0.9	6.6	0.74	0.85	0.74	35.4
3	R2	254	0.0	254	0.0	0.369	12.7	LOSA	0.9	6.6	0.74	0.85	0.74	44.2
Appro	oach	292	0.4	292	0.4	0.369	12.2	LOSA	0.9	6.6	0.74	0.85	0.74	43.5
East:	Coreen	Avenue												
4	L2	121	0.0	121	0.0	0.480	4.4	LOSA	1.8	12.9	0.22	0.44	0.22	50.0
5	T1	608	2.3	608	2.3	0.480	4.6	LOSA	1.8	12.9	0.22	0.44	0.22	46.8
Appro	oach	729	1.9	729	1.9	0.480	4.6	LOS A	1.8	12.9	0.22	0.44	0.22	47.6
West	Coreer	n Avenue												
11	T1	528	5.9	528	5.9	0.543	6.6	LOSA	1.8	13.4	0.68	0.66	0.68	50.6
12	R2	29	0.0	29	0.0	0.543	10.3	LOSA	1.8	13.4	0.68	0.66	0.68	50.0
Appro	oach	558	5.6	558	5.6	0.543	6.8	LOSA	1.8	13.4	0.68	0.66	0.68	50.5
All Ve	hicles	1579	2.9	1579	2.9	0.543	6.8	LOSA	1.8	13.4	0.47	0.59	0.47	48.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included). Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:52:34 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User Report

Site: [1 Castlereagh/ Thornton 2025 PM w Dev ■ Network: 6 [PM 2025 w Dev (Network Folder: (Site Folder: General)]

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfor	mance	Э									
Mov ID	Turn	DEMA FLO\		ARRI FLO		Deg. Satn	Aver. Delay	Level of Service		GE BACK UEUE	Prop. Que	Effective A Stop	ver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h		v/c	sec		[Veh. veh	Dist] m		Rate		km/h
Sout	h: Castl	ereagh Ro	oad											
1	L2	148	1.6	148	1.6	* 1.152	206.7	LOS F	91.6	668.7	1.00	1.71	2.05	9.6
2	T1	1839	5.5	1839	5.5	1.152	202.5	LOS F	91.6	668.7	1.00	1.74	2.06	6.2
3	R2	281	1.2	281	1.2	* 1.187	249.4	LOS F	24.8	175.5	1.00	1.41	2.34	2.2
Appr	oach	2268	4.7	2268	4.7	1.187	208.6	LOS F	91.6	668.7	1.00	1.70	2.09	5.9
East	Thornt	on Drive												
4	L2	351	0.0	351	0.0	0.703	52.8	LOS D	12.9	90.3	0.94	0.85	0.94	22.4
5	T1	33	3.6	33	3.6	0.126	57.7	LOS E	1.2	8.7	0.91	0.67	0.91	29.1
6	R2	81	0.0	81	0.0	0.611	77.2	LOS F	3.5	24.3	1.00	0.79	1.04	19.7
Appr	oach	464	0.3	464	0.3	0.703	57.4	LOS E	12.9	90.3	0.95	0.82	0.96	22.4
North	n: Castle	ereagh Ro	ad											
7	L2	74	0.0	74	0.0	0.068	18.6	LOS B	1.3	9.0	0.45	0.68	0.45	26.8
8	T1	1267	2.6	1267	2.6	0.716	28.5	LOS B	19.8	141.7	0.82	0.74	0.82	27.4
9	R2	56	2.1	56	2.1	0.237	65.5	LOS E	2.1	15.2	0.94	0.75	0.94	24.0
Appr	oach	1397	2.4	1397	2.4	0.716	29.4	LOS C	19.8	141.7	0.80	0.74	0.80	27.1
West	: Peach	tree Road	ł											
10	L2	126	1.9	126	1.9	0.743	68.3	LOS E	7.3	51.7	0.99	0.86	1.08	23.8
11	T1	52	0.0	52	0.0	* 0.743	63.3	LOS E	7.3	51.7	0.99	0.86	1.08	19.1
12	R2	157	2.3	157	2.3	1.201	261.5	LOS F	14.1	100.6	1.00	1.40	2.46	7.6
Appr	oach	335	1.8	335	1.8	1.201	158.1	LOS F	14.1	100.6	0.99	1.12	1.73	11.8
All Ve	ehicles	4464	3.3	4464	3.3	1.201	133.0	LOS F	91.6	668.7	0.93	1.26	1.54	9.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: [2 Combewood/ Thornton 2025 PM w Network: 6 [PM 2025 w Dev (Network Folder: Dev (Site Folder: General)]

Site Category: -Stop (Two-Way)

Vehi	cle Mo	vement	Perfo	rmanc	е									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK QUEUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood A	ve											
1	L2	326	0.0	326	0.0	0.378	5.5	LOSA	0.0	0.1	0.00	0.27	0.00	50.0
2	T1	392	0.0	392	0.0	0.378	0.0	LOS A	0.0	0.1	0.00	0.27	0.00	50.0
3	R2	2	0.0	2	0.0	0.378	5.8	LOS A	0.0	0.1	0.00	0.27	0.00	52.8
Appro	oach	720	0.0	720	0.0	0.378	2.5	NA	0.0	0.1	0.00	0.27	0.00	50.1
East:	Thornto	on Drive												
4	L2	2	0.0	2	0.0	0.109	8.2	LOSA	0.1	1.0	0.57	1.02	0.57	42.1
5	T1	38	0.0	38	0.0	0.109	15.6	LOS B	0.1	1.0	0.57	1.02	0.57	38.3
6	R2	4	0.0	4	0.0	0.109	12.8	LOSA	0.1	1.0	0.57	1.02	0.57	38.3
Appro	oach	44	0.0	44	0.0	0.109	15.0	LOS B	0.1	1.0	0.57	1.02	0.57	38.5
North	n: Comb	ewood Av	⁄e											
7	L2	12	0.0	12	0.0	0.114	9.2	LOS A	0.2	1.8	0.58	0.40	0.58	49.5
8	T1	57	0.0	57	0.0	0.114	3.2	LOS A	0.2	1.8	0.58	0.40	0.58	48.5
9	R2	61	1.9	61	1.9	0.114	9.3	LOSA	0.2	1.8	0.58	0.40	0.58	42.2
Appro	oach	129	0.9	129	0.9	0.114	6.6	NA	0.2	1.8	0.58	0.40	0.58	46.4
West	: Thornt	on Drive												
10	L2	95	1.3	84	1.2	0.632	13.5	LOSA	1.4	9.7	0.74	1.15	1.24	35.3
11	T1	58	0.0	52	0.0	0.632	17.9	LOS B	1.4	9.7	0.74	1.15	1.24	43.1
12	R2	197	0.0	175	0.0	0.632	20.0	LOS B	1.4	9.7	0.74	1.15	1.24	39.2
Appro	oach	349	0.3	311 ^{N1}	0.3	0.632	17.9	LOS B	1.4	9.7	0.74	1.15	1.24	39.2
All Ve	ehicles	1243	0.2	1205 ^N	0.2	0.632	7.4	NA	1.4	9.7	0.28	0.54	0.40	43.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site Category: - Roundabout

Vehi	cle Mo	vement	Perfo	rmance	9									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK QUEUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Comb	ewood A	venue											
1	L2	189	0.0	186	0.0	0.515	9.8	LOSA	1.6	11.5	0.77	0.88	0.85	45.1
3	R2	241	0.5	236	0.4	0.515	12.7	LOSA	1.6	11.5	0.77	0.88	0.85	35.1
Appro	ach	431	0.3	<mark>421</mark> N1	0.2	0.515	11.4	LOS A	1.6	11.5	0.77	0.88	0.85	41.2
East:	Coreen	Avenue												
4	L2	74	0.0	74	0.0	0.431	5.5	LOSA	1.5	10.3	0.38	0.50	0.38	48.3
5	T1	482	1.2	482	1.2	0.431	5.4	LOSA	1.5	10.3	0.38	0.50	0.38	52.3
Appro	ach	556	1.0	556	1.0	0.431	5.4	LOSA	1.5	10.3	0.38	0.50	0.38	52.0
West	Coreer	n Avenue												
11	T1	641	2.0	641	2.0	0.694	8.3	LOSA	3.3	23.3	0.80	0.74	0.86	44.6
12	R2	83	4.2	83	4.2	0.694	11.3	LOSA	3.3	23.3	0.80	0.74	0.86	44.6
Appro	ach	724	2.2	724	2.2	0.694	8.6	LOSA	3.3	23.3	0.80	0.74	0.86	44.6
All Ve	hicles	1711	1.4	1701 ^N	1.4	0.694	8.3	LOSA	3.3	23.3	0.65	0.69	0.70	47.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

■■ Network: 6 [PM 2025 w Dev (Network Folder: General)]

Site Category: - Roundabout

Vehic	cle Mov	vement	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Sydne	y Smith I	Drive											
1 3	L2 R2	54 268	0.0 0.6	54 268	0.0	0.368 0.368	7.6 11.6	LOS A LOS A	0.9 0.9	6.6 6.6	0.67 0.67	0.80 0.80	0.67 0.67	36.9 45.3
Appro	ach	322	0.5	322	0.5	0.368	11.0	LOSA	0.9	6.6	0.67	0.80	0.67	44.4
East:	Coreen	Avenue												
4	L2	182	0.0	182	0.0	0.448	4.4	LOSA	1.7	11.9	0.26	0.45	0.26	49.8
5 Appro	T1 pach	481 663	0.2	481 663	0.2	0.448	4.7	LOSA	1.7 1.7	11.9 11.9	0.26	0.45 0.45	0.26	46.5 47.8
West:	Coreer	n Avenue												
11	T1	794	1.3	789	1.3	0.778	10.0	LOSA	4.7	33.0	0.90	0.84	1.07	48.9
12	R2	39	2.9	39	2.9	0.778	13.9	LOSA	4.7	33.0	0.90	0.84	1.07	47.7
Appro	ach	833	1.4	828 ^{N1}	1.4	0.778	10.2	LOSA	4.7	33.0	0.90	0.84	1.07	48.8
All Ve	hicles	1818	8.0	1813 ^N	8.0	0.778	8.3	LOSA	4.7	33.0	0.63	0.69	0.70	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:52:46 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User Report

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Castle	ereagh Ro	oad											
1	L2	171	12.4	171	12.4	0.120	6.6	LOSA	0.7	5.8	0.16	0.59	0.16	50.0
2	T1	1531	9.9	1531	9.9	0.647	30.4	LOS C	17.2	130.9	0.81	0.73	0.81	26.4
3	R2	191	1.9	191	1.9	* 0.766	72.6	LOS F	8.1	57.8	1.00	0.87	1.11	7.2
Appr	oach	1892	9.3	1892	9.3	0.766	32.5	LOS C	17.2	130.9	0.77	0.73	0.78	25.4
East	Thornto	on Drive												
4	L2	283	1.2	283	1.2	0.522	47.2	LOS D	9.5	67.5	0.86	0.82	0.86	23.9
5	T1	34	3.4	34	3.4	0.112	54.6	LOS D	1.2	8.7	0.89	0.66	0.89	30.0
6	R2	34	0.0	34	0.0	0.231	72.9	LOS F	1.4	9.6	0.97	0.73	0.97	20.5
Appr	oach	351	1.3	351	1.3	0.522	50.4	LOS D	9.5	67.5	0.88	0.79	0.88	24.2
North	n: Castle	reagh Ro	ad											
7	L2	220	4.7	220	4.7	0.157	7.0	LOSA	1.3	9.2	0.20	0.61	0.20	41.3
8	T1	1748	7.6	1748	7.6	* 0.754	32.1	LOS C	21.9	163.6	0.86	0.77	0.86	25.7
9	R2	76	1.6	76	1.6	0.304	65.2	LOS E	2.9	20.6	0.94	0.77	0.94	24.2
Appr	oach	2044	7.1	2044	7.1	0.754	30.6	LOS C	21.9	163.6	0.79	0.75	0.79	26.3
West	: Peach	tree Road	t											
10	L2	72	4.9	72	4.9	0.223	54.5	LOS D	2.9	21.1	0.87	0.75	0.87	26.8
11	T1	13	0.0	13	0.0	* 0.223	49.6	LOS D	2.9	21.1	0.87	0.75	0.87	22.0
12	R2	101	19.8	101	19.8	* 0.790	81.4	LOS F	4.5	37.2	1.00	0.89	1.23	19.5
Appr	oach	185	12.7	185	12.7	0.790	68.8	LOS E	4.5	37.2	0.94	0.83	1.06	22.1
All Ve	ehicles	4472	7.8	4472	7.8	0.790	34.5	LOS C	21.9	163.6	0.80	0.75	0.81	25.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site Category: - Roundabout

Vehi	cle Mo	vement l	Perfor	mance	e _									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAG OF QI [Veh. veh		Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
Sout	h: Comb	ewood Av		V 011/11	70	•,,,	333		7511					1011/11
1	L2	179	0.0	179	0.0	0.190	5.4	LOSA	0.4	3.0	0.28	0.54	0.28	40.7
2	T1	48	0.0	48	0.0	0.190	5.3	LOS A	0.4	3.0	0.28	0.54	0.28	40.7
3	R2	4	0.0	4	0.0	0.190	8.3	LOSA	0.4	3.0	0.28	0.54	0.28	49.6
Appr	oach	232	0.0	232	0.0	0.190	5.5	LOSA	0.4	3.0	0.28	0.54	0.28	41.1
East:	Thornto	n Drive												
4	L2	1	0.0	1	0.0	0.040	7.2	LOSA	0.1	0.6	0.52	0.59	0.52	47.7
5	T1	34	0.0	34	0.0	0.040	7.1	LOSA	0.1	0.6	0.52	0.59	0.52	46.1
6	R2	1	0.0	1	0.0	0.040	10.0	LOSA	0.1	0.6	0.52	0.59	0.52	46.1
Appr	oach	36	0.0	36	0.0	0.040	7.2	LOSA	0.1	0.6	0.52	0.59	0.52	46.2
North	n: Comb	ewood Av	enue											
7	L2	7	0.0	7	0.0	0.173	6.6	LOSA	0.4	2.8	0.47	0.62	0.47	48.0
8	T1	107	0.0	107	0.0	0.173	6.5	LOSA	0.4	2.8	0.47	0.62	0.47	45.7
9	R2	58	1.1	58	1.1	0.173	9.5	LOSA	0.4	2.8	0.47	0.62	0.47	40.4
Appr	oach	173	0.4	173	0.4	0.173	7.5	LOSA	0.4	2.8	0.47	0.62	0.47	44.6
West	: Thornt	on Drive												
10	L2	20	7.1	20	7.1	0.224	5.3	LOSA	0.5	3.4	0.18	0.62	0.18	45.1
11	T1	21	0.0	21	0.0	0.224	5.1	LOSA	0.5	3.4	0.18	0.62	0.18	50.5
12	R2	256	1.8	256	1.8	0.224	8.0	LOSA	0.5	3.4	0.18	0.62	0.18	47.3
Appr	oach	297	2.0	297	2.0	0.224	7.6	LOSA	0.5	3.4	0.18	0.62	0.18	47.5
All Ve	ehicles	737	0.9	737	0.9	0.224	6.9	LOSA	0.5	3.4	0.30	0.59	0.30	45.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: [3 Coreen/ Combewood 2025 AM w Dev Mit (Site Folder: General)]

■■ Network: 7 [AM 2025 w Dev Mit (Network Folder: General)]

Site Category: -Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfor	manc	9									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERAG OF Ql [Veh. veh		Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood A	venue											
1	L2	64	0.0	64	0.0	0.062	7.4	LOS A	0.1	0.7	0.47	0.66	0.47	48.9
Appro	oach	64	0.0	64	0.0	0.062	7.4	LOSA	0.1	0.7	0.47	0.66	0.47	48.9
East:	Coreen	Avenue												
4	L2	134	0.0	134	0.0	0.327	5.6	LOSA	0.0	0.0	0.00	0.13	0.00	57.1
5	T1	477	6.3	477	6.3	0.327	0.1	LOSA	0.0	0.0	0.00	0.13	0.00	58.4
Appro	oach	611	4.9	611	4.9	0.327	1.3	NA	0.0	0.0	0.00	0.13	0.00	58.2
West	: Coreei	n Avenue												
11	T1	588	3.9	588	3.9	0.309	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	oach	588	3.9	588	3.9	0.309	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Ve	hicles	1263	4.2	1263	4.2	0.327	1.0	NA	0.1	0.7	0.02	0.10	0.02	58.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: [4 Coreen/ Sydney Smith 2025 AM w Dev Network: 7 [AM 2025 w Dev Mit (Network Mit (Site Folder: General)]

Site Category: -

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Downstream lane blockage effects included in determining phase times

Phase Sequence: Leading Right Turn

Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehic	cle Mo	vement	Perfor	mance	•									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Sydne	y Smith I	Drive											
1	L2	38	3.0	38	3.0	0.067	30.1	LOS C	0.7	5.1	0.73	0.71	0.73	21.8
3	R2	296	0.0	296	0.0	* 0.532	33.2	LOS C	6.6	46.1	0.87	0.81	0.87	31.3
Appro	ach	334	0.3	334	0.3	0.532	32.8	LOS C	6.6	46.1	0.86	0.80	0.86	30.6
East:	Coreen	Avenue												
4	L2	121	0.0	121	0.0	0.194	17.7	LOS B	2.7	18.9	0.56	0.64	0.56	41.2
5	T1	608	2.3	608	2.3	* 0.527	14.4	LOSA	9.4	66.9	0.68	0.62	0.68	36.3
Appro	ach	729	1.9	729	1.9	0.527	15.0	LOS B	9.4	66.9	0.66	0.62	0.66	37.4
West	Coreer	n Avenue												
11	T1	486	5.9	486	5.9	0.524	14.9	LOS B	8.2	60.2	0.68	0.60	0.68	46.5
12	R2	29	0.0	29	0.0	0.106	27.1	LOS B	0.5	3.8	0.70	0.71	0.70	35.8
Appro	ach	516	5.6	516	5.6	0.524	15.6	LOS B	8.2	60.2	0.68	0.60	0.68	45.8
All Ve	hicles	1579	2.8	1579	2.8	0.532	18.9	LOS B	9.4	66.9	0.71	0.66	0.71	38.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:52:59 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Project: 210920-N208910 Thornton SIDRA

Template: Default Site User Report

Site Category: -

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: Leading Right Turn

Reference Phase: Phase D Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Vehi	cle Mo	vement l	Perfo	rmance	;									
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO\ [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		SE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Castle	ereagh Ro	ad											
1	L2	148	1.6	148	1.6	0.097	6.3	LOSA	0.5	3.8	0.14	0.59	0.14	50.8
2	T1	1839	5.5	1839	5.5	* 0.918	59.2	LOS E	31.8	233.3	0.97	1.02	1.16	17.3
3	R2	281	1.2	281	1.2	* 0.890	79.5	LOS F	13.1	93.0	1.00	0.96	1.27	6.7
Appro	oach	2268	4.7	2268	4.7	0.918	58.2	LOS E	31.8	233.3	0.92	0.99	1.11	17.1
East:	Thornto	on Drive												
4	L2	351	0.0	351	0.0	0.573	44.5	LOS D	11.7	81.6	0.86	0.83	0.86	24.8
5	T1	33	3.6	33	3.6	0.109	54.5	LOS D	1.2	8.5	0.89	0.66	0.89	30.0
6	R2	81	0.0	81	0.0	0.407	70.1	LOS E	3.3	22.8	0.98	0.77	0.98	21.1
Appro	oach	464	0.3	464	0.3	0.573	49.6	LOS D	11.7	81.6	0.88	0.80	0.88	24.4
North	: Castle	reagh Ro	ad											
7	L2	157	0.0	157	0.0	0.118	9.6	LOSA	1.6	11.1	0.30	0.63	0.30	36.9
8	T1	1267	2.6	1267	2.6	0.598	35.2	LOS C	14.8	105.8	0.84	0.73	0.84	24.3
9	R2	56	2.1	56	2.1	0.178	59.2	LOS E	2.0	14.3	0.89	0.75	0.89	25.6
Appro	oach	1480	2.3	1480	2.3	0.598	33.4	LOS C	14.8	105.8	0.78	0.72	0.78	25.0
West	: Peach	tree Road												
10	L2	126	1.9	126	1.9	0.622	62.6	LOS E	6.9	48.6	0.96	0.81	0.96	25.1
11	T1	52	0.0	52	0.0	* 0.622	57.9	LOS E	6.9	48.6	0.96	0.81	0.96	20.3
12	R2	157	2.3	157	2.3	* 0.886	84.3	LOS F	7.3	52.2	1.00	0.97	1.36	19.2
Appro	oach	335	1.8	335	1.8	0.886	72.0	LOS F	7.3	52.2	0.98	0.88	1.15	21.5
All Ve	ehicles	4547	3.3	4547	3.3	0.918	50.3	LOS D	31.8	233.3	0.87	0.88	0.98	20.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site Category: - Roundabout

Vehi	cle Mo	vement	Perfor	mance	9									
Mov ID	Turn	DEMA FLOV [Total veh/h	ND	ARRI FLO' [Total veh/h	VAL WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	h: Comb	ewood Av	/enue											
1	L2	326	0.0	326	0.0	0.384	5.3	LOSA	1.1	7.8	0.26	0.51	0.26	40.9
2	T1	197	0.0	197	0.0	0.384	5.2	LOSA	1.1	7.8	0.26	0.51	0.26	40.9
3	R2	2	0.0	2	0.0	0.384	8.1	LOS A	1.1	7.8	0.26	0.51	0.26	49.7
Appr	oach	525	0.0	525	0.0	0.384	5.3	LOSA	1.1	7.8	0.26	0.51	0.26	41.0
East:	Thornto	n Drive												
4	L2	2	0.0	2	0.0	0.046	6.6	LOSA	0.1	0.7	0.47	0.56	0.47	47.8
5	T1	38	0.0	38	0.0	0.046	6.5	LOS A	0.1	0.7	0.47	0.56	0.47	46.3
6	R2	4	0.0	4	0.0	0.046	9.4	LOSA	0.1	0.7	0.47	0.56	0.47	46.3
Appr	oach	44	0.0	44	0.0	0.046	6.8	LOSA	0.1	0.7	0.47	0.56	0.47	46.4
North	n: Combe	ewood Av	enue											
7	L2	12	0.0	12	0.0	0.049	6.8	LOSA	0.1	0.8	0.50	0.61	0.50	47.8
8	T1	17	0.0	17	0.0	0.049	6.7	LOS A	0.1	8.0	0.50	0.61	0.50	45.5
9	R2	18	1.9	18	1.9	0.049	9.6	LOSA	0.1	0.8	0.50	0.61	0.50	40.1
Appr	oach	46	0.7	46	0.7	0.049	7.8	LOSA	0.1	8.0	0.50	0.61	0.50	44.9
West	:: Thornto	on Drive												
10	L2	47	1.3	47	1.3	0.358	6.4	LOSA	0.8	5.6	0.39	0.66	0.39	44.4
11	T1	58	0.0	58	0.0	0.358	6.2	LOSA	8.0	5.6	0.39	0.66	0.39	50.1
12	R2	283	0.0	283	0.0	0.358	9.2	LOSA	0.8	5.6	0.39	0.66	0.39	47.0
Appr	oach	388	0.2	388	0.2	0.358	8.4	LOSA	8.0	5.6	0.39	0.66	0.39	47.4
All Ve	ehicles	1004	0.1	1004	0.1	0.384	6.7	LOSA	1.1	7.8	0.33	0.58	0.33	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: [3 Coreen/ Combewood 2025 PM w Dev Mit (Site Folder: General)]

■■ Network: 8 [PM 2025 w Dev Mit (Network Folder: General)]

Site Category: -Give-Way (Two-Way)

Vehi	cle Mo	vement	Perfor	manc	9									
Mov ID	Turn	DEM/ FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	n: Comb	ewood A	venue											
1	L2	189	0.0	189	0.0	0.180	7.6	LOS A	0.3	2.3	0.50	0.70	0.50	48.8
Appro	oach	189	0.0	189	0.0	0.180	7.6	LOSA	0.3	2.3	0.50	0.70	0.50	48.8
East:	Coreen	Avenue												
4	L2	74	0.0	74	0.0	0.289	5.6	LOS A	0.0	0.0	0.00	0.08	0.00	58.2
5	T1	482	1.2	482	1.2	0.289	0.1	LOSA	0.0	0.0	0.00	0.08	0.00	59.0
Appro	oach	556	1.0	556	1.0	0.289	8.0	NA	0.0	0.0	0.00	0.08	0.00	58.9
West	: Coreer	n Avenue												
11	T1	641	2.0	641	2.0	0.333	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	oach	641	2.0	641	2.0	0.333	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Ve	hicles	1386	1.3	1386	1.3	0.333	1.4	NA	0.3	2.3	0.07	0.13	0.07	57.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: [4 Coreen/ Sydney Smith 2025 PM w Dev ■■ Network: 8 [PM 2025 w Dev Mit (Network Mit (Site Folder: General)] Folder: General)]

Site Category: -

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Downstream lane blockage effects included in determining phase times

Phase Sequence: Leading Right Turn

Reference Phase: Phase B Input Phase Sequence: A, B **Output Phase Sequence: A, B**

Vehic	cle Mo	vement	Perfor	mance	•									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		GE BACK UEUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South	: Sydne	ey Smith I	Orive											
1	L2	54	0.0	54	0.0	0.072	24.2	LOS B	0.9	6.2	0.65	0.70	0.65	24.9
3	R2	509	0.6	509	0.6	* 0.732	30.4	LOS C	11.6	81.6	0.89	0.86	0.91	32.6
Appro	ach	563	0.5	563	0.5	0.732	29.8	LOS C	11.6	81.6	0.87	0.84	0.88	32.1
East:	Coreen	Avenue												
4	L2	182	0.0	182	0.0	0.232	23.4	LOS B	3.1	21.9	0.68	0.75	0.68	36.2
5	T1	481	0.2	481	0.2	0.556	19.8	LOS B	9.5	66.9	0.79	0.70	0.79	32.0
Appro	ach	663	0.2	663	0.2	0.556	20.8	LOS B	9.5	66.9	0.76	0.71	0.76	33.5
West:	Coreer	n Avenue												
11	T1	553	1.3	553	1.3	* 0.713	22.8	LOS B	11.6	81.9	0.84	0.74	0.84	42.0
12	R2	39	2.9	39	2.9	0.165	33.9	LOS C	8.0	6.0	0.80	0.73	0.80	32.5
Appro	ach	592	1.4	592	1.4	0.713	23.5	LOS B	11.6	81.9	0.83	0.74	0.83	41.3
All Ve	hicles	1818	0.7	1818	0.7	0.732	24.5	LOS B	11.6	81.9	0.82	0.76	0.82	35.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:53:12 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

Version: 1, Version Date: 24/03/2022

Document Set ID: 9958511

USER REPORT FOR SITE

All Movement Classes

All Movement Classes

Project: 210920-N208910 Thornton SIDRA Template: Default Site User Report

▼ Site: [5 Macquarie/ Evan Ex AM (Site Folder: General)]

Site Category: - Roundabout

Veh	icle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Evan	Street												
1	L2	71	0	75	0.0	0.349	4.2	LOS A	2.8	20.3	0.28	0.47	0.28	53.6
2	T1	294	6	309	2.0	0.349	4.4	LOS A	2.8	20.3	0.28	0.47	0.28	54.9
3	R2	113	6	119	5.3	0.349	9.1	LOS A	2.8	20.3	0.28	0.47	0.28	54.6
Appr	oach	478	12	503	2.5	0.349	5.5	LOSA	2.8	20.3	0.28	0.47	0.28	54.6
East	: The Cı	rescent												
4	L2	200	0	211	0.0	0.440	12.0	LOSA	3.5	24.7	0.92	0.98	1.02	49.3
5	T1	36	1	38	2.8	0.440	12.4	LOS A	3.5	24.7	0.92	0.98	1.02	50.4
6	R2	17	0	18	0.0	0.440	16.9	LOS B	3.5	24.7	0.92	0.98	1.02	50.4
Appr	oach	253	1	266	0.4	0.440	12.4	LOSA	3.5	24.7	0.92	0.98	1.02	49.5
Nort	h: Macq	uarie Str	eet											
7	L2	20	0	21	0.0	0.654	5.0	LOS A	6.7	47.4	0.53	0.49	0.53	53.1
8	T1	831	12	875	1.4	0.654	5.2	LOS A	6.7	47.4	0.53	0.49	0.53	54.3
9	R2	1	1	1	100.0	0.654	12.3	LOS A	6.7	47.4	0.53	0.49	0.53	50.5
Appr	roach	852	13	897	1.5	0.654	5.2	LOSA	6.7	47.4	0.53	0.49	0.53	54.3
All V	ehicles	1583	26	1666	1.6	0.654	6.5	LOSA	6.7	47.4	0.52	0.56	0.53	53.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

♥ Site: [5 Macquarie/ Evan Ex PM (Site Folder: General)]

Site Category: - Roundabout

Veh	nicle Mo	vement	Perfori	mance										
Mov ID	/ Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sou	th: Evan	Street												
1 2	L2 T1	151 609	2 14	159 641	1.3 2.3	0.705 0.705	4.6 4.8	LOS A LOS A	9.4 9.4	66.8 66.8	0.49 0.49	0.48 0.48	0.49 0.49	52.8 54.0
3	R2	229	1	241	0.4	0.705	9.4	LOSA	9.4	66.8	0.49	0.48	0.49	54.0
App	roach	989	17	1041	1.7	0.705	5.9	LOSA	9.4	66.8	0.49	0.48	0.49	53.8
Eas	t: The Cı	rescent												
4	L2	153	0	161	0.0	0.262	7.0	LOSA	1.7	11.9	0.70	0.73	0.70	52.7
5	T1	52	1	55	1.9	0.262	7.3	LOSA	1.7	11.9	0.70	0.73	0.70	54.0
6	R2	10	0	11	0.0	0.262	11.9	LOS A	1.7	11.9	0.70	0.73	0.70	54.0
App	roach	215	1	226	0.5	0.262	7.3	LOSA	1.7	11.9	0.70	0.73	0.70	53.1
Nort	th: Macq	uarie Str	eet											
7	L2	11	0	12	0.0	0.472	5.5	LOSA	3.6	25.5	0.58	0.57	0.58	52.8
8	T1	502	9	528	1.8	0.472	5.8	LOSA	3.6	25.5	0.58	0.57	0.58	54.0
9	R2	4	0	4	0.0	0.472	10.4	LOS A	3.6	25.5	0.58	0.57	0.58	54.1
App	roach	517	9	544	1.7	0.472	5.8	LOSA	3.6	25.5	0.58	0.57	0.58	54.0
All \	/ehicles	1721	27	1812	1.6	0.705	6.0	LOSA	9.4	66.8	0.54	0.54	0.54	53.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: [5 Macquarie/ Evan 2025 AM (Site Folder: General)]

Site Category: - Roundabout

Vel	nicle Mo	vemen	t Perforr	mance										
Mov ID	/ Turn	INF VOLU [Total veh/h		DEM FLC [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sou	ıth: Evan	Street												
1 2 3	L2 T1 R2	80 329 127	0.0 2.0 5.3	84 346 134	0.0 2.0 5.3	0.395 0.395 0.395	4.2 4.5 9.2	LOS A LOS A	3.4 3.4 3.4	24.6 24.6 24.6	0.32 0.32 0.32	0.48 0.48 0.48	0.32 0.32 0.32	53.5 54.7 54.5
	oroach	536	2.5	564	2.5	0.395	5.6	LOSA	3.4	24.6	0.32	0.48	0.32	54.5
Eas	t: The C	rescent												
4	L2	224	0.0	236	0.0	0.596	19.1	LOS B	6.0	42.5	1.00	1.14	1.37	45.0
5	T1	40	2.8	42	2.8	0.596	19.5	LOS B	6.0	42.5	1.00	1.14	1.37	45.9
6	R2	19	0.0	20	0.0	0.596	24.0	LOS B	6.0	42.5	1.00	1.14	1.37	45.9
App	roach	283	0.4	298	0.4	0.596	19.5	LOS B	6.0	42.5	1.00	1.14	1.37	45.2
Nor	th: Macq	uarie Str	eet											
7	L2	22	0.0	23	0.0	0.743	5.4	LOSA	8.9	63.4	0.66	0.54	0.66	52.5
8	T1	931	1.4	980	1.4	0.743	5.6	LOS A	8.9	63.4	0.66	0.54	0.66	53.7
9	R2	1	100.0	11	100.0	0.743	13.1	LOSA	8.9	63.4	0.66	0.54	0.66	50.0
App	roach	954	1.5	1004	1.5	0.743	5.6	LOSA	8.9	63.4	0.66	0.54	0.66	53.7
All V	/ehicles	1773	1.6	1866	1.6	0.743	7.8	LOSA	8.9	63.4	0.61	0.61	0.67	52.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: [5 Macquarie/ Evan 2025 PM (Site Folder: General)]

Site Category: - Roundabout

Veh	icle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sou	th: Evan	Street												
1 2	L2 T1	169 682	1.3 2.3	178 718	1.3 2.3	0.796 0.796	4.9 5.2	LOS A LOS A	13.5 13.5	96.2 96.2	0.65 0.65	0.49 0.49	0.65 0.65	52.2 53.4
3	R2	256	0.4	269	0.4	0.796	9.7	LOSA	13.5	96.2	0.65	0.49	0.65	53.4
	roach	1107	1.7	1165	1.7	0.796	6.2	LOSA	13.5	96.2	0.65	0.49	0.65	53.2
East	: The C	rescent												
4	L2	171	0.0	180	0.0	0.315	7.6	LOSA	2.2	15.3	0.77	0.78	0.77	52.3
5	T1	58	1.9	61	1.9	0.315	7.9	LOS A	2.2	15.3	0.77	0.78	0.77	53.5
6	R2	11	0.0	12	0.0	0.315	12.5	LOS A	2.2	15.3	0.77	0.78	0.77	53.5
App	roach	240	0.5	253	0.5	0.315	7.9	LOS A	2.2	15.3	0.77	0.78	0.77	52.7
Nort	h: Macq	uarie Str	eet											
7	L2	12	0.0	13	0.0	0.545	5.9	LOS A	4.6	32.5	0.67	0.61	0.67	52.4
8	T1	562	1.8	592	1.8	0.545	6.1	LOS A	4.6	32.5	0.67	0.61	0.67	53.6
9	R2	4	0.0	4	0.0	0.545	10.7	LOSA	4.6	32.5	0.67	0.61	0.67	53.6
Арр	roach	578	1.7	608	1.7	0.545	6.2	LOSA	4.6	32.5	0.67	0.61	0.67	53.6
All V	ehicles/	1925	1.6	2026	1.6	0.796	6.4	LOSA	13.5	96.2	0.67	0.56	0.67	53.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: [5 Macquarie/ Evan 2025 AM w Dev (Site Folder: General)]

Site Category: - Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		CK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sou	th: Evan	Street												
1 2 3	L2 T1 R2	113 329 127	0.0 2.0 5.3	119 346 134	0.0 2.0 5.3	0.418 0.418 0.418	4.2 4.5 9.2	LOS A LOS A	3.7 3.7 3.7	26.7 26.7 26.7	0.33 0.33 0.33	0.48 0.48 0.48	0.33 0.33 0.33	53.5 54.7 54.5
	roach	569	2.4	599	2.4	0.418	5.5	LOSA	3.7	26.7	0.33	0.48	0.33	54.4
Eas	t: The C	rescent												
4	L2	224	0.0	236	0.0	0.597	19.1	LOS B	6.1	42.5	1.00	1.14	1.37	45.0
5	T1	40	2.8	42	2.8	0.597	19.5	LOS B	6.1	42.5	1.00	1.14	1.37	45.9
6	R2	19	0.0	20	0.0	0.597	24.0	LOS B	6.1	42.5	1.00	1.14	1.37	45.9
App	roach	283	0.4	298	0.4	0.597	19.5	LOS B	6.1	42.5	1.00	1.14	1.37	45.2
Nort	h: Macq	uarie Str	eet											
7	L2	22	0.0	23	0.0	0.743	5.4	LOSA	9.0	63.6	0.66	0.54	0.66	52.5
8	T1	931	1.4	980	1.4	0.743	5.6	LOSA	9.0	63.6	0.66	0.54	0.66	53.7
9	R2	1	100.0	1	100.0	0.743	13.1	LOSA	9.0	63.6	0.66	0.54	0.66	50.0
App	roach	954	1.5	1004	1.5	0.743	5.6	LOSA	9.0	63.6	0.66	0.54	0.66	53.7
All \	/ehicles	1806	1.6	1901	1.6	0.743	7.8	LOSA	9.0	63.6	0.61	0.61	0.67	52.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

▼ Site: [5 Macquarie/ Evan 2025 PM w Dev (Site Folder: General)]

Site Category: - Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Evan	Street												
1	L2	215	1.3	226	1.3	0.827	5.0	LOSA	15.8	111.9	0.71	0.49	0.71	52.0
2	T1	682	2.3	718	2.3	0.827	5.3	LOS A	15.8	111.9	0.71	0.49	0.71	53.2
3	R2	256	0.4	269	0.4	0.827	9.9	LOS A	15.8	111.9	0.71	0.49	0.71	53.2
Appr	oach	1153	1.7	1214	1.7	0.827	6.3	LOSA	15.8	111.9	0.71	0.49	0.71	53.0
East	: The Cı	escent												
4	L2	171	0.0	180	0.0	0.316	7.6	LOSA	2.2	15.3	0.77	0.78	0.77	52.3
5	T1	58	1.9	61	1.9	0.316	7.9	LOS A	2.2	15.3	0.77	0.78	0.77	53.5
6	R2	11	0.0	12	0.0	0.316	12.5	LOSA	2.2	15.3	0.77	0.78	0.77	53.5
Appr	oach	240	0.5	253	0.5	0.316	7.9	LOSA	2.2	15.3	0.77	0.78	0.77	52.7
Nort	h: Macq	uarie Str	eet											
7	L2	12	0.0	13	0.0	0.547	5.9	LOSA	4.7	33.1	0.68	0.61	0.68	52.4
8	T1	562	1.8	592	1.8	0.547	6.1	LOS A	4.7	33.1	0.68	0.61	0.68	53.6
9	R2	4	0.0	4	0.0	0.547	10.7	LOSA	4.7	33.1	0.68	0.61	0.68	53.6
Appr	oach	578	1.7	608	1.7	0.547	6.2	LOSA	4.7	33.1	0.68	0.61	0.68	53.6
All V	ehicles	1971	1.6	2075	1.6	0.827	6.4	LOSA	15.8	111.9	0.71	0.56	0.71	53.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

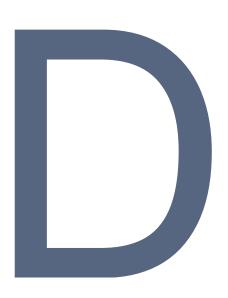
Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: STANTEC NEW ZEALAND | Licence: NETWORK / Enterprise | Created: Tuesday, 9 November 2021 12:53:42 PM Project: P:\N20800-20899\N208910 Thornton, Penrith - Lots 3003, 3004 & 3005\Modelling\210920-N208910 Thornton SIDRA.sip9

D. LOADING DOCK MANAGEMENT INFORMATION

MobileDOCK

- Observations and recommendations for Thornton Penrith

Prepared for St. Hilliers

26 October 2021 | Confidential

Frank Katsanevas Group Design Manager St Hilliers

Via email: fkatsanevas@sthilliers.com.au

26 October 2021

Thank you for giving us the opportunity to advise on how MobileDOCK can be best used to help manage commercial deliveries into the Thornton Penrith development.

This report outlines our understanding of some of the key challenges at the site, and how we envisage using MobileDOCK to mitigate these issues for the benefit of the development and its community of users.

We look forward to discussing our recommendations with you.

Chris Mason

Chief Operating Officer Bestrane, MobileDOCK

cmason@bestrane.com.au

+61 408 130 943

Document Set ID: 9958511

Version: 1, Version Date: 24/03/2022

About Thornton Penrith

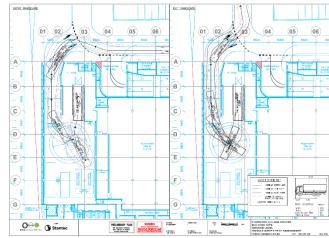
We understand from our discussions that Thornton Penrith is a mixed-use development north of Penrith Station featuring a mixture of residential, commercial and retail land uses.

It contains approx. 530 apartments and 1,700sqm supermarket, 2,000sqm other retail and food & beverage, and 3,000sqm of office, childcare and gym.

There will be two loading docks located on the site.

The Southern dock (via Dunshea Street) will service the majority of users, and will contain approx. four loading docks and two garbage compactors.

The largest vehicle using the dock will be a 12.5m long Heavy Rigid Vehicle.


The dock includes a truck turntable, noting that garbage trucks will be positioned partially on this turntable when servicing the compactors. As such, the turntable will not be able to be used when the compactors are emptied. Council has advised that the compactor collection should be possible early in the morning / overnight.

The vehicle access between the loading dock and Dunshea Street is also restricted in width

The adoption of loading dock management (of some form) will be required to ensure its efficient and safe operation and minimise the potential for truck queuing on Dunshea Street.

The Northern Dock is a smaller, and also accessed via Dunshea Street.

Managing the demands of Multi Use Developments

Site challenge

One of the key challenges of multi-use developments is the need to best prioritise the scheduling of commercial deliveries at times that allow for the efficient operation of the site, and amenity to all users.

Information	Rule Type	Status		,	Actions
General Opening	Allow	Enabled	Disable	Edit	Delete
Close Sunday Afternoon	Block	Enabled	Disable	Edit	Delete
Food & Beverage = Before 8.30am Only allow F&B deliveries & carriers	Allow	Enabled	Disable	Edit	Delete
Retail and Commercial Deliveries = After 9.30am Allow non F&B deliveries post 9.30am	Allow	Enabled	Disable	Edit	Delete

Proposed Approach using MobileDOCK

MobileDOCK provides the ability to schedule and shape the arrival of commercial deliveries to suit the specific requirements of the site.

The MobileDOCK rules engine can be easily configured to allow access for specific deliveries at different intervals during the day, for example

- Allowing deliveries for the supermarket and food & beverage outlets only <u>before 8.30am</u> and
- Allowing deliveries for retail, and commercial tenants <u>after 9.30am</u> avoiding congestion for parents utilising the childcare facilities.

MobileDOCK rules engine enables shaping of deliveries to suit the sites requirements

Garbage and Waste Collections

Site challenge

The sites garbage and waste will be collected from the two compactors positioned in the Southern Dock.

Given the size of these vehicles, and the location of the compactors - the vehicles will be partially positioned on the truck turntable for the duration of the pick up

The practical impact being that the turntable will not be able to be used during the period of these collections.

Information	Rule Type	Status		,	Actions
General Opening	Allow	Enabled	Disable	Edit	Delete
Close Sunday Afternoon	Block	Enabled	Disable	Edit	Delete
Food & Beverage = Before 8.30am Only allow F&B deliveries & carriers	Allow	Enabled	Disable	Edit	Delete
Retail and Commercial Deliveries = After 9.30am Allow non F&B deliveries post 9.30am	Allow	Enabled	Disable	Edit	Delete
Garbage and Waste Collection Allow access between 5am & 6am daily	Allow	Enabled	Disable	Edit	Delete

Proposed Approach using MobileDOCK

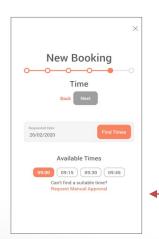
MobileDOCK provides the ability to schedule and shape the arrival of commercial deliveries to suit the specific requirements of the site.

The MobileDOCK rules engine can be easily configured to allow and or block access for specific deliveries types

To manage the arrival of the garbage vehicles we would recommend

- Establishing rules within MobileDOCK that allowing access to the garbage vehicles between an agreed time (perhaps early morning, or end of day).
- Providing the council with a 'permanent booking' for the that agreed time – removing the need for them to manually rebook)
- Placing a 'block' rule on the loading docks at that time which would prevent any other carriers being able to schedule deliveries for that time

 MobileDOCK rules to specifically manage garbage collections


Preventing Queuing in Dunshea St

Site challenge

In order to protect the amenity of the site for all users, its important that commercial vehicles do not queue while waiting to make their deliveries in Dunshea or the surrounding streets.

Proposed Approach using MobileDOCK

MobileDOCK's core capability is the ability to efficiently schedule the arrival of commercial deliveries, and prevent the incidence of trucks queuing to gain access to your site.

The carriers/drivers select via the booking wizard their preferred delivery date and time.

Our experience with a wide range of sites is that drivers arrive promptly at the designated times – in order to take advantage of their confirmed space.

 MobileDOCK booking wizard allows carriers/drivers to quickly select from times when spaces are available for their delivery

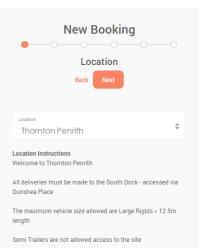
Restricting Vehicle Size

Site challenge

The physical size of the loading dock, and the requirements of the truck turntable impose logical limits on the size of delivery vehicles that are able to access the site.

We understand that the docks will allow large rigids of up to 12.5m length

Vehicles Name Size Actions Car 1 Edit Delete Small Rigid 1 Edit Delete Large Rigid < 12.5m length</th> 1 Edit Delete Add Vehicle


Proposed Approach using MobileDOCK

MobileDOCK can be used to dictate to carriers the size and other dimensions of the vehicles that are able to access the site.

This information is presented to carriers/drivers when making a booking, and can also be highlighted on the 'site instructions' which are included with each booking confirmation.

MobileDOCK vehicle types can specify vehicle dimensions

MOBILEDOCK – Typical Benefits

REDUCED CONGESTION

Reduced site congestion

Flatten site demand access peak

Control & restrict site access as required

GREATER SECURITY

Access for inbound deliveries. contractors, service agents, preapproved by site

Unique barcoded appointment numbers & pin codes

Integration with access control capabilities - license plate recognition, boom gates etc

IMPROVED SAFETY

Limit access to site to those who need to be there

Emergency announcements

Control the number and type of vehicles by time of day

IMPROVED VISIBILITY

Visibility of arrivals, types & quantities of inbound goods

Driver prompted ETA's advising docks of their arrival

Dock resourcing planned to meet known demand

IMPROVED SITE AMENITY

Commercial traffic movements controlled and restricted

No traffic congestion on site

Improved site security

PROVEN TECHNOLOGY

Delivering benefits across thousands of carriers and suppliers, with over 4 million appointments executed

Over 95% of appointments auto-approved

Increased Security

Increased Safety

Reduction **Dwell Time**

Increased Throughput

Reduction Bays Required

Automatically Approved

Contact Us:

Level 1 | 150 Albert Road | South Melbourne Victoria | 3205 | Australia

www.bestrane.com.au

P: +61 3 9001 1565

David Sanders

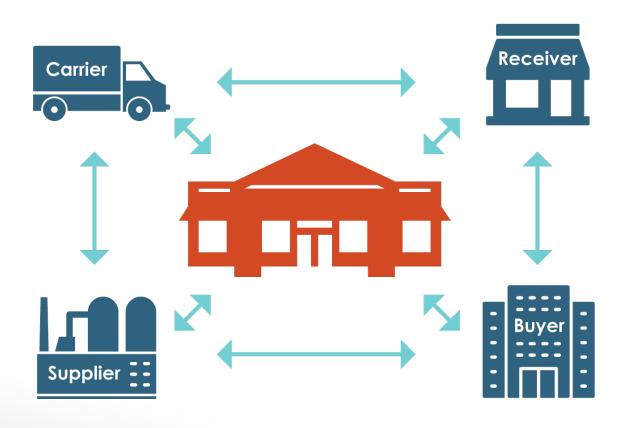
Group Managing Director dsanders@bestrane.com.au 0409 200 786

Chris Mason

Chief Operating Officer cmason@bestrane.com.au 0408 130 943

Document Set ID: 9958511

Version: 1. Version Date: 24/03/2022



Appendix

- ABOUT MOBILEDOCK

LOCATIONS HAVE COMPLEX SUPPLY CHAINS

..WHICH ARE USUALLY MANUALLY PLANNED AND EXECUTED

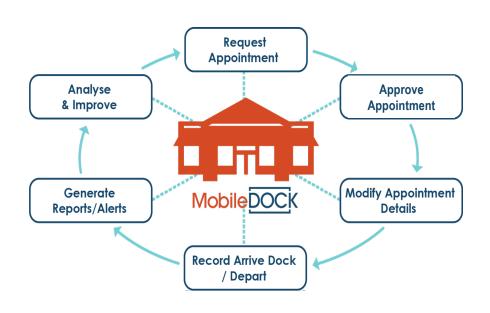
Manual Planning

Manual Execution

INEFFICIENT
AND HIGH COST,
AND HIGH RISK

MOBILEDOCK – MANAGES THE PROCESS

MobileDOCK enables dock delivery management from first request for a delivery slot, through confirmation of delivery completion; notifying all concerned parties along the way.


Self-service web portal; 95% of requests are scheduled and automated approved in real time.

Requests allocated to loading dock space appropriate for the tenant receiving the goods, reduces delivery time.

Notification of planned deliveries are sent to the carrier/supplier and the tenant/receiver through email.

Drivers have options to access the site

- Present copy of their booking confirmation email
- QR code on their smartphone validated by dock personnel scanning
- MobileDOCK's PIN technology via automated boom gates

..AND DRIVES BEST PRACTICE

Automated & Coordinated

Electronic Execution

AUTOMATED, EFFICIENT, PLANNED, AND CONTROLLED

MOBILEDOCK - ENABLES CONNECTIONS

MobileDOCK's open APIs allow connectivity with a range of third party solutions enabling automation of processes and enhanced productivity

Hardware Integrations

Active Signage

Access Control

- Boom Gates
- Pin Pads
- License Plate Recognition

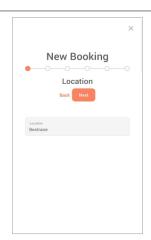
Carrier Integrations

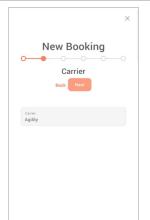
Web based Access
3rd Party Driver Apps
QR Codes

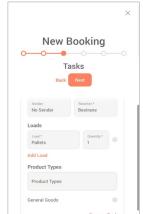
People & Process Integrations

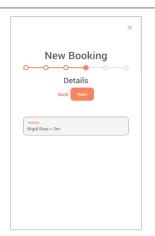
Contractor Compliance Maintenance Mgt Work Order Mgt Safety Compliance

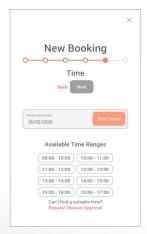
Building Mgt Integrations

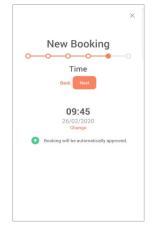

Building Mgt & Automation Systems
Concierge Apps

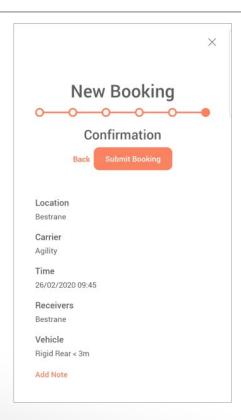

MOBILEDOCK - BOOKINGS MADE EASY

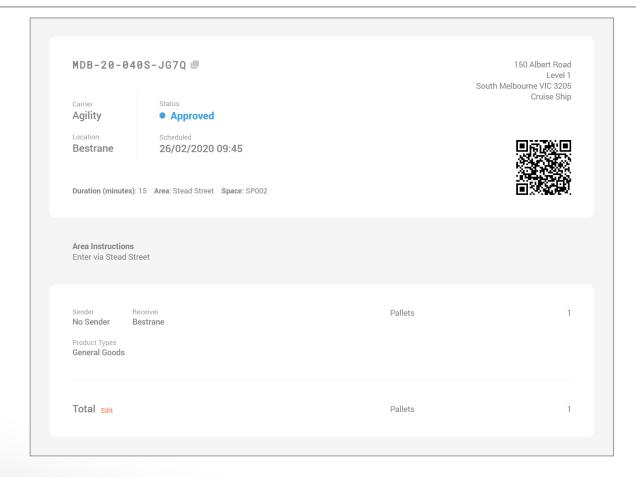



Booking Engine

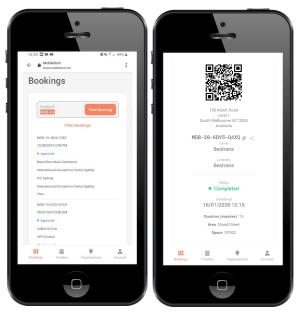

The booking process is controlled by a wizard

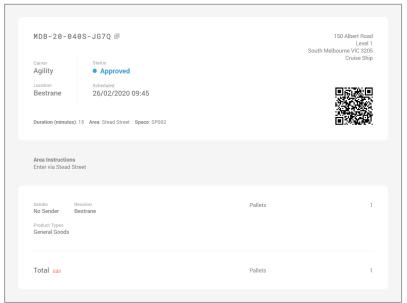




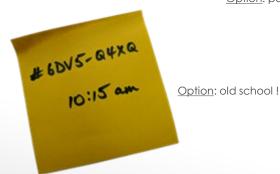


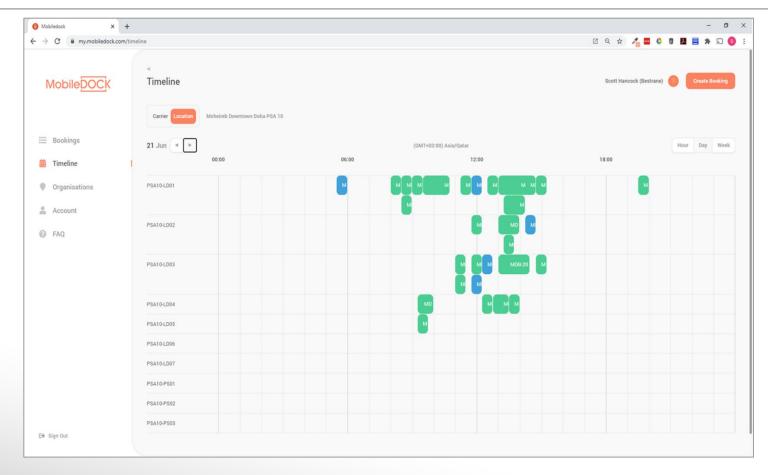
MOBILEDOCK - MADE EASY FOR CARRIERS





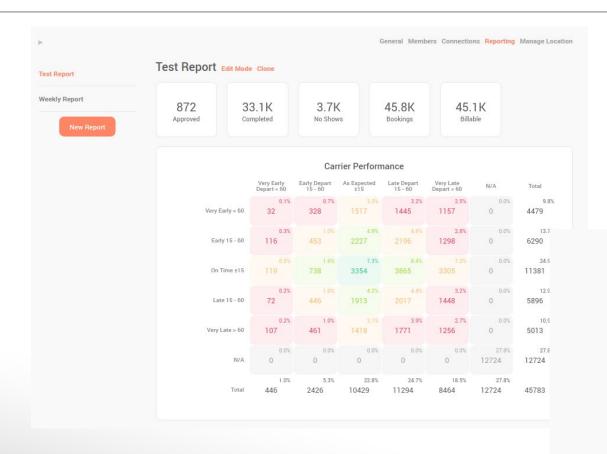
MOBILEDOCK - MADE EASY FOR DRIVERS

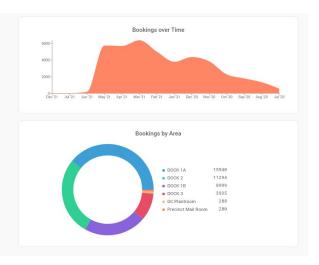



Option: paper based execution

Option: Mobile based execution

MOBILEDOCK - MADE EASY FOR DOCK MASTERS




Visibility of future appointments puts the dock master in control of the site

MOBILEDOCK - MADE EASY FOR DOCK MASTERS

Advanced Dashboards & Reporting capability

MOBILEDOCK – OUR DIFFERENCE

Company Overview

Bestrane have been operating in the Australian market for over 14 years.

We continue to develop the MobileDOCK solution locally

We directly provide support to our customers, and their transporters engaging with the solution.

Our experience, and local presence reduces your implementation risk

Proven Technology

MobileDOCK is used by increasing range of customers, and transporters in the Australian market

The MobileDOCK platform has

- Managed over 4.5 million appointments
- Over 3,000 supplier/carrier relationships established

80 COLLINS

BrookfieldProperties

