# Universal Property Group Pty Ltd



Detailed Site Investigation: South Werrington Urban Village Precinct, Lot 102 DP1140594, 16 Chapman Street, Werrington NSW

P1504996JR01V01 October 2015



#### **Copyright Statement**

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

#### **Limitations Statement**

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to conduct a Detailed Site Investigation in accordance with the scope of services set out in the contract / quotation between Martens and Associates Pty Ltd and Universal Property Group Pty Ltd (hereafter known as the Client).

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.



© October 2015 Copyright Martens & Associates Pty Ltd All Rights Reserved

### **Head Office**

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999** 

Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

| Document and Distribution Status |        |              |             |                                           |                     |         |      |       |
|----------------------------------|--------|--------------|-------------|-------------------------------------------|---------------------|---------|------|-------|
| Author(s)                        |        |              | Reviewer(s) |                                           | Project Manager / D | irector | Sign | ature |
| Ben McGiffin                     |        | Jeff Fulton  |             | Jeff Fulton                               |                     |         |      |       |
|                                  |        |              |             | Document Location                         |                     |         |      |       |
| Revision No.                     | Status | Release Date | File Copy   | Universal<br>Property<br>Group Pty<br>Ltd |                     |         |      |       |
| 1                                | Final  | 27.10.2015   | 1E, 1P      | 1P                                        |                     |         |      |       |
|                                  |        |              |             |                                           |                     |         |      |       |
|                                  |        |              |             |                                           |                     |         |      |       |

Distribution Types: F = Fax, H = Hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.



Detailed Site Investigation: South Werrington Urban Village Precinct: Lot 102 Dp1140594 16 Chapman Street, Werrington NSW. P1504996JR01V01 - October 2015 Page 3

Document Set ID: 9820376 Version: 1, Version Date: 24/11/2021

# **Contents**

| 1 I | NTRODUCTION                                                                         | 6        |
|-----|-------------------------------------------------------------------------------------|----------|
| 1.1 | Overview                                                                            | 6        |
| 1.2 | Objectives                                                                          | 6        |
| 1.3 | Scope of Works                                                                      | 6        |
| 1.4 | Reference Guidelines                                                                | 6        |
| 1.5 | Abbreviations                                                                       | 7        |
| 2 9 | SITE BACKGROUND INFORMATION                                                         | 9        |
| 2.1 | Location and Setting                                                                | 9        |
| 2.2 | Hydrogeology                                                                        | 10       |
| 3 I | PRELIMINARY CONCEPTUAL SITE MODEL                                                   | 11       |
| 3.1 | Overview                                                                            | 11       |
| 3.2 | Summary of Previous Investigations.                                                 | 11       |
| 3.3 | Sensitive Receptors and Exposure Pathways                                           | 12       |
| 3.4 | PESA Recommendation                                                                 | 12       |
| 4 I | FIELD AND LABORATORY INVESTIGATIONS                                                 | 14       |
| 4.1 | Field Programme overview                                                            | 14       |
| 4.2 | Investigation Constraints                                                           | 14       |
| 4.3 | Intrusive Investigation Methodology                                                 | 14       |
| 4.4 | Sampling Methodology and Quality Assurance / Quality Control                        | 14       |
| 4.5 | Data Quality Objectives (DQO)                                                       | 15       |
| 4.6 | Laboratory Analytical Suite                                                         | 16       |
| 5 / | ASSESSMENT CRITERIA                                                                 | 18       |
| 5.1 | Overview                                                                            | 18       |
| 6 I | RESULTS                                                                             | 20       |
| 6.1 | Field Observations                                                                  | 20       |
|     | 6.1.1 Lithology                                                                     | 20       |
|     | 6.1.2 Visual and Olfactory Evidence of Contamination                                | 20       |
|     | Laboratory Analytical Results                                                       | 21       |
|     | 6.2.1 Test Pit Samples<br>6.2.2 Soil Analytical Results for Broad Site Grid Samples | 21<br>21 |
|     | DISCUSSION, RECOMMENDATIONS AND CONCLUSION                                          |          |
|     | Site Contamination                                                                  | 22       |
|     | Recommendation                                                                      | 22       |
|     | Conclusion                                                                          | 22       |
|     | LIMITATIONS                                                                         |          |
|     | REFERENCES                                                                          |          |
|     | ATTACHMENT A – SITE PLANS                                                           |          |
|     | ATTACHMENT B - LABORATORY SUMMARY TABLES                                            |          |
|     | ATTACTIMETALD - LADORATOR L SUMMART TABLES                                          | 20       |



| <b>12</b> . | ATTACHMENT C - LABORATORY ANALYTICAL CERTIFICATES AND CHAIN | I OF |
|-------------|-------------------------------------------------------------|------|
|             | CUSTODY DOCUMENTATION                                       | 37   |
| 13          | ATTACHMENT D - DATA VALIDATION REPORT                       | 134  |
| 14          | ATTACHMENT E – TEST PIT LOGS                                | 135  |



# 1 Introduction

#### 1.1 Overview

This report prepared by Martens and Associates (MA), for Universal Property Group Pty Ltd documents a Detailed Site Investigation (DSI) completed for 16 Chapman Street, Werrington, NSW (the site).

A Preliminary Environmental Site Assessment (PESA) was previously completed by Douglas Partners (DP, 2014a) and should be read in conjunction with this report.

# 1.2 Objectives

The objective of this report is to assess the potential sources of site contamination identified in the PESA (DP, 2014) and determine site suitability for redevelopment which includes residential land use.

### 1.3 Scope of Works

The scope of works includes:

- Intrusive soil investigation and soil sampling for laboratory analysis of potential areas of environmental concern as identified by DP (2014a).
- Preparation of a report in general accordance with the relevant sections of ASC NEPM (1999, amended 2013), NSW OEH (2011) and DEC (2006).

### 1.4 Reference Guidelines

This assessment is prepared in general accordance with the following guidelines:

- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.
- NSW DEC (2006) 2<sup>nd</sup> Ed. Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.
- o ASC NEPC (1999, amended 2013) National Environmental Protection Measure, (NEPM 1999, amended 2013).



#### 1.5 Abbreviations

ASC NEPM – Assessment of site contamination (National Environmental Protection Measure)

AEC - Area of environmental concern

ACM – Asbestos containing material

BTEX - Benzene, toluene, ethyl benzene, xylene

BGL - Below ground level

COPC - Chemical of primary concern

CMP – Construction management plan

CSM - Conceptual site model

DEC – NSW Department of Environment and Conservation

DP – Deposited Plan / Douglas Partners

EIL - Ecological investigation level

ESL – Ecological screening level

EPA – NSW Environmental Protection Authority

ESA – Environmental site assessment

HM – Heavy metals

LOR - Limit of reporting

LGA - Local government area

MA – Martens and Associates Pty Ltd

NATA – National Association of Testing Authorities

OCP - Organochloride pesticides

OEH – NSW Office of Environment and Heritage

OPP - Organophosphate pesticides

PAH – Polycyclic aromatic hydrocarbons



PCB - Polychlorinated biphenyl

RPD – Relative percentage difference – difference between two values divided by the average

SAC – Site acceptance criteria

SOP – Standard operating procedure

TPH – Total petroleum hydrocarbons

UST – Underground storage tank



# 2 Site Background Information

# 2.1 Location and Setting

Site information is summarised in Table 1.

**Table 1:** Site background information.

| Item                        | Description/Detail                                                                                                                                                                                                                                                                   |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Site address                | 16 Chapman Street, Werrington NSW.                                                                                                                                                                                                                                                   |  |  |
| Lot/DP                      | Lot 102 DP 114059.                                                                                                                                                                                                                                                                   |  |  |
| Site area                   | Approximately 28 ha.                                                                                                                                                                                                                                                                 |  |  |
| Existing site development   | No major existing structures.  A small corrugated iron shed is located towards the centre of the site which appears to have been used as an amenities building (with a composting toilet).                                                                                           |  |  |
| Aspect                      | Site generally slopes towards the south east with the eastern portion of the site sloes to the north / north east.                                                                                                                                                                   |  |  |
| Typical slopes              | Generally slopes between 0 – 15%.                                                                                                                                                                                                                                                    |  |  |
| Existing vegetation         | Generally cleared with low lying grasses and mature bushes. Scattered mature trees located near the centre of the site.                                                                                                                                                              |  |  |
| Neighbouring environments   | The surrounding land use includes:  North: Western railway line and low density residential land use.  East: Low density residential development and vacant former commercial site.  South: Cobham Junvenile Justice Centre.  West: University of Western Sydney (Kingswood Campus). |  |  |
| Local Government Area (LGA) | Penrith City Council.                                                                                                                                                                                                                                                                |  |  |
| Drainage                    | Site drainage The site generally drains via overland flow to the south east / east portions to a large concrete pipe / culvert which leaves the site under to the north under Landers Street and eventually discharges in to South Creek.                                            |  |  |



| Item                        | Description/Detail                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geology and soil landscapes | The Penrith 1:100,000 Geological Series Sheet 9030 (1991) indicates that the site is underlain by Wianamatta Group of Bringelly Shale consisting of carbonaceous claystone.                                                                                                                                                                     |
|                             | The Reference to the Penrith 1:100,000 Soil Landscapes Sheet indicates that the northern part of the site is located within the erosional Luddenham soil landscape. This landscape is characterised by shallow (<100 cm) dark podzolic soils or massive earthy clays on crests; moderately deep (70-150 cm) red podzolic soils on upper slopes. |
| Environmental receptors     | South Creek (350 m to the east).                                                                                                                                                                                                                                                                                                                |
| Human receptors             | Existing surrounding residential developments.  Future residents and site workers/ builders.                                                                                                                                                                                                                                                    |

# 2.2 Hydrogeology

Review of NSW Natural Resources Atlas indicated three groundwater bores (with available information) within approximately 1 km of the site. All three bores were recorded as monitoring bores and were all located up gradient of the site. Limited information regarding standing water level was available at the time of preparing this report. Further assessment would be required to characterise site hydrogeology.



# 3 Preliminary Conceptual Site Model

#### 3.1 Overview

The preliminary conceptual site model (CSM) has been developed based on information documented in the PESA (DP, 2014a) and the Geotechnical Assessment (DP, 2014b) which included subsurface investigation.

# 3.2 Summary of Previous Investigations.

- o Historic aerials indicate the site has remained generally undeveloped since 1943. There is some evidence of broad acre farming with evidence of ploughing and or crop lines evident along the eastern and western boundaries in the 1961 aerial. No evidence of large onsite development was found on any reviewed aerial.
- A search of the NSW EPA Record of Notices for Contaminated Land was conducted which found no notice for the site.
- A site walkover conducted on 17 December 2013 by Douglas Partners confirmed a generally vacant site with only a small corrugated iron shed located towards the centre of the site which appears to have been used as an amenities building (with a composting toilet).
- The geotechnical assessment (DP, 2014b) undertook subsurface site testing via 50 test pits excavated across the site. Fill material was identified in several testing locations, predominantly in the eastern portion of the site.

The PESA (DP, 2014a) identified two areas of environmental concern (AEC) and associated chemicals of primary concern (COPC) which are summarised in Table 2.



Table 2: AEC and COPC 16 Chapman Street, Werrington, NSW

| AEC                   | Potential for Contamination                                         | COPC                                                     | Contamination<br>Likelihood |
|-----------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|
| A - Areas of filling  | Fill from unknown origins.                                          | TPH / BTEX, PAH, HM,<br>OCP/OPP, phenols<br>and asbestos | Medium - high               |
| B – Composting toilet | Unknown historical use. Unknown construction methodology of toilet. | Faecal coliforms, E.coli<br>and salmonella               | Low                         |

## 3.3 Sensitive Receptors and Exposure Pathways

Table 3 provides a summary of identified sensitive receptors and potential exposure pathways connecting receptors to identified AEC / COPC outlined in Table 2 as presented in the PESA (DP, 2014a).

Table 3: Summary of receptors and potential pathways.

| Pathway                                                   |
|-----------------------------------------------------------|
|                                                           |
| o Dermal contact.                                         |
| <ul> <li>Ingestion of potentially contaminated</li> </ul> |
| soil.                                                     |
| o Inhalation of airborne contaminants.                    |
| o Migration of pollutants via site surface                |
| and groundwater.                                          |
|                                                           |
| o Migration of pollutants via site surface                |
| and groundwater.                                          |
| <ul> <li>Direct contact with site flora.</li> </ul>       |
|                                                           |
|                                                           |
|                                                           |

### 3.4 PESA Recommendation

The PESA recommended a targeted intrusive soil investigation to quantify and characters potential contamination risk identified in the CSM.

Testing was recommended in areas of potential site filling and, following removal of the existing site shed, near the former composting toilet. It is noted that the current investigation was not able to target the compost



toilet area as the shed and toilet have not yet been removed. It is proposed that, following site clearing works and removal of waste from the pit, subsurface sampling be completed in this area and the results provided as an addendum to this report.

Additional testing was recommended outside of the AEC to confirm the low risk status of the site.



# 4 Field and Laboratory Investigations

# 4.1 Field Programme overview

Referencing the preliminary CSM (Section 3), a soil investigation program was planned to investigate the areas of potential site filling. Information from previous subsurface investigation in the geotechnical assessment (DP, 2014b) was used to target site areas associated with filling. Based on test pit logs (DP 2014b), subsurface testing was primarily focused in the eastern portion of the site.

While not directly addressed as an AEC in the PESA, there was some evidence, based on the historic aerials, to suggest previous agricultural land use. To address this concern, shallow (0.1 mBGL) surface samples were collected from across the site in a grid pattern and assessed for heavy metal and pesticide contaminants.

## 4.2 Investigation Constraints

As noted in Section 3.4, the existing site shed and composting toilet were intact during the investigation and testing could not be completed. To fully address data gaps in the CSM, further soil investigation is required following demolition of the shed.

# 4.3 Intrusive Investigation Methodology

An overview of site investigation methodology is provided in Table 4.

**Table 4:** Investigation methodology.

| Investigation dates       | 7 October 2015.                                                                                        |
|---------------------------|--------------------------------------------------------------------------------------------------------|
| Number of sampling points | 36 surface samples in grid pattern across the site. 12 test pits.                                      |
| Investigation method      | Testpits were excavated using a 5 tonne excavator. Surface samples collected using a small hand spade. |

# 4.4 Sampling Methodology and Quality Assurance / Quality Control

Soil sampling methodology (Table 5) was completed to meet data quality objectives.



Table 5: Soil sampling methodology.

| Activity                              | Detail / Comments                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil Sampling                         | Soil sampling was completed by an experienced MA environmental engineer.  Each sample was placed into a laboratory-supplied, acid-rinsed 250mL glass jar, labelled with a unique identification number and no headspace to limit volatile loss. A clean pair of disposable gloves was used when handling each sample.                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample Compositing                    | Surface samples collected from across the site were combined to form 12 triple composite samples. Sample compositing was completed by Envirolab Pty Ltd a NATA accredited laboratory at the direction of MA.                                                                                                                                                                                      |
| QA / QC Sampling                      | Duplicate samples were collected at a rate of approximately 1 in 10 samples for intra-laboratory analysis.                                                                                                                                                                                                                                                                                        |
| Sample handling and transportation    | Sample collection, storage and transport were conducted according to Martens and Associates SOP.  Collected samples were placed into an ice chilled cooler-box.  Samples were dispatched to NATA-accredited laboratory under chain of custody documentation within holding times.                                                                                                                 |
| Decontamination of sampling equipment | Surface sampling equipment (hand spade) was decontaminated between sampling locations by pressurised water spray with a solution of Decon-90 <sup>TM</sup> , a phosphate-free detergent, followed by rinsing with potable water.  Test pit samples were collected directly from the centre of the excavator bucket and a clean pair of disposable gloves were used between each sample collected. |

A review of QA/QC procedure has been completed and is presented in the data validation report (Attachment D). The report concludes that data is suitable for the purposes of the assessment.

# 4.5 Data Quality Objectives (DQO)

Data quality objectives (DQO) have been prepared as statements specifying qualitative and quantitative data required to support project decisions. Data quality indicators (DQI) are presented in the following sections, outlining procedures to achieve DQO for site works. DQO have been prepared in general accordance with NSW DEC (2006) and US EPA (1994) guidelines and are presented in Table 6.



**Table 6:** Data quality objectives for the assessment of soil investigations.

| Table 0. Dala qu                                                                                                                                                                          | objectives for the assessifier of soft investigations.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 1<br>Stating the<br>Problem                                                                                                                                                          | The proposed site development will include residential land use. Therefore the site must be deemed suitable to accommodate residential use (residential with minimal soil access). This DSI is required to assess risk posed by potentially contaminated soil to onsite and offsite sensitive receptors.                                                                                                                                                                          |  |  |
| Step 2<br>Identifying the<br>Decision(s)                                                                                                                                                  | Previous suite investigation have identified AECs which may be the source of potential contamination. To assess the suitability of the site for future residential use, decisions are to be made based on the following questions:  o Is site soil quality suitable for the intended residential land use?  o Do site soils require remediation or management to prior to onsite residential land use?                                                                            |  |  |
| Step 3<br>Identification<br>of Inputs to the<br>Decision                                                                                                                                  | The inputs to the assessment of site soil quality will include:  Soil sampling at nominated locations (where access is available) across the site.  Laboratory analytical results for relevant COPC.  Assessment of the suitability of the data obtained from sampling an analyses as measured against DQIs.  Assessment of analytical results against site suitable human health criteria.                                                                                       |  |  |
| Step 4<br>Study<br>Boundary<br>Definitions                                                                                                                                                | Study boundaries are as follows:  o Lateral – Lateral boundary of the assessment is defined by the site boundary as indicated in Figure 1 (Attachment A).  o Vertical – Vertical boundary will be governed by the maximum depth reached during subsurface investigations.  It is noted that assessment of site groundwater and soil vapours is outside of the scope of this assessment.                                                                                           |  |  |
| Step 5 Development of Decision Rules                                                                                                                                                      | The decision rule for this for this investigation area as follows:  If the concentration of contaminants in the soils exceeds the adopted assessment criteria; an assessment of the need to further investigate, remediate and or manage the onsite impacts in relation to the proposed development will be undertaken.                                                                                                                                                           |  |  |
| Specification of<br>Limits on<br>Decision Errors                                                                                                                                          | Guidance found in ASC NEPM (1999 amended 2013) Schedule B2 regarding 95% upper confidence limit (UCL) states that the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than or equal to this value. Therefore a decision can be made based on a probability that 95% of the data collected will satisfy the site acceptance criteria. A limit on decision error will be 5% that a conclusive statement may be incorrect. |  |  |
| Step 7  Optimisation of Sampling Design  Proposed sampling locations are based on completed Stage 1 investigation of concern. The above achieved by utilisation of MA SOP to achieve DQO. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

# 4.6 Laboratory Analytical Suite

Laboratory analysis was carried out by Envirolab Pty Ltd a NATA accredited laboratory. Laboratory analytical documentation is presented in Attachment C.



**Table 7:** Summary of primary soil laboratory analyses.

| coc                       | Number of Samples Analysed               |
|---------------------------|------------------------------------------|
| BTEX                      | 8                                        |
| TRH                       | 8                                        |
| PAH                       | 8                                        |
| PCB                       | 8                                        |
| Asbestos in soil          | 8                                        |
| Heavy metals <sup>1</sup> | 36 in 12 triple composites<br>8 discrete |
| OCP/OPP                   | 36 in 12 triple composites<br>8 discrete |

#### Notes



<sup>&</sup>lt;sup>1</sup> Heavy metals – arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc.

# 5 Assessment Criteria

### 5.1 Overview

The site assessment criteria (SAC) adopted for this DSI has been derived from the following sources:

o ASC NEPM (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

Guideline values for individual contaminants are presented in laboratory tables in Attachment B.

Table 7 summarises the applicability of the SAC adopted for this investigation.

**Table 8**: Summary of SAC.

| SAC                                                      | Applicability                                                                                                                                                               |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health investigation levels (HIL)                        | Based on the proposed residential site use, HIL – A<br>Residential with soil access (ASC NEPM 1999, amended<br>2013) have been adopted.                                     |
| Health screening levels (HSL) for petroleum hydrocarbons | HSLs A – low density residential for clay (ASC NEPM 1999, amended 2013) have been adopted. Clay has been selected based on encountered lithology at the site.               |
|                                                          | Soil HSL provide a preliminary assessment of human risk via inhalation of vapours from potential contamination. For this purpose HSL A criteria are considered appropriate. |
| TPH Management Limits                                    | Residential land use TPH Management limits have been adopted from ASC NEPM (1999, amended 2013).                                                                            |



| SAC                                  | Applicability                                                                                                                                                                                                                                                                              |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological assessment criteria (EAS) | A preliminary assessment of ecological risk has been undertaken with reference to ecological screening levels (ESL) and ecological investigation levels (Els.).                                                                                                                            |
|                                      | Ecological assessment criteria applies principally to the top 2m of soil.                                                                                                                                                                                                                  |
|                                      | <u>ESLs</u>                                                                                                                                                                                                                                                                                |
|                                      | ESLs for fine grained soils in urban residential and open spaces (ASC NEPM 1999, amended 2013) have been adopted based on site lithology.                                                                                                                                                  |
|                                      | <u>Eils</u>                                                                                                                                                                                                                                                                                |
|                                      | EILS have been calculated using methodology outlined in ASC NEPM (1999, amended 2013(.                                                                                                                                                                                                     |
|                                      | The most conservative added contaminant levels have been used to develop site ElLs as no physiochemical properties of site soils have been measured. Ambient background concentrations (ABC) have been taken from Olszowy et al (1995) for aged contamination in low traffic areas in NSW. |
| Asbestos in soil / material          | Based on the preliminary nature of this assessment the 'presence/absence' of asbestos in soil / material has been adopted as the SAC.                                                                                                                                                      |



# 6 Results

### **6.1** Field Observations

# 6.1.1 Lithology

A summary of lithology observations compiled during intrusive investigation is presented in Table 9. Detailed test pit logs are presented in Attachment E.

**Table 9:** Summary of site lithology.

| Lithology 1                                                                                                                                    | Depth Range (mBGL) <sup>2</sup> |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| FILL - Generally consisting of silty clays and clay. Anthropogenic inclusions observed included: pieces of tile, glass, concrete and plastics. | 0.0 – 1.1 (variable)            |
| SILTY CLAY / CLAY – Low to medium plasticity, light brown/ brown / grey.                                                                       | 0.0 – 1.4 (variable)            |
| SHALE – Assumed low strength, grey / light brown.                                                                                              | >1.4 (variable)                 |

#### Notes:

# 6.1.2 Visual and Olfactory Evidence of Contamination

Visual or olfactory evidence of gross contamination was not identified during intrusive investigations.



<sup>&</sup>lt;sup>1</sup> See test pit logs for detailed material description.

<sup>&</sup>lt;sup>2</sup> Indicative depth range. Material depth may vary across a site depending on site and local geological conditions, and degree of filling.

# 6.2 Laboratory Analytical Results

### 6.2.1 Test Pit Samples

Comparison of test pit sample results with the relevant SAC is available in the laboratory tables in Attachment B. A summary of results is presented in Table 9.

**Table 10:** Summary of soil laboratory results.

| Analyte          | Results Compared to SAC                                            |
|------------------|--------------------------------------------------------------------|
| Heavy Metals     | HILS All results below SAC. EIL All results below SAC.             |
| TPH/BTEX         | HSL All results below SAC. ESL All results below SAC.              |
| OCP/OPP          | HILS All results below SAC.                                        |
| РСВ              | HILS All results below SAC.                                        |
| PAH              | HILS All results below SAC. ESL All results below SAC.             |
| Asbestos in soil | All soil samples reported negative for asbestos in soil detection. |

# 6.2.2 Soil Analytical Results for Broad Site Grid Samples

All triple composite samples from broader site grid sampling, reported values below the adopted SAC for OC/OP pesticides and heavy metals.



# 7 Discussion, Recommendations and Conclusion

### 7.1 Site Contamination

A subsurface investigation has been completed by MA targeting areas of site filling identified in the PESA (DP, 2014a). Additional surface samples were collected from across the site to address potential historic agricultural land use. Results of soil sampling found no contaminant level above SAC.

### 7.2 Recommendation

Based on the large site area, there remains a risk that as yet uncovered fill material, which contains contaminant levels above the adopted SAC, shall be discovered during site works. It is therefore recommended that an unexpected finds protocol be developed for the site and implemented as part of a construction management plan (CMP). The unexpected finds protocol should outline all procedures associated with the discovery of any new potentially contaminated material

As noted in Section 3.4, access beneath the existing site shed and composting toilet was not available during this investigation. It is recommended that following the removal of the shed and waste material within the pit, validation testing be conducted which shall include sampling for pathogens as per DP (2014a).

### 7.3 Conclusion

Based on site testing to date, site contamination which would impact the proposed development has not been identified. Therefore following the completion of the above recommendations the site shall be deemed fit for the proposed residential development.



# 8 Limitations

This Stage 2 contamination assessment was undertaken in accordance with current industry standards.

It is important to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. This is particularly the case where site filling has been identified. Therefore, this report should not be read as a guarantee that no contamination shall be found on the site. Should material be exposed in future which appears to be contaminated, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of assessing potential site contamination. No reliance on this report should be made for any other investigation or proposal. Martens & Associates accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.



# 9 References

- Chapman and Murphy (1983) Penrith 1:100 000 Soil Landscapes Sheet 9131.
- Department of Mineral Resources (1983) Penrith 1:100,000 Geological Sheet 9131.
- Douglas Partners (2014a) Preliminary Environmental Site Assessment: South Werrington Urban Village Precinct, Lot 102 DP1140594, 16 Chapman Street, Werrington, NSW, ref: 73741.02
- Douglas Partners (2014b) Geotechnical Assessment: South Werrington Urban Village Precinct, Lot 102 DP1140594, 16 Chapman Street, Werrington, NSW, ref: 73741.01
- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure Referred to as ASC NEPM (1999, amended 2013).
- NSW DEC (2006) 2<sup>nd</sup> Ed. Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2005) Contaminated Sites: Guidelines for Assessing Former Orchards and Market Gardens
- NSW EPA (1995) Sampling Design Guidelines.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.
- SEPP 55 Remediation of Land.



# 10 Attachment A – Site Plans







SURFACE SAMPLING LOCATION COMPOSITE SAMPLE IDENTIFER

APPROXIMATE SITE BOUNDARY

| Martens & Associates Pt | <b>xy Ltd</b> ABN 85 070 240 890 | Environment   Water   Wastewater   Geotechnical   C                                                                                                              | Civil   Mana         | agemer           | nt        |
|-------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------|
| Drawn:                  | ВМ                               | Composite Testing Locations                                                                                                                                      | Drawing No./I        | ID:              |           |
| Approved:               | JF                               | South Werrington Urban Village<br>16 Chapman Street, Werrington, NSW                                                                                             | Figure 1             |                  |           |
| Date:                   | 27.10.2015                       | To Ghapman Guod, Wormigton, NOV                                                                                                                                  |                      |                  |           |
| Scale @A3:              | NA                               | Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767<br>Email: mail@martens.com.au Internet: http://www.martens.com.au | Project:<br>P1504996 | File:<br>JD01V01 | Revision: |

Document Set ID: 9820376 Version: 1, Version Date: 24/11/2021



TP201 APPROXIMATE TESTPIT LOCATION

- APPROXIMATE SITE BOUNDARY

| Martens & Associates Pt | y Ltd ABN 85 070 240 890 | Environment   Water   Wastewater   Geotechnical   C                                                                                                              | ivil   Mana    | agemen           | ıt             |
|-------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|----------------|
| Drawn:                  | ВМ                       | Testpit Locations                                                                                                                                                | Drawing No./II | D:               |                |
| Approved:               | JF                       | South Werrington Urban Village<br>16 Chapman Street, Werrington, NSW                                                                                             | Figure 2       |                  |                |
| Date:                   | 27.10.2015               | To Grapman Guest, Wernington, NOW                                                                                                                                |                |                  |                |
| Scale @A3:              | NA                       | Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767<br>Email: mail@martens.com.au Internet: http://www.martens.com.au | .,             | File:<br>JD01V01 | Revision:<br>A |

# 11 Attachment B – Laboratory Summary Tables







|                                                          | Lead  |         |         |                   | Metals |         |        |       |
|----------------------------------------------------------|-------|---------|---------|-------------------|--------|---------|--------|-------|
|                                                          | Lead  | Arsenic | Cadmium | Chromium (III+VI) | Copper | Mercury | Nickel | Zinc  |
|                                                          | mg/kg | mg/kg   | mg/kg   | mg/kg             | mg/kg  | mg/kg   | mg/kg  | mg/kg |
| EQL                                                      | 1     | 4       | 0.4     | 1                 | 1      | 0.1     | 1      | 1     |
|                                                          |       |         |         |                   |        |         |        |       |
| NEPM 2013 Table 1A(1) HILs Res A Soil                    | 300   | 100     | 20      | -                 | 6000   | 40      | 400    | 7400  |
| NEPM 2013 Table 1A(1) HILs Res A Soil (Composite Values) | 100   | 33      | 6       | -                 | 2000   | 13      | 133    | 2467  |
| NEPM 2013 EIL                                            | 1100  | 100     | -       | -                 | 100    | -       | 60     | 210   |
| NEPM 2013 FIL (Composite Values)                         | 366   | 33      | -       | _                 | 33     | _       | 20     | 70    |

| Field_ID   | LocCode    | Sample_Depth_Range | Sampled_Date-Time | Matrix_Description |    |    |       |    |    |      |    |    |
|------------|------------|--------------------|-------------------|--------------------|----|----|-------|----|----|------|----|----|
| 4996/TP201 | 4996/TP201 | 0.5                | 7/10/2015         |                    | 10 | 4  | < 0.4 | 20 | 12 | <0.1 | 5  | 10 |
| 4996/TP202 | 4996/TP202 | 0.15               | 7/10/2015         |                    | 29 | 6  | < 0.4 | 20 | 11 | <0.1 | 5  | 53 |
| 4996/TP203 | 4996/TP203 | 0.15               | 7/10/2015         |                    | 31 | 7  | < 0.4 | 20 | 14 | <0.1 | 7  | 43 |
| 4996/TP204 | 4996/TP204 | 0.15               | 7/10/2015         |                    | 28 | 11 | < 0.4 | 24 | 25 | <0.1 | 6  | 34 |
| 4996/TP207 | 4996/TP207 | 0.15               | 7/10/2015         |                    | 29 | 7  | < 0.4 | 20 | 14 | <0.1 | 7  | 32 |
| 4996/TP208 | 4996/TP208 | 0.15               | 7/10/2015         |                    | 15 | 5  | < 0.4 | 18 | 10 | <0.1 | 7  | 15 |
| 4996/TP210 | 4996/TP210 | 0.15               | 7/10/2015         |                    | 24 | 7  | < 0.4 | 23 | 8  | <0.1 | 5  | 22 |
| 4996/TP212 | 4996/TP212 | 0.15               | 7/10/2015         |                    | 25 | 10 | < 0.4 | 35 | 13 | <0.1 | 8  | 19 |
| C1         | C1         | 0.1                | 7/10/2015         |                    | 33 | 6  | < 0.4 | 19 | 11 | <0.1 | 5  | 44 |
| C10        | C10        | 0.1                | 7/10/2015         |                    | 21 | 7  | < 0.4 | 15 | 26 | <0.1 | 12 | 49 |
| C11        | C11        | 0.1                | 7/10/2015         |                    | 22 | 8  | < 0.4 | 16 | 24 | <0.1 | 16 | 45 |
| C12        | C12        | 0.1                | 7/10/2015         |                    | 24 | 8  | < 0.4 | 19 | 14 | <0.1 | 10 | 27 |
| C2         | C2         | 0.1                | 7/10/2015         |                    | 24 | 8  | < 0.4 | 32 | 9  | <0.1 | 6  | 30 |
| C3         | C3         | 0.1                | 7/10/2015         |                    | 22 | 9  | < 0.4 | 18 | 22 | <0.1 | 12 | 54 |
| C4         | C4         | 0.1                | 7/10/2015         |                    | 18 | <4 | < 0.4 | 16 | 8  | <0.1 | 5  | 19 |
| C5         | C5         | 0.1                | 7/10/2015         |                    | 19 | 5  | < 0.4 | 16 | 14 | <0.1 | 7  | 33 |
| C6         | C6         | 0.1                | 7/10/2015         |                    | 29 | 9  | < 0.4 | 36 | 10 | <0.1 | 7  | 25 |
| C7         | C7         | 0.1                | 7/10/2015         |                    | 25 | 8  | < 0.4 | 23 | 14 | <0.1 | 8  | 28 |
| C8         | C8         | 0.1                | 7/10/2015         |                    | 33 | 16 | < 0.4 | 21 | 32 | <0.1 | 8  | 43 |
| C9         | C9         | 0.1                | 7/10/2015         |                    | 24 | 8  | < 0.4 | 19 | 20 | <0.1 | 11 | 38 |

#### Statistical Summary

| Statistical Salliniary                        |     |     |     |     |     |     |      |     |      |
|-----------------------------------------------|-----|-----|-----|-----|-----|-----|------|-----|------|
| Number of Results                             | 20  | 20  | ) : | 20  | 20  | 20  | 20   | 20  | 20   |
| Number of Detects                             | 20  | 19  | )   | 0   | 20  | 20  | 0    | 20  | 20   |
| Minimum Concentration                         | 10  | <4  | > ا | 0.4 | 15  | 8   | <0.1 | 5   | 10   |
| Minimum Detect                                | 10  | 4   | 1   | ND  | 15  | 8   | ND   | 5   | 10   |
| Maximum Concentration                         | 33  | 16  | 5 < | 0.4 | 36  | 32  | <0.1 | 16  | 54   |
| Maximum Detect                                | 33  | 16  | 1 6 | ND  | 36  | 32  | ND   | 16  | 54   |
| Average Concentration                         | 24  | 7.6 | 5 ( | ).2 | 22  | 16  | 0.05 | 7.9 | 33   |
| Median Concentration                          | 24  | 7.5 | 5 ( | ).2 | 20  | 14  | 0.05 | 7   | 32.5 |
| Standard Deviation                            | 5.9 | 2.9 | 9   | 0   | 6.1 | 6.9 | 0    | 3   | 13   |
| Number of Guideline Exceedances               | 0   | 0   |     | 0   | 0   | 0   | 0    | 0   | 0    |
| Number of Guideline Exceedances(Detects Only) | 0   | 0   |     | 0   | 0   | 0   | 0    | 0   | 0    |

Detailed Site Investigation Universal Property Group Pty Ltd



| martens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ |                                                              |                                        |                                                              |                                          |                                          |                                         |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              |                                                                                                          |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      |                                              |                                      |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------|----------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Martons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                              |                                        | ВТ                                                           | EX                                       |                                          |                                         |                                              |                |                                              |                                              |                                                                      |                                              |                                              | PAH/Pł                                       | nenols                                       |                                              |                      |                                              |                                              |                                                                                                          |                                                             | _                                                           |                                                          | Polych                                                   | lorinated                                                          | l Bipheny                                    | ls                                                           |                                                              |                                                      |                                              |                                      |                | TPH                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| consulting enginee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Benzene                                                      | Ethylbenzene                           | . Toluene                                                    | Xylene (m & p)                           | Xylene (o)                               | C6-C10 less BTEX (F1)                   | Acenaphthene                                 | Acenaphthylene | Anthracene                                   | Benz(a)anthracene                            | Benzo(a) pyrene                                                      | Benzo(b+k)fluoranthene                       | Benzo(g,h,i)perylene                         | Chrysene                                     | Dibenz(a,h)anthracene                        | Carcinogenic PAHs (as B(a)P TPE)             | Fluoranthene         | Fluorene                                     | Indeno(1,2,3-c,d)pyrene                      | Naphthalene                                                                                              | Dyrana                                                      | ryielle                                                     | Arochlor 1221                                            | Arochlor                                                 | Aro                                                                | Arochlor 1248                                | Arochlor 1254                                                | Arochlor 1260                                                | C10-C16                                              | C16-C34                                      | C34-C40                              | F2-NAPHTHALENE | 6 63                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C15 - C28                                                   |
| FOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                              |                                        |                                                              |                                          |                                          |                                         |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              | ng/kg mg/                                                                                                |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      |                                              |                                      |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| EQL NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + | 0.2                                                          | 1                                      | 0.5                                                          | 2                                        | 1                                        | 25                                      | 0.1                                          | 0.1            | 0.1                                          | 0.1                                          | 0.05                                                                 | 0.2                                          | 0.1                                          | 0.1                                          | 0.1                                          | 0.5                                          | 0.1                  | 0.1                                          | 0.1                                          | 0.1 0.1                                                                                                  | .   0.1                                                     | 0.1                                                         | 0.1                                                      | 0.1                                                      | 0.1                                                                | 0.1                                          | 0.1                                                          | 0.1                                                          | 50                                                   | 100                                          | 100                                  | 50             | 23                                                | 50 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .00                                                         |
| 0-1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 0.7                                                          | NI                                     | 480                                                          |                                          |                                          | 50                                      |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              | 5                                                                                                        |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      |                                              |                                      | 280            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| 1-2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                              | NL                                     | NL                                                           |                                          |                                          | 90                                      |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              | NL NL                                                                                                    |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      |                                              |                                      | NL NL          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| 2-4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | _                                                            | NL                                     | NL                                                           |                                          |                                          | 150                                     |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              | NL                                                                                                       |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      |                                              |                                      | NL             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| >4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | _                                                            | NL                                     | NL                                                           |                                          |                                          | 290                                     |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              | NL                                                                                                       |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      |                                              |                                      | NL             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| NEPM 2013 Table 1B(6) ESLs for Urban Res, Fine Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 65                                                           | INL                                    | 105                                                          |                                          |                                          | 180                                     |                                              |                |                                              |                                              |                                                                      |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              | INL                                                                                                      |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      | 1300                                         | 5600                                 |                | $\overline{}$                                     | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| 0-2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 05                                                           | 125                                    | 103                                                          |                                          |                                          | 100                                     |                                              |                |                                              |                                              | 0.7                                                                  |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              |                                                                                                          |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              |                                                      | 1300                                         | 3000                                 | 120            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                                                              | 123                                    |                                                              |                                          |                                          |                                         |                                              |                |                                              |                                              | 0.7                                                                  |                                              |                                              |                                              |                                              |                                              |                      |                                              |                                              |                                                                                                          |                                                             |                                                             |                                                          |                                                          |                                                                    |                                              |                                                              |                                                              | 1000                                                 | 5000                                         | 10000                                |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
| Field_ID         LocCode         Sample_Depth_Range         Sampled_Date-Popto           4996/TP201         4996/TP201         0.5         7/10/2015           4996/TP202         4996/TP202         0.15         7/10/2015           4996/TP203         4996/TP203         0.15         7/10/2015           4996/TP204         4996/TP204         0.15         7/10/2015           4996/TP207         4996/TP207         0.15         7/10/2015           4996/TP208         4996/TP208         0.15         7/10/2015           4996/TP210         4996/TP210         0.15         7/10/2015           4996/TP212         4996/TP212         0.15         7/10/2015           Statistical Summary         Statistical Summary         Sample_Depth_Range         Sampled_Depth_Range         Sampled_Depth_Range         7/10/2015 |   | <0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2 | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 < | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1           | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | <0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1 <0.<br><0.1 <0.<br><0.1 <0.<br><0.1 <0.<br><0.1 <0.<br><0.1 <0.<br><0.1 <0.<br><0.1 <0.<br><0.1 <0. | 1 <0.<br>1 <0.<br>1 <0.<br>1 <0.<br>1 <0.<br>1 <0.<br>1 <0. | 1 <0.<br>1 <0.<br>1 <0.<br>1 <0.<br>1 <0.<br>1 <0.<br>1 <0. | 1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1 | 1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1 | 1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1<br>1 <0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <50<br><50<br><50<br><50<br><50<br><50<br><50<br><50 | <100<br><100<br><100<br><100<br><100<br><100 | <100<br><100<br><100<br><100<br><100 | <50            | <25 · <25 · <25 · <25 · <25 · <25 · <25 · <25 · < | <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 <: <50 50 <: <50 </</th <th>100<br/>100<br/>100<br/>100<br/>100<br/>100<br/>100<br/>100<br/>100</th> | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |
| Number of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 8                                                            | 8                                      | 8                                                            | 8                                        | 8                                        | 8                                       | 8                                            | 8              | 8                                            | 8                                            | 8                                                                    | 8                                            | 8                                            | 8                                            | 8                                            | 8                                            | 8                    | 8                                            | 8                                            | 8 8                                                                                                      | 8                                                           | 8                                                           | 8                                                        | 8                                                        | 8                                                                  | 8                                            | 8                                                            | 8                                                            | T 8                                                  | 8                                            | 8                                    | 8              | 8                                                 | 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                           |
| Number of Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 0                                                            | 0                                      | 0                                                            | 0                                        | 0                                        | 0                                       | 0                                            | 0              | 0                                            | 0                                            | 0                                                                    | 0                                            | 0                                            | 0                                            | 0                                            | 0                                            | 0                    | 0                                            |                                              | 0 0                                                                                                      |                                                             |                                                             |                                                          | 0                                                        | 0                                                                  | 0                                            | 0                                                            | 0                                                            | 0                                                    | 0                                            |                                      | _              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                           |
| Minimum Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | <0.2                                                         | _                                      | <0.5                                                         | <2                                       | <1                                       | <25                                     | <0.1                                         | <0.1           |                                              | _                                            | <0.05                                                                |                                              | <0.1                                         |                                              |                                              | -                                            | -                    | _                                            |                                              | 0.1 <0.                                                                                                  | _                                                           | _                                                           |                                                          | -                                                        | _                                                                  | <0.1                                         | <0.1                                                         | <0.1                                                         | <50                                                  | -                                            |                                      |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                         |
| Minimum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | _                                                            |                                        | ND                                                           | ND                                       | ND                                       | ND                                      | ND                                           | ND             | ND                                           | ND                                           | ND                                                                   | ND                                           | ND                                           | ND                                           |                                              | ND                                           | _                    |                                              |                                              | ND ND                                                                                                    |                                                             | -                                                           |                                                          | _                                                        | _                                                                  | ND                                           | ND                                                           | ND                                                           | ND                                                   |                                              |                                      | _              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1D                                                          |
| Maximum Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | <0.2                                                         | $\overline{}$                          | <0.5                                                         | <2                                       | <1                                       | <25                                     |                                              | _              |                                              |                                              |                                                                      | <0.2                                         |                                              | _                                            |                                              | _                                            |                      |                                              |                                              | 0.1 <0.                                                                                                  |                                                             |                                                             | _                                                        | _                                                        |                                                                    |                                              | <0.1                                                         | <0.1                                                         | _                                                    |                                              |                                      |                |                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                         |
| Maximum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | ND                                                           | ND                                     | ND                                                           | ND                                       | ND                                       | ND                                      | ND                                           | ND             | ND                                           | ND                                           | ND                                                                   | ND                                           | ND                                           | ND                                           | ND                                           | ND                                           | ND                   | ND                                           |                                              | ND ND                                                                                                    | -                                                           |                                                             | _                                                        | ND                                                       |                                                                    | ND                                           | ND                                                           | ND                                                           | ND                                                   | ND                                           |                                      |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1D                                                          |
| Average Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                              |                                        | 0.25                                                         | 1                                        | 0.5                                      | 13                                      |                                              | _              |                                              |                                              | 0.025                                                                | _                                            |                                              | _                                            |                                              | _                                            |                      |                                              |                                              | 0.05 0.0                                                                                                 |                                                             |                                                             | _                                                        | _                                                        |                                                                    | 0.05                                         | 0.05                                                         | 0.05                                                         | 25                                                   |                                              |                                      |                |                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                          |
| Median Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                              |                                        | 0.25                                                         | 1                                        |                                          | 12.5                                    | 0.05                                         | _              |                                              |                                              | 0.025                                                                | _                                            | 0.05                                         |                                              |                                              | _                                            | -                    | -                                            |                                              | 0.05 0.0                                                                                                 | -                                                           | -                                                           | _                                                        | -                                                        | _                                                                  | 0.05                                         | 0.05                                                         | 0.05                                                         | 25                                                   | 50                                           |                                      | _              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                          |
| Standard Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 0                                                            | 0                                      | 0                                                            | 0                                        | 0                                        | 0                                       | 0                                            | 0              | 0                                            | 0                                            | 0                                                                    | 0                                            | 0                                            | 0                                            | 0                                            | 0                                            | 0                    | 0                                            |                                              | 0 0                                                                                                      |                                                             |                                                             | _                                                        | 0                                                        | 0.03                                                               | 0                                            | 0                                                            | 0                                                            | 0                                                    | 0                                            |                                      |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                           |
| Number of Guideline Exceedances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 0                                                            | 0                                      | 0                                                            | 0                                        | 0                                        | 0                                       | 0                                            | 0              | 0                                            | 0                                            | 0                                                                    | 0                                            | 0                                            | 0                                            | 0                                            | 0                                            | 0                    | 0                                            |                                              | 0 0                                                                                                      | _                                                           | _                                                           |                                                          | _                                                        | _                                                                  | 0                                            | 0                                                            | 0                                                            | 0                                                    | 0                                            |                                      |                |                                                   | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                           |
| Number of Guideline Exceedances(Detects Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                              | 0                                      | 0                                                            | 0                                        | 0                                        | 0                                       | 0                                            | 0              | 0                                            | 0                                            | 0                                                                    | _                                            | 0                                            | _                                            | 0                                            | 0                                            | 0                    | 0                                            |                                              | 0 0                                                                                                      |                                                             |                                                             | _                                                        | _                                                        |                                                                    | 0                                            | 0                                                            | 0                                                            | 0                                                    |                                              |                                      |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                           |
| Transper of Guideline Exceedances(Detects Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | U                                                            | U                                      |                                                              |                                          |                                          | _ 0                                     |                                              | U              |                                              | U                                            | U                                                                    |                                              |                                              | . 0                                          | U                                            | 1 0                                          | U                    | 0                                            | 0                                            | 0   0                                                                                                    | 0                                                           | 0                                                           | 0                                                        | 0                                                        | 0                                                                  | 0                                            | 1 0                                                          | 1 0                                                          | 1 0                                                  |                                              | J                                    | 0              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |

Universal Property Group Pty Ltd Detailed Site Investigation



| martens                                                  |         |       |         |                   |         |                 |                   |       |       |          |             |           |              |               |                     |        |                 |                 |            |                    |              |                  |                 |              |                     |          |            |            |        |              |           |        |
|----------------------------------------------------------|---------|-------|---------|-------------------|---------|-----------------|-------------------|-------|-------|----------|-------------|-----------|--------------|---------------|---------------------|--------|-----------------|-----------------|------------|--------------------|--------------|------------------|-----------------|--------------|---------------------|----------|------------|------------|--------|--------------|-----------|--------|
|                                                          |         |       |         |                   |         |                 |                   |       | (     | Organoch | ilorine Pe  | esticides | S            |               |                     |        |                 |                 |            |                    |              |                  |                 |              | Org                 | anopho:  | sphorous   | s Pesticio | des    |              |           |        |
| consulting engineers                                     | 4,4-DDE | а-внс | Aldrin  | Aldrin + Dieldrin | р-внс   | Chlordane (cis) | Chlordane (trans) | д-внс | aga   | DDT      | DDT+DDE+DDD | Dieldrin  | Endosulfan I | Endosulfan II | Endosulfan sulphate | Endrin | Endrin aldehyde | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Methoxychlor | Azinophos methyl | Bromophos-ethyl | Chlorpyrifos | Chlorpyrifos-methyl | Diazinon | Dichlorvos | Dimethoate | Ethion | Fenitrothion | Malathion | Ronnel |
|                                                          | mg/kg   | mg/kg | mg/kg m | ıg/kg m           | ng/kg r | ng/kg r         | ng/kg             | mg/kg | mg/kg | mg/kg    | mg/kg       | mg/kg     | mg/kg        | mg/kg         | mg/kg               | mg/kg  | mg/kg           | mg/kg           | mg/kg      | mg/kg              | ng/kg        | mg/kg            | mg/kg           | mg/kg        | mg/kg               | mg/kg    | mg/kg      | mg/kg      | mg/kg  | mg/kg        | mg/kg m   | g/kg   |
| EQL                                                      | 0.1     | 0.1   | 0.1     | C                 | 0.1     | 0.1             | 0.1               | 0.1   | 0.1   | 0.1      |             | 0.1       | 0.1          | 0.1           | 0.1                 | 0.1    | 0.1             | 0.1             | 0.1        | 0.1                | 0.1          | 0.1              | 0.1             | 0.1          | 0.1                 | 0.1      | 0.1        | 0.1        | 0.1    | 0.1          | 0.1       | 0.1    |
| NEPM 2013 Table 1A(1) HILs Res A Soil                    |         |       |         | 6                 |         |                 |                   |       |       |          | 240         |           |              |               |                     | 10     |                 |                 | 6          |                    | 300          |                  |                 | 160          |                     |          |            |            |        |              |           |        |
| NEPM 2013 Table 1A(1) HILs Res A Soil (Composite Values) |         |       |         | 2                 |         |                 |                   |       |       |          | 80          |           |              |               |                     | 3      |                 |                 | 2          |                    | 100          |                  |                 | 53           |                     |          |            |            |        |              |           |        |

| Field_ID   | LocCode    | Sample_Depth_Range | Sampled_Date-Time Matrix_Description |      |       |       |      |       |      |      |      |       |       |      |       |       |      |       |      |       |      |       |       |       |       |      |      |      |      |      |      |       |       |      |       |
|------------|------------|--------------------|--------------------------------------|------|-------|-------|------|-------|------|------|------|-------|-------|------|-------|-------|------|-------|------|-------|------|-------|-------|-------|-------|------|------|------|------|------|------|-------|-------|------|-------|
| 4996/TP201 | 4996/TP201 | 0.5                | 7/10/2015                            | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1  | <0.1 | <0.1  | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | <0.1  |
| 4996/TP202 | 4996/TP202 | 0.15               | 7/10/2015                            | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | <0.1  | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | <0.1  |
| 4996/TP203 | 4996/TP203 | 0.15               | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 |
| 4996/TP204 | 4996/TP204 | 0.15               | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | <0.1  |
| 4996/TP207 | 4996/TP207 | 0.15               | 7/10/2015                            | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | <0.1  |
| 4996/TP208 | 4996/TP208 | 0.15               | 7/10/2015                            | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1  | <0.1 | <0.1  | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | <0.1  |
| 4996/TP210 | 4996/TP210 | 0.15               | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 |
| 4996/TP212 | 4996/TP212 | 0.15               | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 |
| C1         | C1         | 0.1                | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | < 0.1 |
| C10        | C10        | 0.1                | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | < 0.1 |
| C11        | C11        | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 |
| C12        | C12        | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | < 0.1 |
| C2         | C2         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | < 0.1 | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | < 0.1 |
| C3         | C3         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | < 0.1 | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | < 0.1 |
| C4         | C4         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | < 0.1 | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 |
| C5         | C5         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | <0.1  |
| C6         | C6         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | <0.1  |
| C7         | C7         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | <0.1  | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | <0.1  | <0.1  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 | <0.1  |
| C8         | C8         | 0.1                | 7/10/2015                            | <0.1 | <0.1  | < 0.1 | <0.2 | <0.1  | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.2 | < 0.1 | <0.1  | <0.1 | < 0.1 | <0.1 | <0.1  | <0.1 | <0.1  | <0.1  | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 |
| C9         | C9         | 0.1                | 7/10/2015                            | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.2 | < 0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1  | < 0.1 | <0.1 | < 0.1 |

| Statistical Summary   |  |
|-----------------------|--|
| Number of Results     |  |
| Number of Detects     |  |
| Minimum Concentration |  |

| Statistical Sullillary                        |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Number of Results                             | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   | 20   |
| Number of Detects                             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Minimum Concentration                         | <0.1 | <0.1 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| Minimum Detect                                | ND   |
| Maximum Concentration                         | <0.1 | <0.1 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
| Maximum Detect                                | ND   |
| Average Concentration                         | 0.05 | 0.05 | 0.05 | 0.1  | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.1  | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| Median Concentration                          | 0.05 | 0.05 | 0.05 | 0.1  | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.1  | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| Standard Deviation                            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Number of Guideline Exceedances               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Number of Guideline Exceedances(Detects Only) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

12 Attachment C – Laboratory Analytical Certificates and Chain of Custody Documentation





email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 135605

Client:

Martens & Associates Pty Ltd Suite 201, 20 George St Hornsby NSW 2077

Attention: Ben McGiffin

Sample log in details:

Your Reference: P1504996COC01V01, South Werrington

No. of samples: 82 Soils

Date samples received / completed instructions received 08/10/2015 / 08/10/2015

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 15/10/15 / 13/10/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

# **Results Approved By:**

Jacinta/Hurst Laboratory Manager

Envirolab Reference: 135605 Revision No: R 00



| VTDH/C6 C10\/DTEVNin Soil      |        |            |            |            |            |            |
|--------------------------------|--------|------------|------------|------------|------------|------------|
| vTRH(C6-C10)/BTEXN in Soil     | LINUTO | 105005 50  | 405005 50  | 105005 50  | 405005.04  | 405005.00  |
| Our Reference:                 | UNITS  | 135605-52  | 135605-56  | 135605-59  | 135605-61  | 135605-63  |
| Your Reference                 |        | 4996/TP201 | 4996/TP202 | 4996/TP203 | 4996/TP204 | 4996/TP207 |
| Depth                          |        | 0.5        | 0.15       | 0.15       | 0.15       | 0.15       |
| Composite Reference            |        | -          | -          | -          | -          | -          |
| Date Sampled                   |        | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                 |        | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -      | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                  | -      | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 |
| TRHC6 - C9                     | mg/kg  | <25        | <25        | <25        | <25        | <25        |
| TRHC6 - C10                    | mg/kg  | <25        | <25        | <25        | <25        | <25        |
| vTPHC6 - C10 less BTEX (F1)    | mg/kg  | <25        | <25        | <25        | <25        | <25        |
| Benzene                        | mg/kg  | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Toluene                        | mg/kg  | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethylbenzene                   | mg/kg  | <1         | <1         | <1         | <1         | <1         |
| m+p-xylene                     | mg/kg  | <2         | <2         | <2         | <2         | <2         |
| o-Xylene                       | mg/kg  | <1         | <1         | <1         | <1         | <1         |
| naphthalene                    | mg/kg  | <1         | <1         | <1         | <1         | <1         |
| Surrogate aaa-Trifluorotoluene | %      | 96         | 99         | 94         | 98         | 100        |

| vTRH(C6-C10)/BTEXN in Soil     |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 135605-65  | 135605-69  | 135605-74  | 135605-77  | 135605-78  |
| Your Reference                 |       | 4996/TP208 | 4996/TP210 | 4996/TP212 | TS         | TS         |
| Depth                          |       | 0.15       | 0.15       | 0.15       | -          | -          |
| Composite Reference            |       | -          | -          | -          | -          | -          |
| Date Sampled                   |       | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                  | -     | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 |
| TRHC6 - C9                     | mg/kg | <25        | <25        | <25        | [NA]       | [NA]       |
| TRHC6 - C10                    | mg/kg | <25        | <25        | <25        | [NA]       | [NA]       |
| vTPHC6 - C10 less BTEX (F1)    | mg/kg | <25        | <25        | <25        | [NA]       | [NA]       |
| Benzene                        | mg/kg | <0.2       | <0.2       | <0.2       | 99%        | 97%        |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | 98%        | 97%        |
| Ethylbenzene                   | mg/kg | <1         | <1         | <1         | 97%        | 97%        |
| m+p-xylene                     | mg/kg | <2         | <2         | <2         | 99%        | 96%        |
| o-Xylene                       | mg/kg | <1         | <1         | <1         | 98%        | 98%        |
| naphthalene                    | mg/kg | <1         | <1         | <1         | [NA]       | [NA]       |
| Surrogate aaa-Trifluorotoluene | %     | 98         | 97         | 99         | 101        | 106        |

Envirolab Reference: 135605 Revision No: R 00 Page 2 of 30

# Client Reference: P1504996COC01V01, South Werrington

| svTRH (C10-C40) in Soil                |        |            |            |            |            |            |
|----------------------------------------|--------|------------|------------|------------|------------|------------|
| , ,                                    | LINITO | 40ECOE EO  | 425005 FC  | 425C05 50  | 40EC0E C4  | 105005 00  |
| Our Reference:                         | UNITS  | 135605-52  | 135605-56  | 135605-59  | 135605-61  | 135605-63  |
| Your Reference                         |        | 4996/TP201 | 4996/TP202 | 4996/TP203 | 4996/TP204 | 4996/TP207 |
| Depth                                  |        | 0.5        | 0.15       | 0.15       | 0.15       | 0.15       |
| Composite Reference                    |        | -          | -          | -          | -          | -          |
| Date Sampled                           |        | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                         |        | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                         | -      | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                          | -      | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| TRHC10 - C14                           | mg/kg  | <50        | <50        | <50        | <50        | <50        |
| TRHC 15 - C28                          | mg/kg  | <100       | <100       | <100       | <100       | <100       |
| TRHC29 - C36                           | mg/kg  | <100       | <100       | <100       | <100       | <100       |
| TRH>C10-C16                            | mg/kg  | <50        | <50        | <50        | <50        | <50        |
| TRH>C10 - C16 less Naphthalene<br>(F2) | mg/kg  | <50        | <50        | <50        | <50        | <50        |
| TRH>C16-C34                            | mg/kg  | <100       | <100       | <100       | <100       | <100       |
| TRH>C34-C40                            | mg/kg  | <100       | <100       | <100       | <100       | <100       |
| Surrogate o-Terphenyl                  | %      | 90         | 91         | 91         | 91         | 92         |

| svTRH (C10-C40) in Soil                |       |            |            |            |
|----------------------------------------|-------|------------|------------|------------|
| Our Reference:                         | UNITS | 135605-65  | 135605-69  | 135605-74  |
| Your Reference                         |       | 4996/TP208 | 4996/TP210 | 4996/TP212 |
| Depth                                  |       | 0.15       | 0.15       | 0.15       |
| Composite Reference                    |       | -          | -          | -          |
| Date Sampled                           |       | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                         |       | Soil       | Soil       | Soil       |
| Date extracted                         | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                          | -     | 09/10/2015 | 09/10/2015 | 10/10/2015 |
| TRHC10 - C14                           | mg/kg | <50        | <50        | <50        |
| TRHC 15 - C28                          | mg/kg | <100       | <100       | <100       |
| TRHC29 - C36                           | mg/kg | <100       | <100       | <100       |
| TRH>C10-C16                            | mg/kg | <50        | <50        | <50        |
| TRH>C10 - C16 less Naphthalene<br>(F2) | mg/kg | <50        | <50        | <50        |
| TRH>C16-C34                            | mg/kg | <100       | <100       | <100       |
| TRH>C34-C40                            | mg/kg | <100       | <100       | <100       |
| Surrogate o-Terphenyl                  | %     | 95         | 92         | 93         |

Envirolab Reference: 135605 Revision No: R 00 Page 3 of 30

# Client Reference: P1504996COC01V01, South Werrington

| PAHs in Soil                   |       |                   |                   |                   |                   |                   |
|--------------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:                 | UNITS | 135605-52         | 135605-56         | 135605-59         | 135605-61         | 135605-63         |
| Your Reference                 |       | 4996/TP201        | 4996/TP202        | 4996/TP203        | 4996/TP204        | 4996/TP207        |
| Depth                          |       | 0.5               | 0.15              | 0.15              | 0.15              | 0.15              |
| Composite Reference            |       | -                 | -                 | -                 | -                 | -                 |
| Date Sampled Type of sample    |       | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil |
|                                |       |                   |                   |                   |                   |                   |
| Date extracted                 | -     | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        |
| Date analysed                  | -     | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        |
| Naphthalene                    | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Acenaphthylene                 | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Acenaphthene                   | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Fluorene                       | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Phenanthrene                   | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Anthracene                     | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Fluoranthene                   | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Pyrene                         | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Benzo(a)anthracene             | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Chrysene                       | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Benzo(a)pyrene                 | mg/kg | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Benzo(g,h,i)perylene           | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Total Positive PAHs            | mg/kg | NIL(+)VE          | NIL(+)VE          | NIL(+)VE          | NIL(+)VE          | NIL(+)VE          |
| Surrogate p-Terphenyl-d14      | %     | 93                | 95                | 95                | 99                | 99                |

Envirolab Reference: 135605 Revision No: R 00

Document Set ID: 9820376 Version: 1, Version Date: 24/11/2021

| PAHs in Soil                   |       |                   |                   |                   |
|--------------------------------|-------|-------------------|-------------------|-------------------|
| Our Reference:                 | UNITS | 135605-65         | 135605-69         | 135605-74         |
| Your Reference                 |       | 4996/TP208        | 4996/TP210        | 4996/TP212        |
| Depth                          |       | 0.15              | 0.15              | 0.15              |
| Composite Reference            |       | -                 | -                 | -                 |
| Date Sampled Type of sample    |       | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil |
|                                |       |                   |                   |                   |
| Date extracted                 | -     | 09/10/2015        | 09/10/2015        | 09/10/2015        |
| Date analysed                  | -     | 09/10/2015        | 09/10/2015        | 09/10/2015        |
| Naphthalene                    | mg/kg | <0.1              | <0.1              | <0.1              |
| Acenaphthylene                 | mg/kg | <0.1              | <0.1              | <0.1              |
| Acenaphthene                   | mg/kg | <0.1              | <0.1              | <0.1              |
| Fluorene                       | mg/kg | <0.1              | <0.1              | <0.1              |
| Phenanthrene                   | mg/kg | <0.1              | <0.1              | <0.1              |
| Anthracene                     | mg/kg | <0.1              | <0.1              | <0.1              |
| Fluoranthene                   | mg/kg | <0.1              | <0.1              | <0.1              |
| Pyrene                         | mg/kg | <0.1              | <0.1              | <0.1              |
| Benzo(a)anthracene             | mg/kg | <0.1              | <0.1              | <0.1              |
| Chrysene                       | mg/kg | <0.1              | <0.1              | <0.1              |
| Benzo(b,j+k)fluoranthene       | mg/kg | <0.2              | <0.2              | <0.2              |
| Benzo(a)pyrene                 | mg/kg | <0.05             | <0.05             | <0.05             |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1              | <0.1              | <0.1              |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1              | <0.1              | <0.1              |
| Benzo(g,h,i)perylene           | mg/kg | <0.1              | <0.1              | <0.1              |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5              | <0.5              | <0.5              |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5              | <0.5              | <0.5              |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5              | <0.5              | <0.5              |
| Total Positive PAHs            | mg/kg | NIL(+)VE          | NIL(+)VE          | NIL(+)VE          |
| Surrogate p-Terphenyl-d14      | %     | 94                | 96                | 86                |

Envirolab Reference: 135605 Revision No: R 00

| Organochlorine Pesticides in soil |            |                   |                   |                   |                   |                   |
|-----------------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:                    | UNITS      | 135605-37         | 135605-38         | 135605-39         | 135605-40         | 135605-41         |
| Your Reference                    |            | C1                | C2                | C3                | C4                | C5                |
| Depth                             |            | 0.1               | 0.1               | 0.1               | 0.1               | 0.1               |
| Composite Reference               |            | 1+2+3             | 4+5+6             | 7+8+9             | 10+11+12          | 13+14+15          |
| Date Sampled<br>Type of sample    |            | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil |
|                                   |            |                   |                   |                   |                   |                   |
| Date extracted                    | -          | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        |
| Date analysed                     | -          | 10/10/2015        | 10/10/2015        | 10/10/2015        | 10/10/2015        | 10/10/2015        |
| HCB                               | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| alpha-BHC                         | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| gamma-BHC                         | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| beta-BHC                          | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Heptachlor                        | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| delta-BHC                         | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Aldrin                            | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Heptachlor Epoxide                | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| gamma-Chlordane                   | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| alpha-chlordane                   | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endosulfan I                      | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| pp-DDE                            | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Dieldrin                          | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endrin                            | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| pp-DDD                            | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endosulfan II                     | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| pp-DDT                            | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endrin Aldehyde                   | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endosulfan Sulphate               | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Methoxychlor                      | mg/kg      | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Surrogate TCMX                    | <u>9</u> 9 | 93                | 92                | 94                | 97                | 98                |

Envirolab Reference: 135605 Revision No: R 00

| Organochlorine Pesticides in soil |       |                   |                   |                   |                   |                   |
|-----------------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:                    | UNITS | 135605-42         | 135605-43         | 135605-44         | 135605-45         | 135605-46         |
| Your Reference                    |       | C6                | C7                | C8                | C9                | C10               |
| Depth                             |       | 0.1               | 0.1               | 0.1               | 0.1               | 0.1               |
| Composite Reference               |       | 16+17+18          | 19+20+21          | 22+23+24          | 25+26+27          | 28+29+30          |
| Date Sampled Type of sample       |       | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/2015<br>Soil |
|                                   |       |                   |                   |                   |                   |                   |
| Date extracted                    | -     | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        | 09/10/2015        |
| Date analysed                     | -     | 10/10/2015        | 10/10/2015        | 10/10/2015        | 10/10/2015        | 10/10/2015        |
| HCB                               | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| alpha-BHC                         | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| gamma-BHC                         | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| beta-BHC                          | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Heptachlor                        | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| delta-BHC                         | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Aldrin                            | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Heptachlor Epoxide                | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| gamma-Chlordane                   | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| alpha-chlordane                   | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endosulfan I                      | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| pp-DDE                            | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Dieldrin                          | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endrin                            | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| pp-DDD                            | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endosulfan II                     | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| pp-DDT                            | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endrin Aldehyde                   | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Endosulfan Sulphate               | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Methoxychlor                      | mg/kg | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Surrogate TCMX                    | %     | 93                | 97                | 94                | 96                | 93                |

Envirolab Reference: 135605 Revision No: R 00

| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                    | UNITS | 135605-47  | 135605-48  | 135605-52  | 135605-56  | 135605-59  |
| Your Reference                    |       | C11        | C12        | 4996/TP201 | 4996/TP202 | 4996/TP203 |
| Depth                             |       | 0.1        | 0.1        | 0.5        | 0.15       | 0.15       |
| Composite Reference               |       | 31+32+33   | 34+35+36   | -          | -          | -          |
| Date Sampled                      |       | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                     | -     | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 |
| HCB                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                    | %     | 93         | 95         | 95         | 95         | 94         |

Envirolab Reference: 135605 Revision No: R 00

| Organochlorine Pesticides in soil |       |                         |                         |                         |                         |                         |
|-----------------------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Our Reference:<br>Your Reference  | UNITS | 135605-61<br>4996/TP204 | 135605-63<br>4996/TP207 | 135605-65<br>4996/TP208 | 135605-69<br>4996/TP210 | 135605-74<br>4996/TP212 |
| Depth                             |       | 0.15                    | 0.15                    | 0.15                    | 0.15                    | 0.15                    |
| Composite Reference               |       | -                       | -                       | -                       | -                       | -                       |
| Date Sampled Type of sample       |       | 7/10/2015<br>Soil       | 7/10/2015<br>Soil       | 7/10/2015<br>Soil       | 7/10/2015<br>Soil       | 7/10/2015<br>Soil       |
|                                   |       |                         |                         |                         |                         |                         |
| Date extracted                    | -     | 09/10/2015              | 09/10/2015              | 09/10/2015              | 09/10/2015              | 09/10/2015              |
| Date analysed                     | -     | 10/10/2015              | 10/10/2015              | 10/10/2015              | 10/10/2015              | 10/10/2015              |
| HCB                               | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| alpha-BHC                         | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| gamma-BHC                         | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| beta-BHC                          | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Heptachlor                        | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| delta-BHC                         | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Aldrin                            | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Heptachlor Epoxide                | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| gamma-Chlordane                   | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| alpha-chlordane                   | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Endosulfan I                      | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| pp-DDE                            | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Dieldrin                          | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Endrin                            | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| pp-DDD                            | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Endosulfan II                     | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| pp-DDT                            | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Endrin Aldehyde                   | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Endosulfan Sulphate               | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Methoxychlor                      | mg/kg | <0.1                    | <0.1                    | <0.1                    | <0.1                    | <0.1                    |
| Surrogate TCMX                    | %     | 94                      | 94                      | 96                      | 94                      | 96                      |

Envirolab Reference: 135605 Revision No: R 00

| Organophosphorus Pesticides         |       |                       |                       |                       |                       |                   |
|-------------------------------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|
| Our Reference:                      | UNITS | 135605-37             | 135605-38             | 135605-39             | 135605-40             | 135605            |
| Your Reference                      |       | C1                    | C2                    | C3                    | C4                    | C5                |
| Depth                               |       | 0.1                   | 0.1                   | 0.1                   | 0.1                   | 0.1               |
| Composite Reference<br>Date Sampled |       | 1+2+3<br>7/10/2015    | 4+5+6<br>7/10/2015    | 7+8+9<br>7/10/2015    | 10+11+12<br>7/10/2015 | 13+14+<br>7/10/20 |
| Type of sample                      |       | Soil                  | Soil                  | Soil                  | Soil                  | Soil              |
| Date extracted                      | _     | 09/10/2015            | 09/10/2015            | 09/10/2015            | 09/10/2015            | 09/10/2           |
| Date analysed                       | _     | 10/10/2015            | 10/10/2015            | 10/10/2015            | 10/10/2015            | 10/10/20          |
| Azinphos-methyl (Guthion)           | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Bromophos-ethyl                     | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Chlorpyriphos                       | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Chlorpyriphos-methyl                | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Diazinon                            | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Dichlorvos                          | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Dimethoate                          | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Ethion                              | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Fenitrothion                        | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Malathion                           | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Parathion                           | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Ronnel                              | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Surrogate TCMX                      | %     | 93                    | 92                    | 94                    | 97                    | 98                |
|                                     |       |                       |                       |                       |                       |                   |
| Organophosphorus Pesticides         |       |                       |                       |                       |                       |                   |
| Our Reference:                      | UNITS | 135605-42             | 135605-43             | 135605-44             | 135605-45             | 135605            |
| Your Reference                      |       | C6                    | C7                    | C8                    | C9                    | C10               |
| Depth<br>Composite Reference        |       | 0.1                   | 0.1                   | 0.1                   | 0.1                   | 0.1               |
| Composite Reference Date Sampled    |       | 16+17+18<br>7/10/2015 | 19+20+21<br>7/10/2015 | 22+23+24<br>7/10/2015 | 25+26+27<br>7/10/2015 | 28+29+<br>7/10/20 |
| Type of sample                      |       | Soil                  | Soil                  | Soil                  | Soil                  | Soil              |
| Date extracted                      |       | 09/10/2015            | 09/10/2015            | 09/10/2015            | 09/10/2015            | 09/10/20          |
| Date analysed                       | -     | 10/10/2015            | 10/10/2015            | 10/10/2015            | 10/10/2015            | 10/10/2           |
| Azinphos-methyl (Guthion)           | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Bromophos-ethyl                     | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Chlorpyriphos                       | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Chlorpyriphos-methyl                | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Diazinon                            | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Dichlorvos                          | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Dimethoate                          | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Ethion                              | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Fenitrothion                        | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Malathion                           | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Parathion                           | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
| Ronnel                              | mg/kg | <0.1                  | <0.1                  | <0.1                  | <0.1                  | <0.1              |
|                                     |       | 1                     | 1                     | 1                     |                       | · · · · ·         |

Envirolab Reference: 135605 Revision No: R 00

Surrogate TCMX

%

93

97

94

96

Page 10 of 30

93

| Organophosphorus Pesticides      |       |                   |                       |                   |                   |                       |
|----------------------------------|-------|-------------------|-----------------------|-------------------|-------------------|-----------------------|
| Our Reference:                   | UNITS | 135605-47         | 135605-48             | 135605-52         | 135605-56         | 135605-5              |
| Your Reference                   |       | C11               | C12                   | 4996/TP201        | 4996/TP202        | 4996/TP20             |
| Depth                            |       | 0.1               | 0.1                   | 0.5               | 0.15              | 0.15                  |
| Composite Reference Date Sampled |       | 31+32+33          | 34+35+36<br>7/10/2015 | -<br>7/10/2015    | -<br>7/10/2015    | -<br>7/10/201         |
| Type of sample                   |       | 7/10/2015<br>Soil | 7/10/2015<br>Soil     | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/201<br>Soil      |
| Date extracted                   | -     | 09/10/2015        | 09/10/2015            | 09/10/2015        | 09/10/2015        | 09/10/201             |
| Date analysed                    | -     | 10/10/2015        | 10/10/2015            | 10/10/2015        | 10/10/2015        | 10/10/201             |
| Azinphos-methyl (Guthion)        | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Bromophos-ethyl                  | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Chlorpyriphos                    | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Chlorpyriphos-methyl             | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Diazinon                         | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Dichlorvos                       | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Dimethoate                       | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Ethion                           | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Fenitrothion                     | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Malathion                        | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Parathion                        | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Ronnel                           | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Surrogate TCMX                   | %     | 93                | 95                    | 95                | 95                | 94                    |
| Ourrogate TOWK                   | 70    |                   |                       |                   |                   | 01                    |
| Organophosphorus Pesticides      |       |                   |                       |                   |                   |                       |
| Our Reference:                   | UNITS | 135605-61         | 135605-63             | 135605-65         | 135605-69         | 135605-7              |
| Your Reference                   |       | 4996/TP204        | 4996/TP207            | 4996/TP208        | 4996/TP210        | 4996/TP2              |
| Depth                            |       | 0.15              | 0.15                  | 0.15              | 0.15              | 0.15                  |
| Composite Reference              |       | -                 | -                     | -<br>7/10/2015    | -                 | -                     |
| Date Sampled Type of sample      |       | 7/10/2015<br>Soil | 7/10/2015<br>Soil     | 7/10/2015<br>Soil | 7/10/2015<br>Soil | 7/10/201<br>Soil      |
| Date extracted                   | -     | 09/10/2015        | 09/10/2015            | 09/10/2015        | 09/10/2015        | 09/10/20 <sup>-</sup> |
| Date analysed                    | -     | 10/10/2015        | 10/10/2015            | 10/10/2015        | 10/10/2015        | 10/10/20              |
| Azinphos-methyl (Guthion)        | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Bromophos-ethyl                  | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Chlorpyriphos                    | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Chlorpyriphos-methyl             | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Diazinon                         | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Dichlorvos                       | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Dimethoate                       | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
|                                  |       |                   |                       |                   |                   |                       |
| Ethion                           | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Fenitrothion                     | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
| Malathion                        | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |
|                                  | I     |                   | · ~0 1                | ı ~0.1            | -0.4              |                       |
| Parathion                        | mg/kg | <0.1              | <0.1                  | <0.1              | <0.1              | <0.1                  |

Envirolab Reference: 135605 Revision No: R 00

Ronnel

Surrogate TCMX

mg/kg

%

<0.1

94

<0.1

94

<0.1

96

<0.1

94

Page 11 of 30

<0.1

96

| PCBs in Soil        |       |            |            |            |            |            |
|---------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:      | UNITS | 135605-52  | 135605-56  | 135605-59  | 135605-61  | 135605-63  |
| Your Reference      |       | 4996/TP201 | 4996/TP202 | 4996/TP203 | 4996/TP204 | 4996/TP207 |
| Depth               |       | 0.5        | 0.15       | 0.15       | 0.15       | 0.15       |
| Composite Reference |       | -          | -          | -          | -          | -          |
| Date Sampled        |       | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample      |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted      | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed       | -     | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 | 10/10/2015 |
| Aroclor 1016        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1221        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1232        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1242        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1248        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1254        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aroclor 1260        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX     | %     | 95         | 95         | 94         | 94         | 94         |

| PCBs in Soil        |       |            |            |            |
|---------------------|-------|------------|------------|------------|
| Our Reference:      | UNITS | 135605-65  | 135605-69  | 135605-74  |
| Your Reference      |       | 4996/TP208 | 4996/TP210 | 4996/TP212 |
| Depth               |       | 0.15       | 0.15       | 0.15       |
| Composite Reference |       | -          | -          | -          |
| Date Sampled        |       | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample      |       | Soil       | Soil       | Soil       |
| Date extracted      | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed       | -     | 10/10/2015 | 10/10/2015 | 10/10/2015 |
| Aroclor 1016        | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1221        | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1232        | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1242        | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1248        | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1254        | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1260        | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX     | %     | 96         | 94         | 96         |

Envirolab Reference: 135605 Revision No: R 00 Page 12 of 30

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
|                                 |       |            |            |            |            |            |
| Our Reference:                  | UNITS | 135605-37  | 135605-38  | 135605-39  | 135605-40  | 135605-41  |
| Your Reference                  |       | C1         | C2         | C3         | C4         | C5         |
| Depth                           |       | 0.1        | 0.1        | 0.1        | 0.1        | 0.1        |
| Composite Reference             |       | 1+2+3      | 4+5+6      | 7+8+9      | 10+11+12   | 13+14+15   |
| Date Sampled                    |       | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                   | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Arsenic                         | mg/kg | 6          | 8          | 9          | <4         | 5          |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 19         | 32         | 18         | 16         | 16         |
| Copper                          | mg/kg | 11         | 9          | 22         | 8          | 14         |
| Lead                            | mg/kg | 33         | 24         | 22         | 18         | 19         |
| Mercury                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Nickel                          | mg/kg | 5          | 6          | 12         | 5          | 7          |
| Zinc                            | mg/kg | 44         | 30         | 54         | 19         | 33         |

| Acid Extractable metals in soil                 |       |                               |                               |                               |                               |                               |
|-------------------------------------------------|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Our Reference:                                  | UNITS | 135605-42                     | 135605-43                     | 135605-44                     | 135605-45                     | 135605-46                     |
| Your Reference                                  |       | C6                            | C7                            | C8                            | C9                            | C10                           |
| Depth                                           |       | 0.1                           | 0.1                           | 0.1                           | 0.1                           | 0.1                           |
| Composite Reference Date Sampled Type of sample |       | 16+17+18<br>7/10/2015<br>Soil | 19+20+21<br>7/10/2015<br>Soil | 22+23+24<br>7/10/2015<br>Soil | 25+26+27<br>7/10/2015<br>Soil | 28+29+30<br>7/10/2015<br>Soil |
| Date prepared                                   | -     | 09/10/2015                    | 09/10/2015                    | 09/10/2015                    | 09/10/2015                    | 09/10/2015                    |
| Date analysed                                   | -     | 09/10/2015                    | 09/10/2015                    | 09/10/2015                    | 09/10/2015                    | 09/10/2015                    |
| Arsenic                                         | mg/kg | 9                             | 8                             | 16                            | 8                             | 7                             |
| Cadmium                                         | mg/kg | <0.4                          | <0.4                          | <0.4                          | <0.4                          | <0.4                          |
| Chromium                                        | mg/kg | 36                            | 23                            | 21                            | 19                            | 15                            |
| Copper                                          | mg/kg | 10                            | 14                            | 32                            | 20                            | 26                            |
| Lead                                            | mg/kg | 29                            | 25                            | 33                            | 24                            | 21                            |
| Mercury                                         | mg/kg | <0.1                          | <0.1                          | <0.1                          | <0.1                          | <0.1                          |
| Nickel                                          | mg/kg | 7                             | 8                             | 8                             | 11                            | 12                            |
| Zinc                                            | mg/kg | 25                            | 28                            | 43                            | 38                            | 49                            |

Envirolab Reference: 135605 Revision No: R 00

| A sid Extrastable restals in sail |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Acid Extractable metals in soil   |       |            |            |            |            |            |
| Our Reference:                    | UNITS | 135605-47  | 135605-48  | 135605-52  | 135605-56  | 135605-59  |
| Your Reference                    |       | C11        | C12        | 4996/TP201 | 4996/TP202 | 4996/TP203 |
| Depth                             |       | 0.1        | 0.1        | 0.5        | 0.15       | 0.15       |
| Composite Reference               |       | 31+32+33   | 34+35+36   | -          | -          | -          |
| Date Sampled                      |       | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                     | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                     | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Arsenic                           | mg/kg | 8          | 8          | 4          | 6          | 7          |
| Cadmium                           | mg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                          | mg/kg | 16         | 19         | 20         | 20         | 20         |
| Copper                            | mg/kg | 24         | 14         | 12         | 11         | 14         |
| Lead                              | mg/kg | 22         | 24         | 10         | 29         | 31         |
| Mercury                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Nickel                            | mg/kg | 16         | 10         | 5          | 5          | 7          |
| Zinc                              | mg/kg | 45         | 27         | 10         | 53         | 43         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                  | UNITS | 135605-61  | 135605-63  | 135605-65  | 135605-69  | 135605-74  |
| Your Reference                  |       | 4996/TP204 | 4996/TP207 | 4996/TP208 | 4996/TP210 | 4996/TP212 |
| Depth                           |       | 0.15       | 0.15       | 0.15       | 0.15       | 0.15       |
| Composite Reference             |       | -          | -          | -          | -          | -          |
| Date Sampled                    |       | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  | 7/10/2015  |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Date analysed                   | -     | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 | 09/10/2015 |
| Arsenic                         | mg/kg | 11         | 7          | 5          | 7          | 10         |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 24         | 20         | 18         | 23         | 35         |
| Copper                          | mg/kg | 25         | 14         | 10         | 8          | 13         |
| Lead                            | mg/kg | 28         | 29         | 15         | 24         | 25         |
| Mercury                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Nickel                          | mg/kg | 6          | 7          | 7          | 5          | 8          |
| Zinc                            | mg/kg | 34         | 32         | 15         | 22         | 19         |

Envirolab Reference: 135605 Revision No: R 00

| Acid Extractable metals in soil |       |             |             |
|---------------------------------|-------|-------------|-------------|
| Our Reference:                  | UNITS | 135605-79   | 135605-82   |
| Your Reference                  |       | 4996/DUP101 | 4996/DUP104 |
| Depth                           |       | -           | -           |
| Composite Reference             |       | -           | -           |
| Date Sampled                    |       | 7/10/2015   | 7/10/2015   |
| Type of sample                  |       | Soil        | Soil        |
| Date prepared                   | -     | 09/10/2015  | 09/10/2015  |
| Date analysed                   | -     | 09/10/2015  | 09/10/2015  |
| Arsenic                         | mg/kg | 5           | 6           |
| Cadmium                         | mg/kg | <0.4        | <0.4        |
| Chromium                        | mg/kg | 19          | 22          |
| Copper                          | mg/kg | 11          | 14          |
| Lead                            | mg/kg | 19          | 16          |
| Mercury                         | mg/kg | <0.1        | <0.1        |
| Nickel                          | mg/kg | 6           | 7           |
| Zinc                            | mg/kg | 26          | 20          |

Envirolab Reference: 135605 Revision No: R 00

|                                                                                              | Chefft Refere |                                                           | 4990000011                                                | o 1, o o a a 11 o 1                                       | 9.0                                                       |                                                           |
|----------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Moisture Our Reference: Your Reference Depth Composite Reference Date Sampled Type of sample | UNITS         | 135605-37<br>C1<br>0.1<br>1+2+3<br>7/10/2015<br>Soil      | 135605-38<br>C2<br>0.1<br>4+5+6<br>7/10/2015<br>Soil      | 135605-39<br>C3<br>0.1<br>7+8+9<br>7/10/2015<br>Soil      | 135605-40<br>C4<br>0.1<br>10+11+12<br>7/10/2015<br>Soil   | 135605-41<br>C5<br>0.1<br>13+14+15<br>7/10/2015<br>Soil   |
| Date prepared  Date analysed  Moisture                                                       | -<br>-<br>%   | 9/10/2015<br>12/10/2015<br>13                             | 9/10/2015<br>12/10/2015<br>14                             | 9/10/2015<br>12/10/2015<br>17                             | 9/10/2015<br>12/10/2015<br>19                             | 9/10/2015<br>12/10/2015<br>26                             |
| Moisture Our Reference: Your Reference Depth Composite Reference Date Sampled Type of sample | UNITS         | 135605-42<br>C6<br>0.1<br>16+17+18<br>7/10/2015<br>Soil   | 135605-43<br>C7<br>0.1<br>19+20+21<br>7/10/2015<br>Soil   | 135605-44<br>C8<br>0.1<br>22+23+24<br>7/10/2015<br>Soil   | 135605-45<br>C9<br>0.1<br>25+26+27<br>7/10/2015<br>Soil   | 135605-46<br>C10<br>0.1<br>28+29+30<br>7/10/2015<br>Soil  |
| Date prepared  Date analysed  Moisture                                                       | -<br>-<br>%   | 9/10/2015<br>12/10/2015<br>13                             | 9/10/2015<br>12/10/2015<br>12                             | 9/10/2015<br>12/10/2015<br>10                             | 9/10/2015<br>12/10/2015<br>9.8                            | 9/10/2015<br>12/10/2015<br>21                             |
| Moisture Our Reference: Your Reference Depth Composite Reference Date Sampled Type of sample | UNITS         | 135605-47<br>C11<br>0.1<br>31+32+33<br>7/10/2015<br>Soil  | 135605-48<br>C12<br>0.1<br>34+35+36<br>7/10/2015<br>Soil  | 135605-52<br>4996/TP201<br>0.5<br>-<br>7/10/2015<br>Soil  | 135605-56<br>4996/TP202<br>0.15<br>-<br>7/10/2015<br>Soil | 135605-59<br>4996/TP203<br>0.15<br>-<br>7/10/2015<br>Soil |
| Date prepared  Date analysed  Moisture                                                       | -<br>-<br>%   | 9/10/2015<br>12/10/2015<br>18                             | 9/10/2015<br>12/10/2015<br>24                             | 9/10/2015<br>12/10/2015<br>19                             | 9/10/2015<br>12/10/2015<br>12                             | 9/10/2015<br>12/10/2015<br>16                             |
| Moisture Our Reference: Your Reference Depth Composite Reference Date Sampled Type of sample | UNITS         | 135605-61<br>4996/TP204<br>0.15<br>-<br>7/10/2015<br>Soil | 135605-63<br>4996/TP207<br>0.15<br>-<br>7/10/2015<br>Soil | 135605-65<br>4996/TP208<br>0.15<br>-<br>7/10/2015<br>Soil | 135605-69<br>4996/TP210<br>0.15<br>-<br>7/10/2015<br>Soil | 135605-74<br>4996/TP212<br>0.15<br>-<br>7/10/2015<br>Soil |
| Date prepared  Date analysed  Moisture                                                       | -<br>-<br>%   | 9/10/2015<br>12/10/2015<br>15                             | 9/10/2015<br>12/10/2015<br>19                             | 9/10/2015<br>12/10/2015<br>19                             | 9/10/2015<br>12/10/2015<br>16                             | 9/10/2015<br>12/10/2015<br>12                             |

Envirolab Reference: 135605 Revision No: R 00 Page 16 of 30

| Moisture            |       |             |             |
|---------------------|-------|-------------|-------------|
| Our Reference:      | UNITS | 135605-79   | 135605-82   |
| Your Reference      |       | 4996/DUP101 | 4996/DUP104 |
| Depth               |       | -           | -           |
| Composite Reference |       | -           | -           |
| Date Sampled        |       | 7/10/2015   | 7/10/2015   |
| Type of sample      |       | Soil        | Soil        |
| Date prepared       | -     | 9/10/2015   | 9/10/2015   |
| Date analysed       | -     | 12/10/2015  | 12/10/2015  |
| Moisture            | %     | 11          | 21          |

Envirolab Reference: 135605 Revision No: R 00

| Asbestos ID - soils |        |                 |                 |                 |                 |                 |
|---------------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                     | LINITO | 40ECOE EO       | 10EC0E EC       | 125005 50       | 105005.01       | 40EC0E C0       |
| Our Reference:      | UNITS  | 135605-52       | 135605-56       | 135605-59       | 135605-61       | 135605-63       |
| Your Reference      |        | 4996/TP201      | 4996/TP202      | 4996/TP203      | 4996/TP204      | 4996/TP207      |
| Depth               |        | 0.5             | 0.15            | 0.15            | 0.15            | 0.15            |
| Composite Reference |        | -               | -               | -               | -               | -               |
| Date Sampled        |        | 7/10/2015       | 7/10/2015       | 7/10/2015       | 7/10/2015       | 7/10/2015       |
| Type of sample      |        | Soil            | Soil            | Soil            | Soil            | Soil            |
| Date analysed       | -      | 13/10/2015      | 13/10/2015      | 13/10/2015      | 13/10/2015      | 13/10/2015      |
| Sample mass tested  | g      | Approx. 35g     | Approx. 35g     | Approx. 35g     | Approx. 45g     | Approx. 35g     |
| Sample Description  | -      | Brown           | Brown           | Brown           | Brown           | Brown           |
|                     |        | coarse grain    |
|                     |        | soil & rocks    |
| Asbestos ID in soil | -      | No asbestos     |
|                     |        | detected at     |
|                     |        | reporting limit |
|                     |        | of 0.1g/kg      |
|                     |        | Organic         | Organic         | Organic         | Organic         | Organic         |
|                     |        | fibres          | fibres          | fibres          | fibres          | fibres          |
|                     |        | detected        | detected        | detected        | detected        | detected        |
| Trace Analysis      | -      | No asbestos     |
|                     |        | detected        | detected        | detected        | detected        | detected        |

| Asbestos ID - soils |       |                                                                                              |                                                                                              |                                                                                              |
|---------------------|-------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Our Reference:      | UNITS | 135605-65                                                                                    | 135605-69                                                                                    | 135605-74                                                                                    |
| Your Reference      |       | 4996/TP208                                                                                   | 4996/TP210                                                                                   | 4996/TP212                                                                                   |
| Depth               |       | 0.15                                                                                         | 0.15                                                                                         | 0.15                                                                                         |
| Composite Reference |       | -                                                                                            | -                                                                                            | -                                                                                            |
| Date Sampled        |       | 7/10/2015                                                                                    | 7/10/2015                                                                                    | 7/10/2015                                                                                    |
| Type of sample      |       | Soil                                                                                         | Soil                                                                                         | Soil                                                                                         |
| Date analysed       | -     | 13/10/2015                                                                                   | 13/10/2015                                                                                   | 13/10/2015                                                                                   |
| Sample mass tested  | g     | Approx. 35g                                                                                  | Approx. 35g                                                                                  | Approx. 35g                                                                                  |
| Sample Description  | -     | Brown<br>coarse grain<br>soil & rocks                                                        | Brown<br>coarse grain<br>soil & rocks                                                        | Brown<br>coarse grain<br>soil & rocks                                                        |
| Asbestos ID in soil | -     | No asbestos<br>detected at<br>reporting limit<br>of 0.1g/kg<br>Organic<br>fibres<br>detected | No asbestos<br>detected at<br>reporting limit<br>of 0.1g/kg<br>Organic<br>fibres<br>detected | No asbestos<br>detected at<br>reporting limit<br>of 0.1g/kg<br>Organic<br>fibres<br>detected |
| Trace Analysis      | -     | No asbestos<br>detected                                                                      | No asbestos<br>detected                                                                      | No asbestos<br>detected                                                                      |

Envirolab Reference: 135605 Revision No: R 00

| Method ID              | Methodology Summary                                                                                                                                                                                                                                                                                                                   |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-016                | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                 |
| Org-014                | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                            |
| Org-003                | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.  F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater                                                                                                                |
|                        | (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                        |
| Org-012 subset         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.  For soil results:-                                                                                               |
|                        | 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql> |
|                        | 2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>      |
|                        | 3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>                                                                                          |
|                        | Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.                                                                                                                                                                            |
| Org-005                | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                                                                                                                                                                           |
| Org-008                | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                                                                                                                                                                           |
| Org-006                | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                                                                                                                                                                                       |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                           |
| Metals-021 CV-<br>AAS  | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                          |
| Inorg-008              | Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.                                                                                                                                                                                                                                                    |
| ASB-001                | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                                                    |

Envirolab Reference: 135605 Revision No: R 00 Page 19 of 30

| QUALITYCONTROL                     | UNITS | PQL | METHOD            | Blank          | Duplicate        | Duplicate results         | Spike Sm# | Spike %             |
|------------------------------------|-------|-----|-------------------|----------------|------------------|---------------------------|-----------|---------------------|
| vTRH(C6-C10)/BTEXNin<br>Soil       |       |     |                   |                | Sm#              | Base II Duplicate II %RPD |           | Recovery            |
| Date extracted                     | -     |     |                   | 09/10/2<br>015 | 135605-52        | 09/10/2015    09/10/2015  | LCS-1     | 09/10/2015          |
| Date analysed                      | -     |     |                   | 10/10/2<br>015 | 135605-52        | 10/10/2015  10/10/2015    | LCS-1     | 10/10/2015          |
| TRHC6 - C9                         | mg/kg | 25  | Org-016           | <25            | 135605-52        | <25  <25                  | LCS-1     | 103%                |
| TRHC6 - C10                        | mg/kg | 25  | Org-016           | <25            | 135605-52        | <25  <25                  | LCS-1     | 103%                |
| Benzene                            | mg/kg | 0.2 | Org-016           | <0.2           | 135605-52        | <0.2  <0.2                | LCS-1     | 97%                 |
| Toluene                            | mg/kg | 0.5 | Org-016           | <0.5           | 135605-52        | <0.5  <0.5                | LCS-1     | 104%                |
| Ethylbenzene                       | mg/kg | 1   | Org-016           | <1             | 135605-52        | <1  <1                    | LCS-1     | 103%                |
| m+p-xylene                         | mg/kg | 2   | Org-016           | <2             | 135605-52        | <2  <2                    | LCS-1     | 106%                |
| o-Xylene                           | mg/kg | 1   | Org-016           | <1             | 135605-52        | <1  <1                    | LCS-1     | 106%                |
| naphthalene                        | mg/kg | 1   | Org-014           | <1             | 135605-52        | <1  <1                    | [NR]      | [NR]                |
| Surrogate aaa-<br>Trifluorotoluene | %     |     | Org-016           | 91             | 135605-52        | 96    97    RPD: 1        | LCS-1     | 105%                |
| QUALITYCONTROL                     | UNITS | PQL | METHOD            | Blank          | Duplicate        | Duplicate results         | Spike Sm# | Spike %             |
| svTRH (C10-C40) in Soil            |       |     |                   |                | Sm#              | Base II Duplicate II %RPD |           | Recovery            |
| Date extracted                     | -     |     |                   | 09/10/2<br>015 | 135605-52        | 09/10/2015    09/10/2015  | LCS-1     | 09/10/2015          |
| Date analysed                      | -     |     |                   | 09/10/2<br>015 | 135605-52        | 09/10/2015  09/10/2015    | LCS-1     | 09/10/2015          |
| TRHC 10 - C14                      | mg/kg | 50  | Org-003           | <50            | 135605-52        | <50  <50                  | LCS-1     | 130%                |
| TRHC 15 - C28                      | mg/kg | 100 | Org-003           | <100           | 135605-52        | <100  <100                | LCS-1     | 114%                |
| TRHC29 - C36                       | mg/kg | 100 | Org-003           | <100           | 135605-52        | <100  <100                | LCS-1     | 116%                |
| TRH>C10-C16                        | mg/kg | 50  | Org-003           | <50            | 135605-52        | <50  <50                  | LCS-1     | 130%                |
| TRH>C16-C34                        | mg/kg | 100 | Org-003           | <100           | 135605-52        | <100  <100                | LCS-1     | 114%                |
| TRH>C34-C40                        | mg/kg | 100 | Org-003           | <100           | 135605-52        | <100  <100                | LCS-1     | 116%                |
| Surrogate o-Terphenyl              | %     |     | Org-003           | 100            | 135605-52        | 90  90  RPD:0             | LCS-1     | 115%                |
| QUALITYCONTROL                     | UNITS | PQL | METHOD            | Blank          | Duplicate<br>Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
| PAHs in Soil                       |       |     |                   |                |                  | Base II Duplicate II %RPD |           |                     |
| Date extracted                     | -     |     |                   | 09/10/2<br>015 | 135605-52        | 09/10/2015  09/10/2015    | LCS-1     | 09/10/2015          |
| Date analysed                      | -     |     |                   | 09/10/2<br>015 | 135605-52        | 09/10/2015  09/10/2015    | LCS-1     | 09/10/2015          |
| Naphthalene                        | mg/kg | 0.1 | Org-012<br>subset | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 102%                |
| Acenaphthylene                     | mg/kg | 0.1 | Org-012           | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |

subset Org-012

subset Org-012

subset Org-012

subset Org-012

subset

Org-012

subset

<0.1

<0.1

<0.1

<0.1

<0.1

135605-52

135605-52

135605-52

135605-52

135605-52

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

Envirolab Reference: 135605 Revision No: R 00

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.1

0.1

0.1

Page 20 of 30

[NR]

108%

105%

[NR]

92%

[NR]

LCS-1

LCS-1

[NR]

LCS-1

Acenaphthene

Fluorene

Phenanthrene

Anthracene

Fluoranthene

| QUALITYCONTROL                       | UNITS | PQL  | METHOD            | Blank          | Duplicate | 01V01, South Werring      | Spike Sm#   | Spike %      |
|--------------------------------------|-------|------|-------------------|----------------|-----------|---------------------------|-------------|--------------|
| QUALITICONTROL                       | OINIO | r √L | INETUOD           | DIALIK         | Sm#       | Duplicate results         | Spike Sifi# | Recovery     |
| PAHs in Soil                         |       |      |                   |                |           | Base II Duplicate II %RPD |             |              |
| Pyrene                               | mg/kg | 0.1  | Org-012<br>subset | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 94%          |
| Benzo(a)anthracene                   | mg/kg | 0.1  | Org-012<br>subset | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Chrysene                             | mg/kg | 0.1  | Org-012<br>subset | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 92%          |
| Benzo(b,j+k)<br>fluoranthene         | mg/kg | 0.2  | Org-012<br>subset | <0.2           | 135605-52 | <0.2  <0.2                | [NR]        | [NR]         |
| Benzo(a)pyrene                       | mg/kg | 0.05 | Org-012<br>subset | <0.05          | 135605-52 | <0.05  <0.05              | LCS-1       | 116%         |
| Indeno(1,2,3-c,d)pyrene              | mg/kg | 0.1  | Org-012<br>subset | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Dibenzo(a,h)anthracene               | mg/kg | 0.1  | Org-012<br>subset | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Benzo(g,h,i)perylene                 | mg/kg | 0.1  | Org-012<br>subset | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Surrogate p-Terphenyl-<br>d14        | %     |      | Org-012<br>subset | 94             | 135605-52 | 93    100    RPD: 7       | LCS-1       | 110%         |
| QUALITYCONTROL                       | UNITS | PQL  | METHOD            | Blank          | Duplicate | Duplicate results         | Spike Sm#   | Spike %      |
| Organochlorine<br>Pesticides in soil |       |      |                   |                | Sm#       | Base II Duplicate II %RPD |             | Recovery     |
| Date extracted                       | -     |      |                   | 09/10/2<br>015 | 135605-52 | 09/10/2015  09/10/2015    | LCS-1       | 09/10/2015   |
| Date analysed                        | -     |      |                   | 10/10/2<br>015 | 135605-52 | 10/10/2015    10/10/2015  | LCS-1       | 10/10/2015   |
| HCB                                  | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| alpha-BHC                            | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 101%         |
| gamma-BHC                            | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| beta-BHC                             | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 88%          |
| Heptachlor                           | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 90%          |
| delta-BHC                            | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Aldrin                               | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 92%          |
| Heptachlor Epoxide                   | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 90%          |
| gamma-Chlordane                      | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| alpha-chlordane                      | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Endosulfan I                         | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| pp-DDE                               | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 87%          |
| Dieldrin                             | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 119%         |
| Endrin                               | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 105%         |
| pp-DDD                               | ŀ     | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 97%          |
| рр-ооо<br>Endosulfan II              | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                |             | 97 %<br>[NR] |
|                                      | mg/kg |      | _                 |                |           |                           | [NR]        |              |
| pp-DDT                               | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Endrin Aldehyde                      | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Endosulfan Sulphate                  | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | LCS-1       | 102%         |
| Methoxychlor                         | mg/kg | 0.1  | Org-005           | <0.1           | 135605-52 | <0.1  <0.1                | [NR]        | [NR]         |
| Surrogate TCMX                       | %     |      | Org-005           | 99             | 135605-52 | 95  95  RPD:0             | LCS-1       | 118%         |

Envirolab Reference: 135605 Revision No: R 00 Page 21 of 30

| Client Reference: P1504996COC01V01, South Werrington |       |     |         |                |                  |                           |           |                     |
|------------------------------------------------------|-------|-----|---------|----------------|------------------|---------------------------|-----------|---------------------|
| QUALITYCONTROL                                       | UNITS | PQL | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
| Organophosphorus<br>Pesticides                       |       |     |         |                |                  | Base II Duplicate II %RPD |           |                     |
| Date extracted                                       | -     |     |         | 09/10/2<br>015 | 135605-52        | 09/10/2015   09/10/2015   | LCS-1     | 09/10/2015          |
| Date analysed                                        | -     |     |         | 10/10/2<br>015 | 135605-52        | 10/10/2015  10/10/2015    | LCS-1     | 10/10/2015          |
| Azinphos-methyl<br>(Guthion)                         | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 96%                 |
| Bromophos-ethyl                                      | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Chlorpyriphos                                        | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 98%                 |
| Chlorpyriphos-methyl                                 | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Diazinon                                             | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Dichlorvos                                           | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 107%                |
| Dimethoate                                           | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Ethion                                               | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 101%                |
| Fenitrothion                                         | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 120%                |
| Malathion                                            | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 129%                |
| Parathion                                            | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 72%                 |
| Ronnel                                               | mg/kg | 0.1 | Org-008 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Surrogate TCMX                                       | %     |     | Org-008 | 99             | 135605-52        | 95  95  RPD:0             | LCS-1     | 118%                |
| QUALITYCONTROL                                       | UNITS | PQL | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
| PCBs in Soil                                         |       |     |         |                |                  | Base II Duplicate II %RPD |           |                     |
| Date extracted                                       | -     |     |         | 09/10/2<br>015 | 135605-52        | 09/10/2015   09/10/2015   | LCS-1     | 09/10/2015          |
| Date analysed                                        | -     |     |         | 10/10/2<br>015 | 135605-52        | 10/10/2015  10/10/2015    | LCS-1     | 10/10/2015          |
| Aroclor 1016                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Aroclor 1221                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Aroclor 1232                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Aroclor 1242                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Aroclor 1248                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Aroclor 1254                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | LCS-1     | 108%                |
| Aroclor 1260                                         | mg/kg | 0.1 | Org-006 | <0.1           | 135605-52        | <0.1  <0.1                | [NR]      | [NR]                |
| Surrogate TCLMX                                      | %     |     | Org-006 | 99             | 135605-52        | 95  95  RPD:0             | LCS-1     | 118%                |

Envirolab Reference: 135605 Revision No: R 00

Page 22 of 30

| QUALITYCONTROL                     | UNITS | PQL | METHOD                | Blank          | Duplicate<br>Sm#    | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|------------------------------------|-------|-----|-----------------------|----------------|---------------------|---------------------------|-----------|---------------------|
| Acid Extractable metals in soil    |       |     |                       |                | <i></i>             | Base II Duplicate II %RPD |           |                     |
| Date prepared                      | -     |     |                       | 09/10/2<br>015 | 135605-52           | 09/10/2015  09/10/2015    | LCS-4     | 09/10/2015          |
| Date analysed                      | -     |     |                       | 09/10/2<br>015 | 135605-52           | 09/10/2015  09/10/2015    | LCS-4     | 09/10/2015          |
| Arsenic                            | mg/kg | 4   | Metals-020<br>ICP-AES | <4             | 135605-52           | 4  5  RPD:22              | LCS-4     | 105%                |
| Cadmium                            | mg/kg | 0.4 | Metals-020<br>ICP-AES | <0.4           | 135605-52           | <0.4  <0.4                | LCS-4     | 98%                 |
| Chromium                           | mg/kg | 1   | Metals-020<br>ICP-AES | <1             | 135605-52           | 20  22  RPD:10            | LCS-4     | 102%                |
| Copper                             | mg/kg | 1   | Metals-020<br>ICP-AES | <1             | 135605-52           | 12  12  RPD:0             | LCS-4     | 106%                |
| Lead                               | mg/kg | 1   | Metals-020<br>ICP-AES | <1             | 135605-52           | 10  11  RPD:10            | LCS-4     | 103%                |
| Mercury                            | mg/kg | 0.1 | Metals-021<br>CV-AAS  | <0.1           | 135605-52           | <0.1  <0.1                | LCS-4     | 91%                 |
| Nickel                             | mg/kg | 1   | Metals-020<br>ICP-AES | <1             | 135605-52           | 5  6  RPD:18              | LCS-4     | 99%                 |
| Zinc                               | mg/kg | 1   | Metals-020<br>ICP-AES | <1             | 135605-52           | 10  10  RPD:0             | LCS-4     | 100%                |
| QUALITYCONTROL                     | UNITS | 3   | Dup. Sm#              |                | Duplicate           |                           | 1         | •                   |
| vTRH(C6-C10)/BTEXNin<br>Soil       |       |     |                       | Base+[         | Ouplicate+%RP       | D                         |           |                     |
| Date extracted                     | _     | ,   | 135605-74             | 09/10/2        | 015  09/10/201      | 5                         |           |                     |
| Date analysed                      | _     |     | 135605-74             |                | <br>:015  10/10/201 |                           |           |                     |
| TRHC6 - C9                         | mg/kg |     | 135605-74             |                | <25  <25            |                           |           |                     |
| TRHC6 - C10                        | mg/kg |     | 135605-74             |                | <25  <25            |                           |           |                     |
| Benzene                            | mg/kg |     | 135605-74             |                | ···<br><0.2  <0.2   |                           |           |                     |
| Toluene                            | mg/kg |     | 135605-74             |                | <0.5  <0.5          |                           |           |                     |
| Ethylbenzene                       | mg/kg |     | 135605-74             | <1  <1         |                     |                           |           |                     |
| m+p-xylene                         | mg/kg |     | 135605-74             |                | <2  <2              |                           |           |                     |
| o-Xylene                           | mg/kg |     | 135605-74             |                | <1  <1              |                           |           |                     |
| naphthalene                        | mg/kg |     | 135605-74             |                | ''<br><1  <1        |                           |           |                     |
| Surrogate aaa-<br>Trifluorotoluene | %     |     | 135605-74             | 99             | <br>  95  RPD:4     |                           |           |                     |

Envirolab Reference: 135605 Revision No: R 00 Page 23 of 30

|                           |       | Client Reference | e: P1504996COC01V        |
|---------------------------|-------|------------------|--------------------------|
| QUALITYCONTROL            | UNITS | Dup.Sm#          | Duplicate                |
| svTRH (C10-C40) in Soil   |       |                  | Base + Duplicate + %RPD  |
| Date extracted            | -     | 135605-74        | 09/10/2015  09/10/2015   |
| Date analysed             | -     | 135605-74        | 10/10/2015    10/10/2015 |
| TRHC 10 - C14             | mg/kg | 135605-74        | <50  <50                 |
| TRHC 15 - C28             | mg/kg | 135605-74        | <100  <100               |
| TRHC29 - C36              | mg/kg | 135605-74        | <100  <100               |
| TRH>C10-C16               | mg/kg | 135605-74        | <50  <50                 |
| TRH>C16-C34               | mg/kg | 135605-74        | <100  <100               |
| TRH>C34-C40               | mg/kg | 135605-74        | <100  <100               |
| Surrogate o-Terphenyl     | %     | 135605-74        | 93  94  RPD:1            |
| QUALITYCONTROL            | UNITS | Dup.Sm#          | Duplicate                |
| PAHs in Soil              |       |                  | Base + Duplicate + %RPD  |
| Date extracted            | -     | 135605-74        | 09/10/2015  09/10/2015   |
| Date analysed             | -     | 135605-74        | 09/10/2015  09/10/2015   |
| Naphthalene               | mg/kg | 135605-74        | <0.1  <0.1               |
| Acenaphthylene            | mg/kg | 135605-74        | <0.1  <0.1               |
| Acenaphthene              | mg/kg | 135605-74        | <0.1  <0.1               |
| Fluorene                  | mg/kg | 135605-74        | <0.1  <0.1               |
| Phenanthrene              | mg/kg | 135605-74        | <0.1  <0.1               |
| Anthracene                | mg/kg | 135605-74        | <0.1  <0.1               |
| Fluoranthene              | mg/kg | 135605-74        | <0.1  <0.1               |
| Pyrene                    | mg/kg | 135605-74        | <0.1  <0.1               |
| Benzo(a)anthracene        | mg/kg | 135605-74        | <0.1  <0.1               |
| Chrysene                  | mg/kg | 135605-74        | <0.1  <0.1               |
| Benzo(b,j+k)fluoranthene  | mg/kg | 135605-74        | <0.2  <0.2               |
| Benzo(a)pyrene            | mg/kg | 135605-74        | <0.05  <0.05             |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | 135605-74        | <0.1  <0.1               |
| Dibenzo(a,h)anthracene    | mg/kg | 135605-74        | <0.1  <0.1               |
| Benzo(g,h,i)perylene      | mg/kg | 135605-74        | <0.1  <0.1               |
| Surrogate p-Terphenyl-d14 | %     | 135605-74        | 86  84  RPD:2            |

Envirolab Reference: 135605 Revision No: R 00

|                                   |       | Client Reference | e: P1504996COC01V       |
|-----------------------------------|-------|------------------|-------------------------|
| QUALITYCONTROL                    | UNITS | Dup. Sm#         | Duplicate               |
| Organochlorine Pesticides in soil |       |                  | Base + Duplicate + %RPD |
| Date extracted                    | -     | 135605-74        | 09/10/2015  09/10/2015  |
| Date analysed                     | -     | 135605-74        | 10/10/2015  10/10/2015  |
| HCB                               | mg/kg | 135605-74        | <0.1  <0.1              |
| alpha-BHC                         | mg/kg | 135605-74        | <0.1  <0.1              |
| gamma-BHC                         | mg/kg | 135605-74        | <0.1  <0.1              |
| beta-BHC                          | mg/kg | 135605-74        | <0.1  <0.1              |
| Heptachlor                        | mg/kg | 135605-74        | <0.1  <0.1              |
| delta-BHC                         | mg/kg | 135605-74        | <0.1  <0.1              |
| Aldrin                            | mg/kg | 135605-74        | <0.1  <0.1              |
| Heptachlor Epoxide                | mg/kg | 135605-74        | <0.1  <0.1              |
| gamma-Chlordane                   | mg/kg | 135605-74        | <0.1  <0.1              |
| alpha-chlordane                   | mg/kg | 135605-74        | <0.1  <0.1              |
| Endosulfan I                      | mg/kg | 135605-74        | <0.1  <0.1              |
| pp-DDE                            | mg/kg | 135605-74        | <0.1  <0.1              |
| Dieldrin                          | mg/kg | 135605-74        | <0.1  <0.1              |
| Endrin                            | mg/kg | 135605-74        | <0.1  <0.1              |
| pp-DDD                            | mg/kg | 135605-74        | <0.1  <0.1              |
| Endosulfan II                     | mg/kg | 135605-74        | <0.1  <0.1              |
| pp-DDT                            | mg/kg | 135605-74        | <0.1  <0.1              |
| Endrin Aldehyde                   | mg/kg | 135605-74        | <0.1  <0.1              |
| Endosulfan Sulphate               | mg/kg | 135605-74        | <0.1  <0.1              |
| Methoxychlor                      | mg/kg | 135605-74        | <0.1  <0.1              |
| Surrogate TCMX                    | %     | 135605-74        | 96  96  RPD:0           |

Envirolab Reference: 135605 Revision No: R 00

|                                     |       | Client Reference | e: P1504996COC01V                  | or, South Werring | gton             |
|-------------------------------------|-------|------------------|------------------------------------|-------------------|------------------|
| QUALITY CONTROL<br>Organophosphorus | UNITS | Dup. Sm#         | Duplicate  Base + Duplicate + %RPD |                   |                  |
| Pesticides                          |       |                  |                                    |                   |                  |
| Date extracted                      | -     | 135605-74        | 09/10/2015  09/10/2015             |                   |                  |
| Date analysed                       | _     | 135605-74        | 10/10/2015  10/10/2015             |                   |                  |
| Azinphos-methyl (Guthion)           | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Bromophos-ethyl                     | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Chlorpyriphos                       | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Chlorpyriphos-methyl                | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Diazinon                            | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Dichlorvos                          | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Dimethoate                          | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Ethion                              | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Fenitrothion                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Malathion                           | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Parathion                           | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Ronnel                              | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Surrogate TCMX                      | %     | 135605-74        | "<br>96  96  RPD:0                 |                   |                  |
| QUALITYCONTROL                      | UNITS | Dup. Sm#         | <br>Duplicate                      |                   |                  |
| PCBs in Soil                        |       | ·                | Base + Duplicate + %RPD            |                   |                  |
| Date extracted                      | -     | 135605-74        | 09/10/2015  09/10/2015             |                   |                  |
| Date analysed                       | -     | 135605-74        | 10/10/2015  10/10/2015             |                   |                  |
| Aroclor 1016                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Aroclor 1221                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Aroclor 1232                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Aroclor 1242                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Aroclor 1248                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Aroclor 1254                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Aroclor 1260                        | mg/kg | 135605-74        | <0.1  <0.1                         |                   |                  |
| Surrogate TCLMX                     | %     | 135605-74        | 96  96  RPD:0                      |                   |                  |
| QUALITYCONTROL                      | UNITS | Dup. Sm#         | Duplicate                          | Spike Sm#         | Spike % Recovery |
| Acid Extractable metals in soil     |       |                  | Base + Duplicate + %RPD            |                   |                  |
| Date prepared                       | -     | 135605-74        | 09/10/2015  09/10/2015             | LCS-5             | 09/10/2015       |
| Date analysed                       | -     | 135605-74        | 09/10/2015  09/10/2015             | LCS-5             | 09/10/2015       |
| Arsenic                             | mg/kg | 135605-74        | 10  11  RPD:10                     | LCS-5             | 106%             |
| Cadmium                             | mg/kg | 135605-74        | <0.4  <0.4                         | LCS-5             | 100%             |
| Chromium                            | mg/kg | 135605-74        | 35  45  RPD:25                     | LCS-5             | 102%             |
| Copper                              | mg/kg | 135605-74        | 13  13  RPD:0                      | LCS-5             | 106%             |
| Lead                                | mg/kg | 135605-74        | 25  27  RPD:8                      | LCS-5             | 100%             |
| Mercury                             | mg/kg | 135605-74        | <0.1  <0.1                         | LCS-5             | 89%              |
| Nickel                              | mg/kg | 135605-74        | 8  9  RPD:12                       | LCS-5             | 98%              |
| Zinc                                | mg/kg | 135605-74        | 19  20  RPD:5                      | LCS-5             | 99%              |
| L                                   | 1     | ıl               |                                    | I.                | L                |

Envirolab Reference: 135605 Revision No: R 00 Page 26 of 30

|                                                   |       | Client Reference | e: P1504996COC01V                    | 01, South Werrin | gton             |
|---------------------------------------------------|-------|------------------|--------------------------------------|------------------|------------------|
| QUALITY CONTROL Acid Extractable metals in soil   | UNITS | Dup.Sm#          | Duplicate<br>Base + Duplicate + %RPD | Spike Sm#        | Spike % Recovery |
| Date prepared                                     | -     | [NT]             | [NT]                                 | LCS-6            | 09/10/2015       |
| Date analysed                                     | -     | [NT]             | [NT]                                 | LCS-6            | 09/10/2015       |
| Arsenic                                           | mg/kg | [NT]             | [NT]                                 | LCS-6            | 104%             |
| Cadmium                                           | mg/kg | [NT]             | [NT]                                 | LCS-6            | 98%              |
| Chromium                                          | mg/kg | [NT]             | [NT]                                 | LCS-6            | 100%             |
| Copper                                            | mg/kg | [NT]             | [NT]                                 | LCS-6            | 105%             |
| Lead                                              | mg/kg | [NT]             | [NT]                                 | LCS-6            | 99%              |
| Mercury                                           | mg/kg | [NT]             | [NT]                                 | LCS-6            | 94%              |
| Nickel                                            | mg/kg | [NT]             | [NT]                                 | LCS-6            | 98%              |
| Zinc                                              | mg/kg | [NT]             | [NT]                                 | LCS-6            | 100%             |
| QUALITY CONTROL Organochlorine Pesticides in soil | UNITS | Dup.Sm#          | Duplicate<br>Base + Duplicate + %RPD | Spike Sm#        | Spike % Recovery |
| Date extracted                                    | -     | [NT]             | [NT]                                 | 135605-56        | 09/10/2015       |
| Date analysed                                     | -     | [NT]             | [NT]                                 | 135605-56        | 10/10/2015       |
| HCB                                               | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| alpha-BHC                                         | mg/kg | [NT]             | [NT]                                 | 135605-56        | 98%              |
| gamma-BHC                                         | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| beta-BHC                                          | mg/kg | [NT]             | [NT]                                 | 135605-56        | 84%              |
| Heptachlor                                        | mg/kg | [NT]             | [NT]                                 | 135605-56        | 84%              |
| delta-BHC                                         | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| Aldrin                                            | mg/kg | [NT]             | [NT]                                 | 135605-56        | 89%              |
| Heptachlor Epoxide                                | mg/kg | [NT]             | [NT]                                 | 135605-56        | 86%              |
| gamma-Chlordane                                   | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| alpha-chlordane                                   | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| Endosulfan I                                      | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| pp-DDE                                            | mg/kg | [NT]             | [NT]                                 | 135605-56        | 85%              |
| Dieldrin                                          | mg/kg | [NT]             | [NT]                                 | 135605-56        | 116%             |
| Endrin                                            | mg/kg | [NT]             | [NT]                                 | 135605-56        | 100%             |
| pp-DDD                                            | mg/kg | [NT]             | [NT]                                 | 135605-56        | 94%              |
| Endosulfan II                                     | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| pp-DDT                                            | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| Endrin Aldehyde                                   | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| Endosulfan Sulphate                               | mg/kg | [NT]             | [NT]                                 | 135605-56        | 87%              |
| Methoxychlor                                      | mg/kg | [NT]             | [NT]                                 | [NR]             | [NR]             |
| Surrogate TCMX                                    | %     | [NT]             | [NT]                                 | 135605-56        | 94%              |

Envirolab Reference: 135605 R 00 Revision No:

Page 27 of 30

|                                                 |       | Client Referenc | e: P1504996COC01V                    | 01, South Werrin | gton             |
|-------------------------------------------------|-------|-----------------|--------------------------------------|------------------|------------------|
| QUALITY CONTROL Organophosphorus Pesticides     | UNITS | Dup. Sm#        | Duplicate<br>Base + Duplicate + %RPD | SpikeSm#         | Spike % Recovery |
| - r esticides                                   |       |                 |                                      |                  |                  |
| Date extracted                                  | -     | [NT]            | [NT]                                 | 135605-56        | 09/10/2015       |
| Date analysed                                   | -     | [NT]            | [NT]                                 | 135605-56        | 10/10/2015       |
| Azinphos-methyl (Guthion)                       | mg/kg | [NT]            | [NT]                                 | 135605-56        | 70%              |
| Bromophos-ethyl                                 | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Chlorpyriphos                                   | mg/kg | [NT]            | [NT]                                 | 135605-56        | 91%              |
| Chlorpyriphos-methyl                            | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Diazinon                                        | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Dichlorvos                                      | mg/kg | [NT]            | [NT]                                 | 135605-56        | 96%              |
| Dimethoate                                      | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Ethion                                          | mg/kg | [NT]            | [NT]                                 | 135605-56        | 91%              |
| Fenitrothion                                    | mg/kg | [NT]            | [NT]                                 | 135605-56        | 105%             |
| Malathion                                       | mg/kg | [NT]            | [NT]                                 | 135605-56        | 80%              |
| Parathion                                       | mg/kg | [NT]            | [NT]                                 | 135605-56        | 69%              |
| Ronnel                                          | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Surrogate TCMX                                  | %     | [NT]            | [NT]                                 | 135605-56        | 94%              |
| QUALITYCONTROL                                  | UNITS | Dup. Sm#        | Duplicate                            | Spike Sm#        | Spike % Recovery |
| PCBs in Soil                                    |       |                 | Base + Duplicate + %RPD              |                  |                  |
| Date extracted                                  | -     | [NT]            | [NT]                                 | 135605-56        | 09/10/2015       |
| Date analysed                                   | -     | [NT]            | [NT]                                 | 135605-56        | 10/10/2015       |
| Aroclor 1016                                    | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Aroclor 1221                                    | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Aroclor 1232                                    | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Aroclor 1242                                    | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Aroclor 1248                                    | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Aroclor 1254                                    | mg/kg | [NT]            | [NT]                                 | 135605-56        | 101%             |
| Aroclor 1260                                    | mg/kg | [NT]            | [NT]                                 | [NR]             | [NR]             |
| Surrogate TCLMX                                 | %     | [NT]            | [NT]                                 | 135605-56        | 94%              |
| QUALITY CONTROL Acid Extractable metals in soil | UNITS | Dup.Sm#         | Duplicate Base + Duplicate + %RPD    | Spike Sm#        | Spike % Recovery |
| Date prepared                                   | -     | [NT]            | [NT]                                 | 135605-56        | 09/10/2015       |
| Date analysed                                   | -     | [NT]            | [NT]                                 | 135605-56        | 09/10/2015       |
| Arsenic                                         | mg/kg | [NT]            | [NT]                                 | 135605-56        | 92%              |
| Cadmium                                         | mg/kg | [NT]            | [NT]                                 | 135605-56        | 87%              |
| Chromium                                        | mg/kg | [NT]            | [NT]                                 | 135605-56        | 95%              |
| Copper                                          | mg/kg | [NT]            | [NT]                                 | 135605-56        | 109%             |
| Lead                                            | mg/kg | [NT]            | [NT]                                 | 135605-56        | ##               |
| Mercury                                         | mg/kg | [NT]            | [NT]                                 | 135605-56        | 92%              |
| Nickel                                          | mg/kg | [NT]            | [NT]                                 | 135605-56        | 86%              |
| Zinc                                            | mg/kg | [NT]            | [NT]                                 | 135605-56        | 109%             |
|                                                 |       |                 |                                      |                  | <u> </u>         |

Envirolab Reference: 135605 Revision No: R 00 Page 28 of 30

#### **Report Comments:**

METALS\_S: ## Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 135605-52, 56, 59, 61, 63, 65, 69, 74 were sub-sampled from jars provided by the client.

Asbestos ID was analysed by Approved Identifier: Paul Ching Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 135605 Revision No: R 00

Revision No: R 00

Page 29 of 30

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 135605 Revision No: R 00

# SOIL ANALYSIS CHAIN OF CUSTODY FORM



|                           |               |                                     |                  | <b>Additional Testing</b>        | ō                       |                                                 |                          |                               |   |
|---------------------------|---------------|-------------------------------------|------------------|----------------------------------|-------------------------|-------------------------------------------------|--------------------------|-------------------------------|---|
| Name                      | P150499       | P1504996 – Detailed Site Assessment |                  | – South Werrington Urban Village | Village                 |                                                 |                          |                               |   |
| Martens Contact Officer   | Ben McGiffin  | Siffin                              |                  |                                  | Contact Email           | bmcgiffin@r                                     | bmcgiffin@martens.com.au |                               |   |
|                           | Sample Date   |                                     | 7.10.2015        | Dispatch Date                    | 8.10.2015               | Turnaround Time                                 | ime                      | standard                      |   |
| Sampling and Shipping     | Our Reference |                                     | P1504996COC01V01 |                                  | Shipping Method (X)     |                                                 | Hand                     | Courier                       | × |
|                           | On Ice (X)    | (x                                  | No Ice (X)       | × Other (X)                      | (x)                     |                                                 |                          |                               |   |
|                           |               |                                     |                  | Laboratory                       |                         |                                                 |                          |                               |   |
| Name                      | EnviroLab     | qp                                  |                  |                                  | -                       |                                                 |                          |                               |   |
| Sample Delivery Address   | 12 Ashle      | 12 Ashley Street, Chatswood         | pooms            |                                  |                         |                                                 |                          |                               |   |
| Delivery Contact          | Name          | Aileen                              | Phone            | 9910 6200                        | Fax                     | Email                                           |                          | ahie@envirolabservices.com.au | n |
| Please Send Report By (X) | Post          | Fax                                 | Email            | X Reportin                       | Reporting Email Address | bmcgiffin@martens.com.au jfulton@martens.com.au | s.com.au jfulton@        | martens.com.au                |   |

| - 1 |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

とけらいけるいとのとと



Suite 201, 20 George St Hornsby NSW 2077, Australia **Ph** 02 9476 9999 **Fax** 02 9476 8767 Head Office

> www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890 > mail@martens.com.au

| Sample ID            | Depth  | OCP/OPP | 8 HW | 6A | Hold                     |
|----------------------|--------|---------|------|----|--------------------------|
| Cl                   | 0.1    | ×       | ×    |    |                          |
| C2                   | 0.1    | ×       | ×    |    |                          |
| C3                   | 0.1    | ×       | ×    |    |                          |
| C4                   | 0.1    | ×       | ×    | 14 |                          |
| C5                   | 0.1    | ×       | ×    |    |                          |
| C6                   | 0.1    | ×       | ×    |    |                          |
| C7                   | 0.1    | ×       | ×    |    |                          |
| 83                   | 0.1    | ×       | ×    |    |                          |
| 60                   | 0.1    | ×       | ×    |    |                          |
| C10                  | 0.1    | ×       | ×    |    |                          |
| CII                  | 0.1    | ×       | ×    |    |                          |
| C12                  | 0.1    | ×       | ×    |    |                          |
| 4996/SS37/0.1        | 0.1    |         |      | ,  | ×                        |
| 4996/5538/0.1        | 0.1    |         |      |    | ×                        |
|                      |        |         |      |    |                          |
| 4996/TP201/0.15      | 0.15   |         |      |    |                          |
| 4996/TP201/0.5       | 0.5    |         |      | ×  |                          |
| 4996/TP201/1.0       | 1.0    |         |      |    |                          |
| 4996/TP201/1.5       | 1.5    |         |      |    |                          |
| 4996/TP201/2.0       | 2.0    |         |      |    |                          |
| 4996/TP 202/0.15     | 0.15   |         |      | ×  |                          |
| 4996/TP202/0.5       | 0.5    |         |      |    |                          |
| 4996/TP202/1.0       | 1.0    |         |      |    |                          |
| 4996/TP 203/0.15     | 0.15   |         |      | ×  |                          |
| 4996/TP203/0.5       | 0.5    |         |      |    |                          |
| 4996/TP 204/0.15     | 0.15   |         |      | ×  |                          |
| 4996/TP204/0.5       | 0.5    |         |      |    |                          |
| 4996/TP 207/0.15     | 0.15   |         |      | ×  |                          |
| 4996/TP 207/0.75     | 0.75   |         |      |    |                          |
| 4996/TP 208/0.15     | 0.15   |         |      | ×  |                          |
| 4996/TP 208/0.65     | 0.65   |         |      |    |                          |
| 4996/TP 209/0.15     | 0.15   |         |      |    |                          |
| 4996/TP209/0.5       | 0.5    |         |      |    |                          |
| 4996/TP210/0.15      | 0,015  |         |      | ×  |                          |
| 4996/TP210/0.65 (Lic | 0.65   |         |      |    |                          |
| 4996/TP210/1.5 (I'd  | m. 1.5 |         |      |    |                          |
| 4996/TP211/0.2       | 0.5    |         |      |    |                          |
| 4996/TP211/1.0       | 1.0    |         |      |    |                          |
| 4996/TP212/0.15      | 0.15   |         |      | ×  |                          |
| 4996/TP212/0.65      | 0.65   |         |      |    |                          |
| 4996/TP212/1.0       | 1.0    |         |      |    |                          |
| u c                  |        |         |      |    |                          |
| the the              |        |         |      |    |                          |
|                      |        |         |      |    | The second second second |

## SOIL ANALYSIS CHAIN OF CUSTODY

|             | ×           | ×           |             |
|-------------|-------------|-------------|-------------|
|             |             |             |             |
| ×           |             |             | ×           |
|             | 20          |             |             |
|             |             |             | 2           |
|             |             |             |             |
| 4996/DUP101 | 4996/DUP102 | 4996/DUP103 | 4996/DUP104 |
| 7           | Z           | 2           | 23          |

NOTE: SOME SAMPLES JARS HAVE BEEN LABELED AS 4946/## PLEASE REPORT ALL AS 4996

#### 13 Attachment D – Data Validation Report





| 1. | Sample Handling                                                               |     |                  |
|----|-------------------------------------------------------------------------------|-----|------------------|
|    |                                                                               | Yes | No               |
|    |                                                                               |     | (Comments below) |
| a. | Were sample holding times met?                                                | ✓   |                  |
| b. | Were samples in proper custody between the field and reaching the laboratory? | ✓   |                  |
| c. | Were the samples properly and adequately preserved?                           | ✓   |                  |
| d. | Were the samples received by the laboratory in good condition?                | ✓   |                  |
| CC | DMMENTS                                                                       |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
|    |                                                                               |     |                  |
| Sa | mple handling is:                                                             |     |                  |
|    | Partially                                                                     |     |                  |
|    | Satisfactory                                                                  |     |                  |

Unsatisfactory





#### 2. Precision / Accuracy Statement

|                                                    | 103 | (Comments below) |
|----------------------------------------------------|-----|------------------|
| a. Was a NATA registered laboratory used?          | ✓   |                  |
| b. Did the laboratory perform the requested tests? | ✓   |                  |
| c. Were laboratory methods adopted NATA endorsed?  | ✓   |                  |
| d. Were appropriate test procedures followed?      | ✓   |                  |
| e. Were reporting limits satisfactory?             | ✓   |                  |
| f. Was the NATA Seal on the reports?               | ✓   |                  |
| g. Were reports signed by an authorised person?    | ✓   |                  |
| COMMENTS                                           |     |                  |
|                                                    |     |                  |
|                                                    |     |                  |
|                                                    |     |                  |
| Precision / Accuracy of the Laboratory Report:     |     |                  |
| Partially<br>Satisfactory                          |     |                  |
| Unsatisfactor                                      | y   |                  |





#### 3. Field Quality Assurance / Quality Control (QA/QC)

- a. Number of Primary Samples analysed (does not include duplicates)
- b. Number of days of sampling
- c. Number and Type of QA/QC Samples analysed

Intra-Laboratory Field Duplicates

Inter-Laboratory Field triplicates

Trip Blanks

Wash Blanks

Other (Field Blanks, Spikes, Trip Blanks, etc.)

| Media    | Number |
|----------|--------|
| Soil:    | 20     |
| Water:   | -      |
| Material | -      |
|          | 1      |
| Soil     | Water  |
| 2        |        |

| Soil | Water |
|------|-------|
| 2    |       |
|      |       |
| 1    |       |
|      |       |
| 1    |       |

#### **Field Duplicates**

Adequate Numbers of intra-laboratory field duplicates analysed?

Adequate Numbers of inter-laboratory field duplicates analysed?

Were RPDs within Control Limits?

- i. Organics (+ 30%)
- ii. Metals / Inorganics (+ 30%)
- iii. Nutrients (+ 50%)

## 

#### **COMMENTS**

RPD for metals is above ASC NEPM criteria for the following samples:

4996/TP208 and DUP101 - Zinc 53%

4996/TP204 and DUP104 - Lead 55 %

4996/TP204 and DUP 104 - Arsenic 59%





| 4996/TP204 and DUP 104 Copper 54%                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4996/TP204 and DUP 101 Zinc 52%                                                                                                                                  |
| These results are all below the adopted SAC and considered 'natural' variations in the fill material. These results do not impact the usability of the data set. |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |
|                                                                                                                                                                  |

#### Summary of Quality Assurance / Quality Control (QA/QC)

| QA/QC Type                                       | Satisfactory | Partially Satisfactory | Unsatisfactory |
|--------------------------------------------------|--------------|------------------------|----------------|
| Sample handling                                  | ✓            |                        |                |
| Precision / Accuracy of the<br>Laboratory Report | ✓            |                        |                |
| Field QA / QC                                    | ✓            |                        |                |
| Laboratory Internal QA /<br>QC                   | ✓            |                        |                |

| QC                                                                              |   |
|---------------------------------------------------------------------------------|---|
| Data Usability                                                                  |   |
| 1. Data directly usable                                                         | / |
| 2. Data usable with the following corrections/modifications (see comment below) |   |
| 3. Data not usable.                                                             |   |
| COMMENTS                                                                        |   |
|                                                                                 |   |
| ·                                                                               |   |
|                                                                                 |   |
|                                                                                 |   |
|                                                                                 |   |
|                                                                                 |   |







#### 14 Attachment E – Test Pit Logs



|                  | O IE                       |                     | +             |                     |                                  | erty Grou                             |                 | y Liu                                                                           | LOGGED                                  | 7.10.15                                       | CHECKED                   | JF                                   | :      |          |                                                                        | KEF                              | 1 P201                                      | i   |
|------------------|----------------------------|---------------------|---------------|---------------------|----------------------------------|---------------------------------------|-----------------|---------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------|--------------------------------------|--------|----------|------------------------------------------------------------------------|----------------------------------|---------------------------------------------|-----|
| SIT              | OJE                        | :01                 |               |                     |                                  | vestigatio<br>on Urban                |                 | 200                                                                             | GEOLOGY                                 | BM<br>Bringelly Shale                         | VEGETATION                |                                      | ass    |          |                                                                        | Sheet 1 of<br>PROJECT NO.        |                                             |     |
| _                | IPME                       | NT                  | 30            | Julii VV            |                                  | excavator                             | VIII            | age                                                                             | EASTING                                 | -                                             | RL SURFAC                 | _                                    | 433    |          |                                                                        | ROSECT NO.                       | F 1304990                                   |     |
| EXC              | AVAT                       | ION E               | DIMEN         | ISIONS              | 600mm                            | X 2.3m depth                          |                 |                                                                                 | NORTHING                                | -                                             | ASPECT                    | Ea                                   | st     |          | SI                                                                     | LOPE                             | <5%                                         |     |
| ╙                | EX                         | CA                  | /AT           | ION DA              | _                                |                                       |                 | MAT                                                                             | ERIAL DAT                               | ΓΑ                                            |                           |                                      |        | SAI      | MPLING                                                                 | & TESTI                          | NG                                          |     |
| METHOD           | SUPPORT                    | WATER               | MOISTURE      | DEPTH (M)           | DRILLING H RESISTANCE            |                                       | CLASSIFICATION  | SOIL NAME, plastic<br>colour, secondal<br>moisture condition,<br>ROCK NAME, gra | ry and minor comp<br>consistency/relati | racteristics,<br>conents,<br>ve density,      | CONSISTENCY               | DENSITY INDEX                        | TYPE   | DEPTH(M) | ADI                                                                    | RESUL <sup>.</sup><br>DITIONAL O | TS AND<br>BSERVATIONS                       | 3   |
|                  |                            |                     |               | _                   |                                  | × × × × × × × × × × × × × × × × × × × |                 |                                                                                 |                                         |                                               |                           |                                      | E      | 0.15     | 4996/TP20                                                              | 01 /0.15                         | - Fill                                      |     |
| E                | Nil                        | N                   | М             |                     |                                  | * * * * * * * * * * * * * * * * * * * | xx              | Fill: Silty CLAY - L<br>grey/ orange and<br>and gravels (:                      | brown, fine g                           | rained sand                                   |                           |                                      | E      | 0.5      | 4996/TP20                                                              | )1/0.5                           | nclusions from 0.2 i                        |     |
|                  |                            |                     |               | 1.1                 |                                  | × × × ×                               |                 |                                                                                 |                                         |                                               |                           |                                      |        |          |                                                                        |                                  |                                             | 1.0 |
| E                | Nil                        | N                   | D             |                     |                                  |                                       | CL              | CLAY - low to medi<br>trace f                                                   | ium plasticity<br>fine gravels.         | grey / white,                                 | S-F                       |                                      | Е      | 1.5      | 4996/TP2(                                                              | 01/1.5                           | - Residual                                  |     |
|                  |                            |                     |               | 2.3                 |                                  |                                       |                 |                                                                                 | ninated at 2.3                          |                                               |                           |                                      |        |          |                                                                        |                                  |                                             |     |
|                  |                            |                     |               | 3.0                 |                                  |                                       |                 | Clay / row                                                                      | strength sha                            | ile.                                          |                           |                                      |        |          |                                                                        |                                  |                                             | 3.0 |
| N<br>X           | Na<br>E:                   | atural e<br>xisting | expos<br>exca | ure SI<br>vation S0 | UPPORT<br>H Shoring<br>C Shotore | ete X Not                             | e obse<br>measi | ured M Moist M Mod                                                              | erate S S                               | STENCY DENSITY ery Soft VL Very I oft L Loose | Loose A A                 | uger sam<br>ulk sampl                | e      | pp<br>S  |                                                                        | enetration test                  | CLASSIFICATI<br>SYMBOLS AND<br>SOIL DESCRIF | D   |
| S<br>C<br>V<br>T | Sp<br>C Co<br>V-E<br>C Tur | ngsten              | Core Carbi    | Ni<br>r<br>de Bit   | B Rock B<br>I No sup             |                                       |                 | Wp Plastic limit R Refu<br>flow Wl Liquid limit                                 | sal St St<br>VSt V<br>H Ha              | iff D Dense<br>ery Stiff VD Very D            | D D<br>Dense M M<br>Ux Ti | isturbed s<br>oisture co<br>ube samp |        | DC<br>FD | S Vane shear<br>CP Dynamic<br>penetromo<br>Field densit<br>S Water sam | cone<br>eter<br>y                | Y USCS<br>N Agricultur                      | al  |
| E                | Exca                       | avator              | back          | noe bucket          |                                  | EXCAVATI                              | ON L            | OG TO BE READ IN CONJUN                                                         | ICTION WITH A                           | ACCOMPANYING R                                | EPORT NOTF                | S AND                                | ABBRF\ | VIATIO   | )NS                                                                    |                                  |                                             |     |
| et No. 4         |                            |                     | )             |                     |                                  | 2                                     |                 |                                                                                 | MARTENS &                               | ASSOCIATES PTY I<br>, 20 George Street        |                           |                                      |        |          |                                                                        | erina                            | Log -                                       |     |

Document Set 100 820376 Version: 1, Version Date: 24/11/2021 MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

|                            | O IL                                           |                                                              | +                              |                                  |                                               |                        | ty Grou            |                             | y Liu                                                                                    | LOGGED                                  | 7.10.15                                   |                                                          | CHECKED                                    | JF                                                                                                          | ,. 10                                          |                     |         | KEF                          | 1 P202                                                             |
|----------------------------|------------------------------------------------|--------------------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------|------------------------|--------------------|-----------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|---------|------------------------------|--------------------------------------------------------------------|
| PR                         | OJE                                            | :CT                                                          |                                |                                  |                                               |                        | estigatio          |                             | 200                                                                                      | GEOLOGY                                 | BM<br>Bringelly S                         | tholo                                                    | VEGETATION                                 | -                                                                                                           | nee                                            |                     |         | Sheet 1 of PROJECT NO.       | F 1                                                                |
| -                          | IPME                                           | NT                                                           | 30                             | outh we                          | _                                             |                        | n Urban<br>cavator | VIII                        | age                                                                                      | EASTING                                 | - Bringelly S                             | naie                                                     | RL SURFAC                                  |                                                                                                             | 155                                            |                     |         | PROJECT NO.                  | P1504996                                                           |
| -                          |                                                |                                                              | DIMEN                          | SIONS                            | _                                             |                        | I.4 m depth        |                             |                                                                                          | NORTHING                                | -                                         |                                                          | ASPECT                                     | Eas                                                                                                         | st                                             |                     |         | SLOPE                        | <5%                                                                |
|                            | ΕX                                             | CA\                                                          | /AT                            | ION DA                           | TA                                            |                        |                    |                             | MAT                                                                                      | ERIAL DA                                | Γ <b>A</b>                                |                                                          |                                            |                                                                                                             |                                                | SA                  | MPLIN   | G & TESTI                    | NG                                                                 |
| МЕТНОВ                     | SUPPORT                                        | WATER                                                        | MOISTURE                       | DEPTH (M)                        | L DRILLING                                    |                        | GRAPHIC LOG        | CLASSIFICATION              | SOIL NAME, plasti<br>colour, seconda<br>moisture condition,<br>ROCK NAME, gra            | ry and minor comp<br>consistency/relati | racteristics,<br>ponents,<br>ive density, |                                                          | CONSISTENCY                                | DENSITY INDEX                                                                                               | TYPE                                           | DEPTH (M)           | А       |                              | TS AND<br>BSERVATIONS                                              |
| E                          | Nil                                            | N                                                            | М                              | _                                |                                               |                        | × × × × × × ×      | xx                          | Fill: Silty CLAY - L<br>dark brown/browi                                                 | n, with fine gr                         | ained san                                 | ty,<br>nd                                                |                                            |                                                                                                             | E                                              | 0.15                | 4996/TP | 202/0.15                     | - Fill                                                             |
|                            |                                                |                                                              |                                | 0.3                              |                                               |                        | × × × ×            |                             | and gravels                                                                              | (5-10 mm, 10                            | -20%).                                    |                                                          |                                            |                                                                                                             |                                                |                     |         | - Brick and tile i           | inclusions.                                                        |
|                            |                                                |                                                              |                                |                                  |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             | E                                              | 0.5                 | 4996/TF | 2202/0.5                     | - Residual                                                         |
| Е                          | Nil                                            | N                                                            | D                              | _<br>_<br>                       |                                               |                        |                    | CL                          | CLAY - low to medi<br>trace t                                                            | ium plasticity<br>fine gravels.         | , grey / wh                               | nite,                                                    | S-F                                        |                                                                                                             | E                                              | 1.0                 | 4996/TF | <sup>2</sup> 202/1.0         | 1                                                                  |
|                            |                                                |                                                              |                                | 1.4                              |                                               |                        |                    |                             |                                                                                          | ninated at 1.4                          |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             | clay/low                                                                                 | strength sha                            | e.                                        |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | -                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              | 2                                                                  |
|                            |                                                |                                                              |                                | 2.0                              |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              | 2                                                                  |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | 2.5                              |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | 3.0                              |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              | 3                                                                  |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                |                                  |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | 4.0                              |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              | 4                                                                  |
|                            |                                                |                                                              |                                | -                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _                                |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              |                                                                    |
|                            |                                                |                                                              |                                | _<br><u>4</u> .5                 |                                               |                        |                    |                             |                                                                                          |                                         |                                           |                                                          |                                            |                                                                                                             |                                                |                     |         |                              | 4                                                                  |
| N<br>X<br>H<br>S<br>C<br>V | Na<br>E:<br>A Ha<br>Sp<br>C Co<br>V-E<br>C Tur | atural oxisting<br>and au<br>bade<br>ncrete<br>Bit<br>ngsten | exposi<br>ger<br>Core<br>Carbi | ure SF<br>vation SC<br>RE<br>Nii | JPPOR<br>H Shor<br>C Shor<br>B Rock<br>I No s | ing<br>crete<br>k Bolt | ts  Wat            | e obse<br>measu<br>ter leve | ıred M Moist M Mod<br>el W Wet H High<br>Wp Plastic limit R Refu<br>flow WI Liquid limit | VS V erate S S F F sal St St VSt V H H  | ery Soft \ oft                            | DENSITY /L Very Loo Loose MD Medium D Dense /D Very Dens | Se A Au B Bu Dense U Ui D Di se M Mo Ux Tu | PLING & T<br>uger sample<br>ulk sample<br>ndisturbed<br>sturbed si<br>bisture co<br>ube sample<br>vironment | elle<br>I sample<br>ample<br>ntent<br>e (x mm) | pr<br>S<br>V:<br>D: |         | nic cone<br>ometer<br>onsity | CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION  Y USCS N Agricultural |
| Ë                          |                                                |                                                              | Jaon                           | o Duonet                         |                                               | E                      | XCAVATI            | ON L                        | OG TO BE READ IN CONJUN                                                                  | ICTION WITH                             | ACCOMPAI                                  | NYING REP                                                | ORT NOTES                                  | S AND A                                                                                                     | BBRE                                           | VIATIO              | ONS     |                              |                                                                    |
| et No. 4                   |                                                |                                                              | )                              |                                  |                                               |                        |                    |                             |                                                                                          | MARTENS & .<br>Suite 201                | ASSOCIAT<br>I, 20 Georg                   |                                                          | )                                          |                                                                                                             | F                                              | nc                  | nine    | erina                        | Loa -                                                              |

Document Set 100 820376 Version: 1, Version Date: 24/11/2021 MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

|                    | EN                                                                                                                    |                                                       | +        |                                     |                               |                  | y Grou                                   |                              | Lta                       |                                                     |                                                                         | +                                       | ENCED                                             | 7.10.15                               |                                | -    | COMPLET                            |                                                                                                 | 0.15                                           |               |                                                                                                                                                                                                                             | REF                                         | TP203                                                  | •                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|-------------------------------------|-------------------------------|------------------|------------------------------------------|------------------------------|---------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|---------------------------------------|--------------------------------|------|------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------|
|                    | OJECT Detailed Site  South Werring    5 To                                                                            |                                                       |          |                                     |                               |                  |                                          |                              |                           |                                                     |                                                                         | LOGGI                                   | ED                                                | BM                                    |                                |      | CHECKED                            | ) JF                                                                                            |                                                |               |                                                                                                                                                                                                                             | Sheet 1 o                                   | f <b>1</b>                                             |                         |
| SIT                | South Werring  JIPMENT 5 Ton  AVATION DIMENSIONS 600mm  EXCAVATION DATA                                               |                                                       |          |                                     |                               |                  |                                          | Villa                        | ge                        |                                                     |                                                                         | GEOL                                    |                                                   | Bringelly                             | / Shale                        |      | VEGETAT                            |                                                                                                 | ass                                            |               | !                                                                                                                                                                                                                           | PROJECT NO                                  | P1504996                                               |                         |
|                    | UIPMENT 5 Tonne excavator CAVATION DIMENSIONS 600mm X 1.0 m depth  EXCAVATION DATA                                    |                                                       |          |                                     |                               |                  |                                          |                              |                           |                                                     |                                                                         | EASTI                                   |                                                   | -                                     |                                |      | RL SURFA                           |                                                                                                 |                                                |               |                                                                                                                                                                                                                             |                                             |                                                        |                         |
| EXC                |                                                                                                                       |                                                       |          |                                     |                               | ım X 1           | .0 m depth                               |                              |                           |                                                     | 84.67                                                                   | NORTI                                   |                                                   | -<br>·^                               |                                |      | ASPECT                             | Ea                                                                                              | st                                             | C A           |                                                                                                                                                                                                                             | LOPE                                        | <5%                                                    |                         |
| МЕТНОО             | SUPPORT                                                                                                               | WATER                                                 | MOISTURE | DEPTH (M)                           | DRILLING                      | RESISTANCE       | GRAPHIC LOG                              | CLASSIFICATION               |                           | cold<br>moistu                                      | MATERIA<br>NAME, plasti<br>our, seconda<br>ure condition<br>K NAME, gra | icity or pa<br>ary and mi<br>, consiste | rticle char<br>nor comp<br>ncy/relativexture/fabi | acteristics<br>onents,<br>ve density, |                                |      | CONSISTENCY                        | DENSITY INDEX                                                                                   | ТУРЕ                                           | DEPTH (M)     |                                                                                                                                                                                                                             |                                             | TS AND<br>DBSERVATIONS                                 |                         |
| Е                  | Nil                                                                                                                   | N                                                     | М        | -                                   |                               |                  | * * * *<br>* * * *<br>* * * *<br>* * * * | xx                           |                           | dark bro                                            | CLAY - lown/brow<br>I gravels                                           | n, with                                 | fine gra                                          | ained sa                              | city,<br>and                   |      |                                    |                                                                                                 | Е                                              | 0.15          | 4996/TP2                                                                                                                                                                                                                    | 03 /0.15<br>- Brick and tile                | - Fill inclusions.                                     | -                       |
| E                  | Nil                                                                                                                   | N                                                     | D        | 0.3<br>-<br>-<br>-<br>-<br>-<br>1.0 |                               |                  |                                          | CL                           | C                         | :LAY - Io                                           | w to med<br>trace                                                       | ium pla                                 |                                                   | grey / \                              | vhite,                         |      | S-F                                |                                                                                                 | E                                              | 0.5           | 4996/TP2                                                                                                                                                                                                                    |                                             | - Residual                                             | -<br>-<br>-<br>-<br>1.0 |
|                    |                                                                                                                       |                                                       |          |                                     | JPPOF                         |                  | WATER                                    |                              |                           | Te                                                  | PENETF                                                                  | clay.                                   |                                                   | m on                                  | DENSIT                         |      |                                    | PLING &                                                                                         |                                                |               |                                                                                                                                                                                                                             |                                             | CLASSIFICATIO                                          |                         |
| S<br>C(<br>V<br>T( | Ha<br>Sp<br>Coo<br>V-E<br>Tun                                                                                         | xisting<br>and aug<br>adde<br>ncrete<br>Bit<br>agsten | Corer    | ation SC<br>RE<br>Nil               | H Sho<br>Sho<br>B Roo<br>I No | tcrete<br>k Bolt | s 🅎 Wat                                  | measu<br>er leve<br>er outfl | red M<br>W<br>Wp<br>ow WI | Dry<br>Moist<br>Wet<br>Plastic limi<br>Liquid limit | L Low<br>M Mod<br>H High<br>it R Refu                                   | lerate                                  | S So<br>F Fir<br>St Stir                          | m<br>ff<br>ry Stiff<br>rd             | L Loc                          |      | B I<br>nse U I<br>D I<br>M I<br>Ux | Auger sam<br>Bulk sample<br>Undisturbe<br>Disturbed s<br>Moisture co<br>Tube samp<br>Environmen | e<br>d sample<br>sample<br>ontent<br>le (x mm) | S<br>VS<br>DO | Standard p | enetration test<br>r<br>cone<br>leter<br>ty | SYMBOLS AND<br>SOIL DESCRIP<br>Y USCS<br>N Agricultura | TION                    |
|                    | E Excavator backhoe bucket  EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS |                                                       |          |                                     |                               |                  |                                          |                              |                           |                                                     |                                                                         |                                         |                                                   |                                       |                                |      |                                    |                                                                                                 |                                                |               |                                                                                                                                                                                                                             |                                             |                                                        |                         |
| et No. 4           |                                                                                                                       |                                                       | )        |                                     |                               | Е                | XCAVATI                                  | ON LO                        | OG TO BE                  | READ IN                                             | I CONJUN                                                                | MART                                    | ENS & A                                           | SSOCIA                                | ANYING<br>ATES PT<br>rge Stree | YLTD | RT NOTI                            | ES AND A                                                                                        |                                                |               |                                                                                                                                                                                                                             | erina                                       | Log -                                                  |                         |

Document Set III) 820376 Version: 1, Version Date: 24/11/2021 MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George Street Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

| CL                    | IEN                                                                                       | Т                                            | U                            | niversal                                                             | Pro                      | per                     | ty Grou                           | p Pt                                  | y Ltd                                                                | COMMENCED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.10.15                                                                    | COMPLET                                    | ED 7                                                                    | .10.15                             |                     |         | REF                           | <b>TP204</b>                                                        |
|-----------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|----------------------------------------------------------------------|--------------------------|-------------------------|-----------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|------------------------------------|---------------------|---------|-------------------------------|---------------------------------------------------------------------|
| PR                    | OJE                                                                                       | СТ                                           | De                           | etailed S                                                            | lte l                    | Inve                    | estigatio                         | n                                     |                                                                      | LOGGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                         | CHECKED                                    | ,                                                                       | IF                                 |                     |         | Sheet 1                       | of <b>1</b>                                                         |
| SI                    |                                                                                           |                                              | S                            |                                                                      |                          | _                       | n Urban                           | Villa                                 | age                                                                  | GEOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bringelly Shale                                                            | VEGETAT                                    | _                                                                       | Grass                              |                     |         | PROJECT NO                    | D. P1504996                                                         |
| -                     | IPME                                                                                      |                                              | DIMEN                        |                                                                      |                          |                         | cavator<br>1.1 m depth            |                                       |                                                                      | EASTING<br>NORTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                          | RL SURFA<br>ASPECT                         |                                                                         | ast                                |                     |         | SLOPE                         | <5%                                                                 |
| <u> </u>              |                                                                                           |                                              |                              | ION DAT                                                              |                          |                         |                                   |                                       | M.A                                                                  | TERIAL DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | 7.0. 20.                                   |                                                                         |                                    | SA                  |         | G & TEST                      |                                                                     |
| МЕТНОВ                | SUPPORT                                                                                   | WATER                                        | MOISTURE                     | DEPTH(M)                                                             |                          | RESISTANCE              | GRAPHIC LOG                       | CLASSIFICATION                        | MATER SOIL NAME, plat colour, second moisture condition ROCK NAME, p | IAL DESCRIPTIO<br>sticity or particle cha<br>lary and minor comp<br>n, consistency/relati<br>rain size, texture/fab<br>ngth, weathering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pn<br>racteristics,<br>ionents,<br>we density,                             | CONSISTENCY                                | DENSITY INDEX                                                           | TYPE                               | DEPTH (M)           | A       |                               | LTS AND<br>OBSERVATIONS                                             |
| Е                     | Nil                                                                                       | N                                            | М                            | -<br>-<br>0.3                                                        |                          |                         | × × × × × × × × × × × × × × × × × | xx                                    |                                                                      | Low to mediung the contract of | ained sand                                                                 |                                            |                                                                         | E                                  | 0.15                | 4996/Ti | 204 /0.15<br>- Brick and tile | - Fill<br>e inclusions.                                             |
| Е                     | Nil                                                                                       | N                                            | D                            | -<br>-<br>-<br>-<br>-<br>1.0                                         |                          |                         |                                   | CL                                    | CLAY - low to me<br>trace                                            | dium plasticity,<br>fine gravels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | grey / white,                                                              | S-F                                        |                                                                         | Е                                  | 0.5                 | 4996/TF | 2204/0.5                      | - Residual                                                          |
|                       |                                                                                           |                                              |                              | 1.1<br>-<br>-<br>-<br>-                                              |                          |                         |                                   |                                       | Testpit te                                                           | minated at 1.1<br>clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m on                                                                       |                                            |                                                                         |                                    |                     |         |                               |                                                                     |
|                       |                                                                                           |                                              |                              |                                                                      |                          |                         |                                   |                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                            |                                                                         |                                    |                     |         |                               | 21                                                                  |
|                       |                                                                                           |                                              |                              | 3.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                          |                         | WATER                             |                                       |                                                                      | TRATION CONSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STENCY DENSITY                                                             | SAN                                        | IDI INC S                                                               | , TESTING                          |                     |         |                               | 4.                                                                  |
| N<br>X<br>S<br>C<br>V | A Ha<br>Sp<br>C Co<br>V-E<br>C Tur                                                        | atural existing and au ade ncrete Bit ngsten | expos<br>ger<br>Core<br>Carb | ure SH<br>vation SC<br>RB<br>Nil                                     | PPOF<br>Sho<br>Sho<br>No | ring<br>tcrete<br>k Bol | N None<br>≥ X Note<br>ts          | e obse<br>measu<br>er leve<br>er outf | erved D Dry L Lo ured M Moist M M. el W Wet H Hig                    | w VS Venderate S S ph F Fi fusal St St VSt Ven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ery Soft VL Very Loft L Loose rm MD Medium ff D Dense ery Stiff VD Very De | Dose A A B B B B B B B B B B B B B B B B B | Auger san<br>Bulk sam<br>Undisturb<br>Disturbed<br>Moisture<br>Tube sam | mple<br>ole<br>ed sample<br>sample | pp<br>S<br>VS<br>D( |         | ic cone<br>meter<br>sity      | CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION  Y USCS  N Agricultural |
|                       | EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS |                                              |                              |                                                                      |                          |                         |                                   |                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                            |                                                                         |                                    |                     |         |                               |                                                                     |
| t No. 4               |                                                                                           |                                              | )                            |                                                                      |                          |                         |                                   |                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASSOCIATES PTY LT                                                          | D                                          |                                                                         | F                                  | nc                  | nine    | erinc                         | Log -                                                               |

Document Set III) 98/03/6 Version: 1, Version Date: 24/11/2021 MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

| _                          | IEN                                           |                                                              | _                              |                                 |                                      |                          | ty Grou                   |                             | y Lta                                                                                                         | COMMENCED                                                                                                      | 7.10.15                                  |                                     | COMPLETE    | _                                                                             | 1.15                                 |                                        | _ RE                                                                                                       | F      | TP2                 | :05                                      |
|----------------------------|-----------------------------------------------|--------------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------------|--------------------------|---------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|-------------|-------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|--------|---------------------|------------------------------------------|
| -                          | OJE                                           | СТ                                                           | +                              |                                 |                                      |                          | stigatio                  |                             |                                                                                                               | LOGGED                                                                                                         | BM                                       |                                     | CHECKED     | JF                                                                            |                                      |                                        |                                                                                                            |        | 1                   |                                          |
| SIT                        | JIPME                                         | NT                                                           | S                              | outh We                         |                                      |                          | urban<br>cavator          | VIII                        | age                                                                                                           | GEOLOGY<br>EASTING                                                                                             | Bringelly Sh                             | nale                                | RL SURFA    |                                                                               | ISS                                  |                                        | PROJE                                                                                                      | CT NO. | P1504996            |                                          |
| _                          |                                               |                                                              | IMEN                           | SIONS                           | _                                    |                          | .1 m depth                |                             |                                                                                                               | NORTHING                                                                                                       | -                                        |                                     | ASPECT      | Eas                                                                           | st .                                 |                                        | SLOPE                                                                                                      | <      | 5%                  |                                          |
|                            | EX                                            | CA                                                           | /AT                            | ON DA                           | TA                                   |                          |                           |                             | MAT                                                                                                           | ERIAL DAT                                                                                                      | Ά                                        |                                     |             |                                                                               |                                      | SAMP                                   | LING & T                                                                                                   | ESTIN  | G                   |                                          |
| METHOD                     | SUPPORT                                       | WATER                                                        | MOISTURE                       | DEPTH (M)                       | L DRILLING                           |                          | GRAPHIC LOG               | CLASSIFICATION              | MATERIA  SOIL NAME, plastic colour, secondal moisture condition ROCK NAME, gra                                | L DESCRIPTION City or particle charty and minor complete consistency/relati                                    | racteristics,<br>conents,<br>ve density, |                                     | CONSISTENCY | DENSITY INDEX                                                                 | TYPE                                 | DEPTH (M)                              | F                                                                                                          | RESULT |                     | IONS                                     |
| Е                          | Nil                                           | N                                                            | М                              | -<br>0.2                        |                                      |                          | × × ×<br>× × ×<br>× × ×   | OL                          | Silty SAND - Fine g                                                                                           | ırained, light                                                                                                 | orown/brov                               | vn.                                 |             |                                                                               |                                      |                                        |                                                                                                            |        | - Topso             | oil<br>-                                 |
| Е                          | Nil                                           | N                                                            | М                              | 0.4                             |                                      |                          |                           | CL                          | Silty CLAY - Low to m                                                                                         | edium plastic                                                                                                  | city, light b                            | rown.                               | S-F         |                                                                               |                                      |                                        |                                                                                                            |        | - Resid             | ual                                      |
| Е                          | Nil                                           | N                                                            | D                              |                                 |                                      |                          |                           | CL                          | CLAY - Low to med<br>trace f                                                                                  | lium plasticit<br>ine gravels.                                                                                 | /, grey/whi                              | te,                                 | S-F         |                                                                               |                                      |                                        |                                                                                                            |        | - Resid             | ual -<br>-<br>-<br>-<br>-<br>1 <u>.0</u> |
|                            |                                               |                                                              |                                | 1.1                             |                                      |                          |                           |                             | Testpit tern                                                                                                  | ninated at 1.1                                                                                                 | m on                                     |                                     |             |                                                                               |                                      |                                        |                                                                                                            |        |                     |                                          |
| E                          | QUIP                                          | MENT                                                         | /ME                            |                                 | JPPOR                                |                          | WATER                     |                             | MOISTURE PENETR                                                                                               | ATION CONSI                                                                                                    | STENCY D                                 | ENSITY                              |             | PLING & T                                                                     |                                      |                                        |                                                                                                            |        | CLASSIFI            | 2.0<br>                                  |
| N<br>X<br>F<br>S<br>C<br>V | I Na<br>EIA Ha<br>Sp<br>CC Co<br>V-E<br>C Tur | atural oxisting<br>and au<br>bade<br>ncrete<br>Bit<br>ngsten | exposi<br>excar<br>ger<br>Core | ure St<br>vation SC<br>RE<br>Ni | H Shor<br>C Shot<br>B Rock<br>I No s | ring<br>tcrete<br>k Bolt | N Non<br>X Not<br>s W Wat | e obse<br>measu<br>ter leve | erved D Dry L Low<br>ured M Moist M Mod<br>el W Wet H High<br>Wp Plastic limit R Refu<br>flow WI Liquid limit | VS Volumerate S S F Fi Sal St St VSt Volumerate S S St St VSt Volumerate S S S S S S S S S S S S S S S S S S S | ery Soft VI<br>oft L<br>rm M<br>iff D    | L Very Loos<br>Loose<br>D Medium De | e M M       | uger samp ulk sample ndisturbed isturbed sa oisture con ube sample nvironment | sample<br>ample<br>ntent<br>e (x mm) | S Sta<br>VS Va<br>DCP D<br>p<br>FD Fie | cket penetrome<br>indard penetrati<br>ne shear<br>dynamic cone<br>enetrometer<br>Id density<br>ater sample |        | SYMBOL:<br>SOIL DES | S AND<br>SCRIPTION                       |
| $\vdash$                   |                                               |                                                              |                                |                                 |                                      | -                        | Χ. Δ. / Λ.Τ.              | ON 1                        | OG TO BE READ IN CONJUN                                                                                       | CTION WITH A                                                                                                   | CCOMPAN                                  | IVING REDO                          | DRT NOT⊏    | SANDA                                                                         | BBBEV                                | ΊΔΤΙΩΝΙς                               |                                                                                                            |        |                     |                                          |
| et No. 4                   |                                               |                                                              | )                              |                                 |                                      |                          | -NOAVAII                  | OIN L                       | CO TO BE READ IN CONJUN                                                                                       | MARTENS &                                                                                                      |                                          | S PTY LTD                           |             | J AND A                                                                       |                                      |                                        | neeri                                                                                                      | na     | l on                | · -                                      |

martens
Document Set In 1982/03-76 Sociates Pty. Ltd. 2014

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George Street Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

|                       | IEIN                                  |                                                                                                                                          | _                                  |                            |                  |                  | ıy Grou                       |                   | y Liu                                                                                    | LOGGED                                                                        | 7.10.15                                   |                                                                  | CHECKED                           | _                                                          | IF                         |               | KE                                                                                                                                                 |         | 1 P206                                             | ,                  |
|-----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|------------------|------------------|-------------------------------|-------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|----------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------|--------------------|
| -                     |                                       | Detailed Site Investigation  South Werrington Urban Village  TION DIMENSIONS  Site Investigation  5 Tonne excavator  600mm X 1.0 m depth |                                    |                            |                  |                  |                               |                   |                                                                                          | 1                                                                             | BM                                        |                                                                  |                                   |                                                            |                            |               |                                                                                                                                                    |         | 1                                                  |                    |
| SIT                   |                                       | NT                                                                                                                                       | S                                  | outh We                    | _                |                  |                               | Villa             | age                                                                                      | GEOLOGY<br>EASTING                                                            | Bringelly                                 | Shale                                                            | VEGETAT                           |                                                            | Brass                      |               | PROJI                                                                                                                                              | ECT NO. | P1504996                                           |                    |
| _                     |                                       |                                                                                                                                          | DIMEN                              | ISIONS                     | +                |                  |                               |                   |                                                                                          | NORTHING                                                                      | -                                         |                                                                  | RL SURFA                          |                                                            | ast                        |               | SLOPE                                                                                                                                              |         | :5%                                                |                    |
|                       |                                       |                                                                                                                                          |                                    | ION DA                     | _                |                  | io iii dopiii                 |                   | MAT                                                                                      | ERIAL DA                                                                      | ГА                                        |                                                                  | 7.0. 20.                          |                                                            |                            | SA            | MPLING & 1                                                                                                                                         |         |                                                    |                    |
| METHOD                | SUPPORT                               | WATER                                                                                                                                    |                                    | DEPTH (M)                  | L DRILLING       |                  | GRAPHIC LOG                   | CLASSIFICATION    | MATERIA SOIL NAME, plastic colour, secondal moisture condition, ROCK NAME, gra           | L DESCRIPTION  city or particle chary and minor components consistency/relate | racteristics,<br>ponents,<br>ive density, |                                                                  | CONSISTENCY                       | DENSITY INDEX                                              | TYPE                       | DEPTH (M)     |                                                                                                                                                    | RESULT  |                                                    | ;                  |
| E                     | Nil                                   | N                                                                                                                                        | М                                  | _                          |                  |                  | × × ×<br>× × ×<br>× × ×       | OL                | Silty SAND - Fine g                                                                      | grained, light                                                                | brown/br                                  | own.                                                             |                                   |                                                            |                            |               |                                                                                                                                                    |         | - Topsoil                                          |                    |
| E                     | Nil                                   | N                                                                                                                                        | М                                  | 0.2                        |                  |                  |                               | CL                | Silty CLAY - Low to m                                                                    | edium plasti                                                                  | city, light                               | brown.                                                           | S-F                               |                                                            |                            |               |                                                                                                                                                    |         | - Residual                                         |                    |
| E   Nil   N   M   D   |                                       |                                                                                                                                          |                                    |                            |                  |                  |                               |                   | CLAY - Low to med<br>trace f                                                             |                                                                               | y, grey/wl                                |                                                                  | S-F                               |                                                            |                            |               |                                                                                                                                                    |         | - Residual                                         | - 1.0<br>- 1.0<br> |
|                       |                                       |                                                                                                                                          |                                    | THOD SI                    |                  |                  |                               |                   |                                                                                          |                                                                               |                                           | DENSITY                                                          |                                   | IPLING &                                                   | TESTING                    |               | Pocket nenetra                                                                                                                                     | eter    | CLASSIFICATION SYMBOLS AND                         |                    |
| X<br>H<br>S<br>C<br>V | E E E E E E E E E E E E E E E E E E E | xisting<br>and au<br>pade<br>oncrete<br>Bit<br>ngster                                                                                    | g exca<br>uger<br>e Core<br>n Carb | vation S0<br>Ri<br>Ni<br>r | C Shot<br>B Rock | tcrete<br>k Bolt | X Not<br>s <u>Ψ</u> Wat<br>rt | measu<br>ter leve | rred M Moist M Mod<br>el W Wet H High<br>Wp Plastic limit R Refu<br>llow WI Liquid limit | erate S S<br>F F<br>sal St Si<br>VSt V<br>H H                                 | oft<br>irm<br>iff                         | VL Very Loo<br>L Loose<br>MD Medium D<br>D Dense<br>VD Very Dens | B E<br>Dense U I<br>D I<br>se M M | Bulk sam<br>Undisturb<br>Disturbed<br>Moisture<br>Tube san | ole<br>ed sample<br>sample | S<br>VS<br>DC | Pocket penetrome<br>Standard penetra<br>Standard penetra<br>Standard penetro<br>CP Dynamic cone<br>penetrometer<br>Field density<br>S Water sample |         | SYMBOLS AND<br>SOIL DESCRIP  Y USCS  N Agricultura | TION               |
| 40.4                  |                                       |                                                                                                                                          | _                                  |                            |                  | Е                | XCAVATI                       | ON LO             | OG TO BE READ IN CONJUN                                                                  | MARTENS &                                                                     | ASSOCIAT                                  | TES PTY LTC                                                      |                                   | ES AND                                                     |                            |               |                                                                                                                                                    | !.a ==  | 1                                                  |                    |
| E                     | -                                     |                                                                                                                                          |                                    |                            |                  |                  |                               |                   |                                                                                          |                                                                               | 1 20 Georg                                |                                                                  |                                   | - 1                                                        | <b>—</b>                   | nn            | nineer                                                                                                                                             | ma      | 1 00 -                                             |                    |

martens
Document Set India 1982/033765 Ociates Pty. Ltd. 2014

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George Street Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

| CL                                                                                                                                                                                       | IEN                                   | Т                                             | U                       | niversal                                                                     | Pro                                         | pert                     | y Grou                                | Pt                         | y Ltd                                                                                    | COMMENCED                                                                          | 7.10.15                                         | COMPLET                             | ED 7.                                                          | 10.15                                 |                     |                                               | REF                            | <b>TP207</b>                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|-------------------------|------------------------------------------------------------------------------|---------------------------------------------|--------------------------|---------------------------------------|----------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------|---------------------|-----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                        | OJE                                   | СТ                                            | D                       | etailed S                                                                    | ite l                                       | nve                      | stigatio                              | n                          |                                                                                          | LOGGED                                                                             | ВМ                                              | CHECKE                              | ) J                                                            | F                                     |                     |                                               | Sheet 1                        | of <b>1</b>                                                                                             |
| _                                                                                                                                                                                        | ΓΕ                                    |                                               | S                       | outh We                                                                      |                                             | _                        |                                       | Villa                      | age                                                                                      | GEOLOGY                                                                            | Bringelly Shale                                 | VEGETAT                             |                                                                | irass                                 |                     |                                               | PROJECT NO                     | D. P1504996                                                                                             |
| -                                                                                                                                                                                        | JIPME                                 |                                               | DIME                    | ISIONS                                                                       |                                             |                          | .0 m depth                            |                            |                                                                                          | EASTING<br>NORTHING                                                                | -                                               | ASPECT                              |                                                                | ast                                   |                     |                                               | SLOPE                          | <5%                                                                                                     |
|                                                                                                                                                                                          |                                       |                                               |                         | ION DA                                                                       |                                             |                          | .o m dopan                            |                            | MAT                                                                                      | ERIAL DAT                                                                          |                                                 | 7.0. 20.                            |                                                                |                                       | SA                  |                                               | G & TEST                       |                                                                                                         |
| METHOD                                                                                                                                                                                   | SUPPORT                               | WATER                                         | MOISTURE                | DEPTH(M)                                                                     | DRILLING                                    |                          | GRAPHIC LOG                           | CLASSIFICATION             | MATERIA<br>SOIL NAME, plasti<br>colour, seconda<br>moisture condition,<br>ROCK NAME, gra | AL DESCRIPTIC<br>city or particle char<br>ry and minor comp<br>consistency/relativ | racteristics,<br>onents,<br>ve density,         | CONSISTENCY                         | DENSITY INDEX                                                  | TYPE                                  | DEPTH (M)           | А                                             |                                | LTS AND<br>OBSERVATIONS                                                                                 |
| Е                                                                                                                                                                                        | Nil                                   | N                                             | М                       |                                                                              |                                             |                          | × × × × × × × × × × × × × × × × × × × | xx                         | Fill: Silty CLAY - L<br>dark brown/brow<br>and gravels                                   | ow to mediur<br>n, with fine gr<br>(5-10 mm, 10                                    | ained sand                                      |                                     |                                                                | E                                     | 0.15                | 4996/7                                        | P207 /0.15<br>- Brick and tile | - Fill -<br>-<br>e inclusions<br>-                                                                      |
| E                                                                                                                                                                                        |                                       |                                               |                         |                                                                              |                                             |                          |                                       | CL                         | CLAY - low to medi<br>trace t                                                            | um plasticity,<br>fine gravels.                                                    | grey / white,                                   | S-F                                 |                                                                | Е                                     | 0.75                | 4996/T                                        | P207/0.75                      | - Residual -<br>-<br>-<br>-<br>-<br>1 <u>.0</u>                                                         |
|                                                                                                                                                                                          |                                       |                                               |                         |                                                                              |                                             |                          |                                       |                            | Testpit tern                                                                             | ninated at 1.2<br>clay.                                                            | m on                                            |                                     |                                                                |                                       |                     |                                               |                                | -<br>-<br>-<br>-<br>-                                                                                   |
|                                                                                                                                                                                          |                                       |                                               |                         |                                                                              |                                             |                          |                                       |                            |                                                                                          |                                                                                    |                                                 |                                     |                                                                |                                       |                     |                                               |                                | -<br>2.0<br>-<br>-<br>-<br>-<br>-<br>-                                                                  |
|                                                                                                                                                                                          |                                       |                                               |                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                             |                          |                                       |                            |                                                                                          |                                                                                    |                                                 |                                     |                                                                |                                       |                     |                                               |                                | -<br>3.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1<br>(<br>)<br>(                                                                                                                                                                         | I Na<br>C E<br>IA Ha<br>S Sp<br>CC Co | atural<br>xisting<br>and au<br>bade<br>ncrete | expos<br>g exca<br>iger | ure SH<br>vation SC<br>RE<br>Nil                                             | JPPOR<br>I Shor<br>C Shot<br>B Rock<br>No s | ring<br>crete<br>k Bolts | s <u>▼</u> Wat<br>rt                  | e obse<br>measu<br>er leve | ured M Moist M Mod<br>el W Wet H High<br>Wp Plastic limit R Refu                         | VS Ve<br>erate S Se<br>F Fii<br>sal St Sti<br>VSt Ve                               | m MD Mediu<br>ff D Dense<br>ery Stiff VD Very D | Loose A B I m Dense U D I lense M M | Auger san<br>Bulk samp<br>Undisturb<br>Disturbed<br>Moisture o | ile<br>ed sample<br>sample<br>content | pr<br>S<br>V:<br>D: | Standard<br>S Vane she<br>CP Dynam<br>penetro | ic cone<br>meter               | Y USCS                                                                                                  |
| CC Concrete Corer  V V-Bit  TC Tungsten Carbide Bit  E Excavator backhoe bucket  Water outflow WI Liquid limit  H Hard  F Friable  EXCAVATION LOG TO BE READ IN CONJUNCTION WITH ACCOMPA |                                       |                                               |                         |                                                                              |                                             |                          |                                       |                            |                                                                                          |                                                                                    |                                                 | E E                                 | nvironme                                                       | ple (x mm<br>ntal samp                | e w                 | O Field der<br>/S Water sa<br>ONS             |                                | N Agricultural                                                                                          |
| t No. 4                                                                                                                                                                                  |                                       |                                               | )                       |                                                                              |                                             |                          |                                       |                            |                                                                                          | MARTENS & A                                                                        | ASSOCIATES PTY L<br>, 20 George Street          |                                     |                                                                |                                       |                     |                                               | erinc                          | a Loa -                                                                                                 |

Document Set ID 9820376
Version: 1, Version Date: 24/11/2021

MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

| CL                                                          | IEN                                | Т                                                                | Uı                           | niversal                                    | Pro                      | per                                 | ty Group                                | Pt                                                | y Ltd                                                                                    | COMMENCED                                                                        | 7.10.15                                            | COMPLET                                     | ED 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                          |                                      |                                                                            | REF                                | <b>TP208</b>                                                       |
|-------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|------------------------------|---------------------------------------------|--------------------------|-------------------------------------|-----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------|
| PROJECT Detailed Site Investigat SITE South Werrington Urba |                                    |                                                                  |                              |                                             |                          |                                     |                                         |                                                   |                                                                                          | LOGGED                                                                           | ВМ                                                 | CHECKED                                     | JF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                                      |                                                                            | Sheet 1                            | of <b>1</b>                                                        |
| -                                                           |                                    |                                                                  | S                            |                                             | _                        | _                                   |                                         | Villa                                             | age                                                                                      | GEOLOGY                                                                          | Bringelly Shale                                    | VEGETATI                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ass                                           |                                      |                                                                            | PROJECT                            | NO. P1504996                                                       |
| -                                                           | IPME                               |                                                                  | IMEN                         |                                             |                          |                                     | cavator<br>1.7 m depth                  |                                                   |                                                                                          | EASTING<br>NORTHING                                                              | -                                                  | RL SURFA<br>ASPECT                          | CE -<br>Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | st                                            |                                      |                                                                            | SLOPE                              | <5%                                                                |
|                                                             |                                    |                                                                  |                              | ION DAT                                     | _                        |                                     | III III GOPIII                          |                                                   | MAT                                                                                      | ERIAL DAT                                                                        |                                                    | 17.0. 20.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | SA                                   |                                                                            | G & TES                            |                                                                    |
| МЕТНОВ                                                      | SUPPORT                            | WATER                                                            | MOISTURE                     | DEPTH(M)                                    |                          | RESISTANCE                          | GRAPHIC LOG                             | CLASSIFICATION                                    | MATERIA SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grai          | L DESCRIPTIO<br>city or particle char<br>y and minor comp<br>consistency/relativ | on<br>racteristics,<br>onents,<br>we density,      | CONSISTENCY                                 | DENSITY INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TYPE                                          | DEPTH (M)                            | A                                                                          |                                    | ULTS AND<br>L OBSERVATIONS                                         |
| E                                                           | Nil                                | N                                                                | М                            | -                                           |                          |                                     | × × × × × × × × × × × × × × × × × × ×   | XX                                                | Fill: Silty CLAY - L<br>dark brown/browr<br>and gravels (                                | n, with fine gra                                                                 | ained sand                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Е                                             | 0.15                                 | 4996/TF                                                                    | 208/0.15<br>- Brick and            | - Fill<br>tile inclusions.                                         |
| E                                                           | Nil                                | N                                                                | D                            | 0.5<br>-<br>-<br>-<br>1.0                   |                          |                                     | × ^ × ^ × ^ × ^ · · · · · · · · · · · · | CL                                                | CLAY - low to medi<br>trace f                                                            | um plasticity,<br>îne gravels.                                                   | grey / white,                                      | S-F                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Е                                             | 0.65                                 | 4996/TF                                                                    | 208/0.65                           | - Residual                                                         |
| Е                                                           | Nil                                | N                                                                | D                            | -<br>-<br>-<br>1.7                          |                          |                                     |                                         |                                                   | SHALE - very low st                                                                      | rength, light l                                                                  | brown/ grey.                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    | - Residual                                                         |
|                                                             |                                    |                                                                  |                              | -                                           |                          |                                     |                                         |                                                   |                                                                                          | ninated at 1.7<br>strength shal                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    |                                                                    |
|                                                             |                                    |                                                                  |                              |                                             |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    | 2                                                                  |
|                                                             |                                    |                                                                  |                              | -                                           |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    |                                                                    |
|                                                             |                                    |                                                                  |                              |                                             |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    | 3                                                                  |
|                                                             |                                    |                                                                  |                              | -<br>-<br>-                                 |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    |                                                                    |
|                                                             |                                    |                                                                  |                              | -<br>-<br>-                                 |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    |                                                                    |
|                                                             |                                    |                                                                  |                              | <u>4.0</u><br>_<br>_<br>_                   |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    | 4                                                                  |
|                                                             |                                    |                                                                  |                              | _<br><u>4</u> .5                            |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  |                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                      |                                                                            |                                    | 4                                                                  |
| N<br>H<br>S<br>C                                            | A Ha<br>Sp<br>C Co<br>V-E<br>C Tur | atural e<br>xisting<br>and au<br>pade<br>ncrete<br>Bit<br>ngsten | expos<br>exca<br>ger<br>Core | THOD SU<br>ure SH<br>vation SC<br>RB<br>Nil | PPOF<br>Sho<br>Sho<br>No | oring<br>otcrete<br>ck Bol<br>suppo | lts <u>▼</u> Wate<br>ort <u></u>        | e obse<br>measu<br>er leve<br>er outf<br>er inflo | red M Moist M Mode<br>el W Wet H High<br>Wp Plastic limit R Refus<br>low WI Liquid limit | VS Ve erate S Sc F Fi sal St Sti VSt Ve H Ha F Fri CTION WITH A                  | ff D Dense<br>rry Stiff VD Very Der<br>ord<br>able | Dense A A B B B B B B B B B B B B B B B B B | PLING & - Luger sample  Julk sa | ble d sample ample intent le (x mm) tal sampl | PF<br>S<br>VS<br>DO<br>DO<br>FE<br>W | Standard<br>S Vane she<br>CP Dynam<br>penetro<br>D Field der<br>S Water sa | ic cone<br>ometer<br>sity<br>ample | CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION  Y USCS N Agricultural |
| E                                                           |                                    |                                                                  |                              |                                             |                          |                                     |                                         |                                                   |                                                                                          |                                                                                  | , 20 George Street                                 |                                             | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                             | nc                                   | anır                                                                       | erin                               | a Loa -                                                            |

Document Set ID 9820376
Version: 1, Version Date: 24/11/2021

MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

| CI       | IEN                                                         | T                                                    | U                      | niversal                   | Pro                    | per              | ty Grou                 | p Pt           | y Ltd                                                               | COMMENCED                                                                          | 7.10.15                                       | COMPLET                  | 7.1                                                                | 10.15                                       |                                            | REF                                                          | TP209                                      |
|----------|-------------------------------------------------------------|------------------------------------------------------|------------------------|----------------------------|------------------------|------------------|-------------------------|----------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| _        | ROJE                                                        | СТ                                                   | De                     | etailed S                  | Site                   | Inve             | estigatio               | n              |                                                                     | LOGGED                                                                             | ВМ                                            | CHECKE                   | ) JF                                                               |                                             |                                            | Sheet 1 o                                                    |                                            |
| _        | TE                                                          |                                                      | S                      | outh We                    | _                      | _                | n Urban                 | Vill           | age                                                                 | GEOLOGY                                                                            | Bringelly Shale                               | VEGETAT                  |                                                                    | rass                                        |                                            | PROJECT NO.                                                  | P1504996                                   |
| _        | UIPME                                                       |                                                      | NIME N                 | ISIONS                     | _                      |                  | cavator<br>1.1 m depth  |                |                                                                     | EASTING<br>NORTHING                                                                | -                                             | RL SURF                  | ACE -                                                              | not                                         |                                            | SLOPE                                                        | <5%                                        |
| Ë        |                                                             |                                                      |                        | ION DA                     |                        | ım X             | 1.1 m deptn             |                | МАТ                                                                 | ERIAL DAT                                                                          | · <b>A</b>                                    | ASPECT                   | E                                                                  | ası                                         | SAMPLI                                     | NG & TESTI                                                   |                                            |
| METHOD   | _                                                           | WATER                                                | MOISTURE               | DEPTH (M)                  | DRILLING               | RESISTANCE       | GRAPHIC LOG             | CLASSIFICATION | SOIL NAME, plasticolour, seconda moisture condition, ROCK NAME, gra | AL DESCRIPTIC<br>city or particle char<br>ry and minor comp<br>consistency/relativ | en<br>racteristics,<br>onents,<br>ve density, | CONSISTENCY              | DENSITY INDEX                                                      | TYPE                                        | H (M)                                      | RESUL                                                        | TS AND<br>DBSERVATIONS                     |
| Е        | Nil                                                         | N                                                    | М                      | 0.2                        |                        |                  | × × ×<br>× × ×<br>× × × | OL             | Silty SAND - Fine g                                                 | grained, light l                                                                   | prown/brown.                                  |                          |                                                                    | E                                           | 0.15 4996                                  | /TP209/0.15                                                  | - Topsoil<br>-                             |
| E        | Nil                                                         | N                                                    | D                      | -<br>0.5<br>-<br>0.6       |                        |                  | <br>                    | CL             | Silty CLAY - Low to m                                               | nedium plastic                                                                     | ity, light brown.                             | S-F                      |                                                                    | E                                           | 0.5 4996                                   | TP209/0.5                                                    | - Residual -<br>-<br>-<br>-                |
| Е        | Nil                                                         | N                                                    | D                      | 1.0                        |                        |                  |                         | CL             | CLAY - Low to med trace t                                           | ium plasticity<br>fine gravels.                                                    | grey / white,                                 | S-F                      |                                                                    |                                             |                                            |                                                              | - Residual<br>-<br>-<br>-<br>1 <u>.0</u>   |
|          |                                                             |                                                      | ī / ME                 |                            | JPPOI                  | RT               | WATER                   |                | MOISTURE PENETR                                                     |                                                                                    | STENCY DENSITY Pry Soft VL Very Lo            |                          | /PLING &                                                           |                                             |                                            | penetrometer                                                 | 2.0 2.0 3.0 4.5 CLASSIFICATION SYMBOLS AND |
| 1        | K E<br>HA Ha<br>S S <sub>I</sub><br>CC Co<br>/ V-I<br>FC Tu | xisting<br>and au<br>bade<br>ncrete<br>Bit<br>ngster | g exca<br>iger<br>Core | vation SC<br>RE<br>Ni<br>r | C Sho<br>B Roo<br>I No | tcrete<br>ck Bol | ts 🅎 Wat                |                | el W Wet H High<br>Wp Plastic limit R Refu<br>tflow WI Liquid limit | F Fii<br>sal St Sti<br>VSt Ve<br>H Ha                                              | ff D Dense<br>ery Stiff VD Very De            | Dense U<br>Dense M<br>Ux | Bulk sampl Undisturbe Disturbed s Moisture co Tube samp Environmer | ed sample<br>sample<br>ontent<br>ole (x mm) | S Standa<br>VS Vane s<br>DCP Dyna<br>penel | rd penetration test<br>hear<br>mic cone<br>rometer<br>ensity | SOIL DESCRIPTION  Y USCS  N Agricultural   |
| st No. 4 |                                                             |                                                      | )                      |                            |                        | E                | EXCAVATI                | ON L           | OG TO BE READ IN CONJUN                                             | MARTENS & A                                                                        | ASSOCIATES PTY LT                             |                          | ES AND                                                             |                                             |                                            | eerina                                                       | Log -                                      |

Document Set III 9820376

MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

| CLI                                | EN                                              | Т                                                            | Ur                              | nivers        | al Pro <sub>l</sub>                                 | pert                      | y Grou                                | p Pt                       | y Ltd                                                                                     | COMMENCED                                                                         | 7.10.15                                                                                   | со                                      | MPLETE                                           | 7.10.                                                                                     | 15                                    |                   |                                                                                         | REF                          | TP210                                                           |                    |
|------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------------|---------------|-----------------------------------------------------|---------------------------|---------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|-------------------|-----------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|--------------------|
| PR                                 | OJE                                             | СТ                                                           | De                              | tailed        | I SIte I                                            | nve                       | stigatio                              | n                          |                                                                                           | LOGGED                                                                            | BM                                                                                        | СН                                      | ECKED                                            | JF                                                                                        |                                       |                   |                                                                                         | Sheet 1 o                    | f <b>1</b>                                                      |                    |
| SIT                                |                                                 |                                                              | Sc                              | outh V        |                                                     |                           | Urban                                 | Villa                      | age                                                                                       | GEOLOGY                                                                           | Bringelly Shale                                                                           |                                         | GETATIO                                          |                                                                                           | ss                                    |                   |                                                                                         | PROJECT NO.                  | P1504996                                                        |                    |
| EQUI                               |                                                 |                                                              |                                 |               |                                                     |                           | avator                                |                            |                                                                                           | EASTING                                                                           | -                                                                                         |                                         | SURFAC                                           | _                                                                                         |                                       |                   |                                                                                         |                              |                                                                 |                    |
| EXC                                |                                                 |                                                              |                                 | SIONS         |                                                     | m X 2.                    | 3 m depth                             |                            | МАТ                                                                                       | NORTHING<br>ERIAL DAT                                                             |                                                                                           | ASI                                     | PECT                                             | East                                                                                      |                                       | S/                |                                                                                         | SLOPE  G & TESTI             | <5%                                                             | —                  |
| МЕТНОБ                             | SUPPORT                                         | WATER                                                        | MOISTURE                        | DEPTH (M)     | L DRILLING                                          |                           | GRAPHIC LOG                           | CLASSIFICATION             | MATERIA SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grai           | L DESCRIPTION city or particle charactery and minor comports consistency/relative | N<br>acteristics,<br>onents,<br>e density,                                                |                                         | CONSISTENCY                                      | DENSITY INDEX                                                                             | TYPE                                  | DEPTH (M)         |                                                                                         | RESUL                        | TS AND<br>DBSERVATIONS                                          |                    |
| Е                                  | Nil                                             | N                                                            | М                               | -             |                                                     |                           | × × × × × × × × × × × × × × × × × × × | xx                         | Fill: Silty CLAY - L<br>dark brown/browr<br>and gravels (                                 | ow to medium, with fine gra<br>5-10 mm, 10-                                       | ined sand                                                                                 |                                         |                                                  |                                                                                           | Е                                     | 0.15              | 4996/TI                                                                                 | P210 /0.15  - Brick and tile | - Fill inclusions.                                              | -                  |
| Е                                  | Nil                                             | N                                                            | D                               | 0.5           |                                                     |                           |                                       | - CL                       | CLAY - low to medi                                                                        | um plasticity,                                                                    | grey /brown.                                                                              | \$                                      | S-F                                              |                                                                                           | Е                                     | 0.65              | 4996/TF                                                                                 | 210 <b>/0.65</b>             | - Residual                                                      | -<br>-<br>-<br>1.0 |
| E                                  | Nil                                             | N                                                            | D                               |               |                                                     |                           |                                       |                            | SHALE - very low st                                                                       | trength, light b                                                                  | orown/ grey.                                                                              |                                         |                                                  |                                                                                           | E                                     | 1.5               | 4996/TF                                                                                 | 210/1.5                      | - Weathered ro                                                  |                    |
|                                    |                                                 |                                                              |                                 | 2.3<br>-<br>- |                                                     |                           |                                       |                            |                                                                                           | ninated at 2.3 strength shale                                                     |                                                                                           |                                         |                                                  |                                                                                           |                                       |                   |                                                                                         |                              |                                                                 | <del></del>        |
| N<br>X<br>HA<br>S<br>CO<br>V<br>TO | Na<br>E:<br>A Ha<br>Sp<br>C Coi<br>V-E<br>C Tur | atural oxisting<br>and au<br>bade<br>ncrete<br>Bit<br>ngsten | exposi<br>ger<br>Corei<br>Carbi | ure<br>vation | SUPPOR<br>SH Shot<br>SC Shot<br>RB Roci<br>Nil No s | ring<br>tcrete<br>k Bolts | s                                     | e obse<br>measu<br>er leve | red M Moist M Mode<br>el W Wet H High<br>Wp Plastic limit R Refus<br>flow WI Liquid limit | VS Ver<br>erate S So<br>F Firn<br>sal St Stif                                     | y Soft VL Ve<br>ft L Lo<br>m MD Me<br>f D De<br>y Stiff VD Ver                            | ery Loose<br>ose<br>edium Dense<br>ense | A Au<br>B Bul<br>U Un<br>D Dis<br>M Mo<br>Ux Tub | LING & Ti<br>ger sample<br>k sample<br>disturbed sa<br>sture con<br>e sample<br>ironmenta | e<br>sample<br>mple<br>tent<br>(x mm) | PI<br>S<br>V<br>D | p Pocket p<br>Standard<br>S Vane sh<br>CP Dynam<br>penetr<br>D Field der<br>/S Water sa | ic cone<br>meter<br>sity     | CLASSIFICATION SYMBOLS AND SOIL DESCRIPT  Y USCS N Agricultural | ION                |
|                                    |                                                 |                                                              |                                 |               |                                                     | F.                        | XCAVATI                               | ON L                       | OG TO BE READ IN CONJUN                                                                   | CTION WITH A                                                                      | CCOMPANYING                                                                               | REPORT                                  | NOTES                                            | AND AI                                                                                    | BBRF                                  | VIATI             | ONS                                                                                     |                              |                                                                 |                    |
| Quality Sheet No. 4                |                                                 |                                                              |                                 |               | ens                                                 | 3                         |                                       |                            | Ph                                                                                        | MARTENS & A<br>Suite 201,<br>Hornsby, N<br>one: (02) 9476 9                       | SSOCIATES PT<br>20 George Stree<br>SW 2077 Austra<br>1999 Fax: (02) 9<br>/EB: http://www. | Y LTD<br>et<br>alia<br>476 8767         |                                                  |                                                                                           |                                       |                   | -                                                                                       |                              |                                                                 |                    |

Version: 1, Version Date: 24/11/2021

| С       | LIEN                                                | Т                                                                | U                                 | niversal                         | Pro                             | per                        | ty Grou                               | p Pt                                    | y Ltd                               |                     |                        |                                            | COMMEN                                               | <b>CED</b> 7.10.                                              | 15                                          | COMPL                         | ETED                                        | 7.10.1                                                                       | 15                              |               |                                                                                         | REF                         | 7             | Γ <b>P</b> 211                                      |                             |
|---------|-----------------------------------------------------|------------------------------------------------------------------|-----------------------------------|----------------------------------|---------------------------------|----------------------------|---------------------------------------|-----------------------------------------|-------------------------------------|---------------------|------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|------------------------------------------------------------------------------|---------------------------------|---------------|-----------------------------------------------------------------------------------------|-----------------------------|---------------|-----------------------------------------------------|-----------------------------|
| _       | ROJI                                                | ECT                                                              | D                                 | etailed S                        | Site                            | Inve                       | estigatio                             | n                                       |                                     |                     |                        |                                            | LOGGED                                               | ВМ                                                            |                                             | CHECK                         | ED                                          | JF                                                                           |                                 |               |                                                                                         | Sheet 1                     | of 1          | Ì                                                   |                             |
| -       | TE                                                  |                                                                  | S                                 | outh We                          | _                               | _                          | n Urban                               | Vill                                    | age                                 |                     |                        | _                                          | GEOLOGY                                              |                                                               | jelly Shale                                 | VEGET                         |                                             | Gras                                                                         | s                               |               |                                                                                         | PROJECT N                   | <b>10</b> . P | 1504996                                             |                             |
| _       | CAVA                                                |                                                                  | DIMEN                             | ISIONS                           | _                               |                            | cavator<br>1.1 m depth                |                                         |                                     |                     |                        |                                            | EASTING<br>NORTHING                                  |                                                               |                                             | RL SUF                        |                                             | -<br>East                                                                    |                                 |               |                                                                                         | SLOPE                       | <5%           |                                                     |                             |
| ٣       |                                                     |                                                                  |                                   | ION DA                           |                                 | IIII X                     | 1.1 III deptil                        |                                         |                                     |                     |                        |                                            | RIAL [                                               |                                                               |                                             | AOFEC                         |                                             | Lust                                                                         |                                 | SA            |                                                                                         | G & TES                     |               |                                                     |                             |
| METHOD  |                                                     | WATER                                                            | MOISTURE                          | DEPTH(M)                         | DRILLING                        | RESISTANCE                 | GRAPHIC LOG                           | CLASSIFICATION                          |                                     | moi                 | MA IL NAME colour, se  | TERIAL  E, plasticit econdary endition, co | DESCRII<br>y or particle<br>and minor<br>onsistency/ | PTION e characteris components frelative dens re/fabric, colo | ity,                                        | CONSISTENCY                   |                                             | DENSITY INDEX                                                                | TYPE                            | DEPTH(M)      |                                                                                         | RES                         | ULTS A        |                                                     | ;                           |
| Е       | . Nil                                               | N                                                                | М                                 |                                  |                                 |                            | × × × × × × × × × × × × × × × × × × × | ×<br>×<br>×<br>×                        |                                     | dark b              | brown/                 | brown,                                     | with fine                                            | dium pla:<br>e grained<br>, 10-20%                            | sand                                        |                               |                                             |                                                                              | Е                               | 0.15          | 4996/T                                                                                  | P211 /0.15<br>- Brick and t | tile inclus   | - Fill<br>sions.                                    | -                           |
| E       | : Nil                                               | N                                                                | D                                 |                                  |                                 |                            |                                       | - CL                                    |                                     | CLAY -              | low to                 | mediu                                      | m plastio                                            | city, grey                                                    | /brown.                                     | S-F                           |                                             |                                                                              | E                               | 1.0           | 4996/TP:                                                                                | 211/1.0                     |               | - Residual                                          | -<br>-<br>-<br>1 <u>.0</u>  |
|         | FQUIFF                                              | MENT                                                             | T/ME                              | 1.1                              | JPPO                            | RT                         | WATER                                 |                                         |                                     | <i>I</i> OISTURE    |                        |                                            | Clay.                                                | 1.1m on                                                       |                                             | s                             | AMPLIN                                      | JG & TE                                                                      | STING                           |               |                                                                                         |                             | C             | :LASSIFICATI                                        | 2.C. 2.C. 3.0.0 4.0 4.0 0 N |
|         | N N<br>X E<br>HA H<br>S S<br>CC Co<br>V V-<br>TC Tu | atural<br>existing<br>and au<br>pade<br>oncrete<br>Bit<br>ngster | expos<br>g exca<br>uger<br>e Core | ure SF<br>vation SC<br>RE<br>Nil | H Sho<br>C Sho<br>B Roo<br>I No | oring<br>otcrete<br>ck Bol | N Nor<br>e X Not<br>lts ∇ Wa          | ne obso<br>measo<br>ter levo<br>ter out | erved D<br>ured M<br>el W<br>flow W | Dry<br>Moist<br>Wet | L<br>M<br>H<br>limit R | Low<br>Moder                               | VS<br>ate S<br>F                                     | S Very Soft<br>Soft<br>Firm<br>Stiff                          | VL Very L<br>L Loose<br>MD Mediu<br>D Dense | m Dense U<br>D<br>ense M<br>U | Bulk s<br>Undis<br>Distu<br>Moist<br>x Tube | r sample<br>sample<br>sturbed s<br>rbed san<br>ure cont<br>sample<br>nmental | sample<br>nple<br>ent<br>(x mm) | S<br>V:<br>D: | Pocket po<br>Standard<br>S Vane sho<br>CP Dynam<br>penetro<br>D Field der<br>S Water sa | ic cone<br>meter<br>sity    | est S         | YMBOLS AND<br>OIL DESCRIP<br>Y USCS<br>N Agricultur | O<br>NOIT                   |
| t No. 4 |                                                     |                                                                  | )                                 |                                  |                                 | E                          | EXCAVATI                              | ON L                                    | OG TO                               | BE READ             | ) IN CO                |                                            | MARTENS                                              | S & ASSO                                                      | MPANYING RI<br>CIATES PTY L<br>eorge Street |                               | TES A                                       | ND AE                                                                        |                                 |               |                                                                                         | erin                        | n I           | 00 -                                                |                             |

martens
Document Set In 1982/03/16

MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

| CI                          | IEN                                                                | Т                                                                                                                              | U                                 | niversal                         | Prop                                          | erty Grou                             | p Pt                        | y Ltd                                                                                   | COMMENCED                                                                          | 7.10.15                                       | COMPLETE                                      | <b>D</b> 7.10                                                                                               | .15                                    |                     |                      | REF                        | TP212                                                               |
|-----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|----------------------|----------------------------|---------------------------------------------------------------------|
| PF                          | ROJE                                                               | JECT Detailed Site Investigation LOGGED BM CHECKED JF  South Werrington Urban Village GEOLOGY Bringelly Shale VEGETATION Grass |                                   |                                  |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        | Sheet 1             | of <b>1</b>          |                            |                                                                     |
| EQUIPMENT 5 Tonne excavator |                                                                    |                                                                                                                                |                                   |                                  |                                               |                                       |                             | age                                                                                     |                                                                                    | Bringelly Shale                               | +                                             |                                                                                                             | SS                                     |                     |                      | PROJECT NO                 | D. P1504996                                                         |
| -                           |                                                                    |                                                                                                                                | DIMEN                             |                                  |                                               | X 1.5 m depth                         |                             |                                                                                         | EASTING<br>NORTHING                                                                | -                                             | ASPECT                                        | E -                                                                                                         | t                                      |                     |                      | SLOPE                      | <5%                                                                 |
| <u> </u>                    |                                                                    |                                                                                                                                |                                   | ION DAT                          |                                               | / no m dopar                          |                             | MAT                                                                                     | ERIAL DAT                                                                          |                                               | 17.0. 20.                                     |                                                                                                             |                                        | SA                  |                      | G & TEST                   |                                                                     |
| METHOD                      | SUPPORT                                                            | WATER                                                                                                                          | MOISTURE                          | DEPTH(M)                         | L DRILLING H RESISTANCE                       |                                       | CLASSIFICATION              | MATERIA SOIL NAME, plastic colour, secondal moisture condition ROCK NAME, gra           | AL DESCRIPTIC<br>city or particle char<br>ry and minor comp<br>consistency/relativ | on<br>racteristics,<br>onents,<br>we density, | CONSISTENCY                                   | DENSITY INDEX                                                                                               | TYPE                                   | DEPTH (M)           | A                    |                            | LTS AND<br>OBSERVATIONS                                             |
| Е                           | Nil                                                                | N                                                                                                                              | М                                 | -                                |                                               | × × × × × × × × × × × × × × × × × × × | XX                          | Fill: Silty CLAY - L<br>dark brown/browi<br>and gravels (                               |                                                                                    | ained sand                                    |                                               |                                                                                                             | Е                                      | 0.15                | 4996/TP2             | 12/0.15<br>- Brick and tik | - Fill<br>e inclusions.                                             |
| E                           | Nil                                                                | N                                                                                                                              | D                                 |                                  |                                               |                                       | CL                          | CLAY - low to medi                                                                      | um plasticity,                                                                     | grey /brown.                                  | S-F                                           |                                                                                                             | E                                      | 0.65                | 4996/TP2<br>4996/TP2 |                            | - Residual                                                          |
|                             |                                                                    |                                                                                                                                |                                   | 1.5                              |                                               |                                       | -                           |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            |                                                                     |
|                             |                                                                    |                                                                                                                                |                                   | _<br>_<br>_<br>_<br>_<br>2.0     |                                               |                                       |                             | Testpit termina                                                                         | ated at 1.5m o                                                                     | on clay.                                      |                                               |                                                                                                             |                                        |                     |                      |                            | 2.                                                                  |
|                             |                                                                    |                                                                                                                                |                                   | -                                |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            | -                                                                   |
|                             |                                                                    |                                                                                                                                |                                   | -                                |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            |                                                                     |
|                             |                                                                    |                                                                                                                                |                                   | 3.0                              |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            | 3 <u>.</u>                                                          |
|                             |                                                                    |                                                                                                                                |                                   | -<br>-<br>-                      |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            |                                                                     |
|                             |                                                                    |                                                                                                                                |                                   |                                  |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            | 4_                                                                  |
|                             |                                                                    |                                                                                                                                |                                   | _<br>_<br>_<br>_<br><u>4</u> .5  |                                               |                                       |                             |                                                                                         |                                                                                    |                                               |                                               |                                                                                                             |                                        |                     |                      |                            | 4.                                                                  |
| 1                           | N N<br>K E<br>HA Ha<br>S S <sub>I</sub><br>CC Co<br>V V-I<br>TC Tu | atural<br>existing<br>and au<br>pade<br>oncrete<br>Bit<br>ngster                                                               | expos<br>g exca<br>uger<br>e Core | ure SH<br>vation SC<br>RB<br>Nil | PPORT<br>Shorin<br>Shoter<br>Rock E<br>No sup | rete X Not<br>Bolts ∇ Wa              | e obse<br>measu<br>ter leve | red M Moist M Mod<br>el W Wet H High<br>Wp Plastic limit R Refu<br>flow WI Liquid limit | VS Verate S So F Fin Sal St Sti VSt Ve H Ha                                        | ff D Dense<br>ery Stiff VD Very Den           | Dose A Au B Bu Dense U Ur D Di nse M Mo Ux Tu | LING & Ti<br>ger sample<br>llk sample<br>ndisturbed<br>sturbed sa<br>bisture cor<br>be sample<br>vironmenta | e<br>sample<br>mple<br>itent<br>(x mm) | pp<br>S<br>VS<br>DO |                      | ic cone<br>meter<br>sity   | CLASSIFICATION SYMBOLS AND SOIL DESCRIPTION  Y USCS  N Agricultural |
| t No. 4                     |                                                                    |                                                                                                                                | )                                 |                                  |                                               | EXCAVATI                              | ON L                        | OG TO BE READ IN CONJUN                                                                 | MARTENS & A                                                                        | ACCOMPANYING REF                              |                                               | S AND A                                                                                                     |                                        |                     |                      | erino                      | Log -                                                               |

Document Set III) 98/03/6 Version: 1, Version Date: 24/11/2021 MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George Street
Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au